10-2统计图表、数据的数字特征和用样本估计总体 74
- 格式:ppt
- 大小:1.17 MB
- 文档页数:27
用样本估计总体一、用样本的频率分布估计总体分布(1)频数、频率将一批数据按要求分为若干个组,各组内数据的个数,叫做该组的频数。
每组数除以全体数据的个数的商叫做该组的频率。
频率反映数据在每组中所占比例的大小。
(2)样本的频率分布根据随机所抽样本的大小,分别计算某一事件出现的频率,这些频率的分布规律(取值状况),就叫做样本的频率分布。
为了能直观地显示样本的频率分布情况,通常我们会将样本的容量、样本中出现该事件的频数以及计算所得的频率列在一张表中,叫做样本频率分布表。
(3)用样本频率分布估计总体的分布从一个总体得到一个包含大量数据的样本时,我们很难从一个个数字中直接看出样本所含的信息。
如果把这些数据形成频数分布或频率分布,就可以比较清楚地看出样本数据的特征,从而估计总体的分布情况。
用样本估计总体,是研究统计问题的一个基本思想方法,而对于总体分布,我们总是用样本的频率分布对它进行估计。
(4)频率分布直方图的特点从频率分布直方图可以清楚地看出数据分布的总体态势,但是从直方图本身得不出原始的数据内容,所以,把数据表示成直方图后,原有的具体数据信息就被抹掉了。
(5)频率分布折线图把频率分布直方图各个长方形上边的中点用线段连接起来,就得到频率分布折线图,如图所示。
为了方便看图,一般习惯于把频率分布折线图画成与横轴相连,所以横轴上的左右两端点没有实际意义。
(6)总体密度曲线①如果样本容量越大,所分组数越多,频率分布直方图中表示的频率分布就越接近于总体在各个小组内所取值的个数与总数比值的大小。
设想如果样本容量不断增大,分组的组距不断缩小,则频率分布直方图实际上是越来越接近于总体的分布,它可以用一条光滑曲线来描绘,这条光滑曲线就叫做总体密度曲线。
y f x()②总体密度曲线精确地反映了一个总体在各个区域内取值的百分比。
a b内的百分比就是图中带斜线部分的面积。
对本例来说,总体密度曲线呈产品尺寸落在(,)中间高两边低的“钟”形分布,总体的数据大致呈对称分布,并且大部分数据都集中在靠近中间的区间内。
第31讲统计与统计模型学校____________ 姓名____________ 班级____________一、知识梳理数据的收集与直观表示1.总体、个体、样本与样本容量考察问题涉及的对象全体是总体,总体中每个对象是个体,抽取的部分对象组成总体的一个样本,一个样本中包含的个体数目是样本容量.(1)普查:一般地,对总体中每个个体都进行考察的方法称为普查(也称为全面调查).(2)抽样调查:只抽取样本进行考察的方法称为抽样调查.(1)定义:一般地,简单随机抽样(也称为纯随机抽样)就是从总体中不加任何分组、划类、排队等,完全随机地抽取个体.(2)两种常用方法:抽签法,随机数表法.一般地,如果相对于要考察的问题来说,总体可以分成有明显差别的、互不重叠的几部分时,每一部分可称为层,在各层中按层在总体中所占比例进行随机抽样的方法称为分层随机抽样(简称为分层抽样).(1)常见的统计图表有柱形图、折线图、扇形图、茎叶图、频数分布直方图、频率分布直方图等.(2)频率分布直方图①作频率分布直方图的步骤(ⅰ)找出最值,计算极差:即一组数据中最大值与最小值的差;(ⅱ)合理分组,确定区间:根据数据的多少,一般分5~9组;(ⅲ)整理数据:逐个检查原始数据,统计每个区间内数的个数(称为区间对应的频数),并求出频数与数据个数的比值(称为区间对应的频率),各组均为左闭右开区间,最后一组是闭区间;(ⅳ)作出有关图示:频率,每一组数对应的矩形高度与频率成正比,而且每个矩形的面积等于这一组数对应的组距频率,从而可知频率分布直方图中,所有矩形的面积之和为1.②频率分布折线图作图的方法都是:把每个矩形上面一边的中点用线段连接起来.为了方便看图,折线图都画成与横轴相交,所以折线图与横轴的左右两个交点是没有实际意义的.不难看出,虽然作频率分布直方图过程中,原有数据被“压缩”了,从这两种图中也得不到所有原始数据.但是,由这两种图可以清楚地看出数据分布的总体态势,而且也可以得出有关数字特征的大致情况.比如,估计出平均数、中位数、百分位数、方差.当然,利用直方图估计出的这些数字特征与利用原始数据求出的数字特征一般会有差异. 数据的数字特征、用样本估计总体 (1)最值一组数据的最值指的是其中的最大值与最小值,最值反映的是这组数最极端的情况. (2)平均数①定义:如果给定的一组数是x 1,x 2,…,x n ,则这组数的平均数为x -=1n(x 1+x 2+…+x n ).这一公式在数学中常简记为x -=1n∑ni =1x i , ②性质:一般地,利用平均数的计算公式可知,如果x 1,x 2,…,x n 的平均数为x ,且a ,b 为常数,则ax 1+b ,ax 2+b ,…,ax n +b 的平均数为a x -+b .(3)中位数有奇数个数,且按照从小到大排列后为x 1,x 2,…,x 2n +1,则称x n +1为这组数的中位数;如果一组数有偶数个数,且按照从小到大排列后为x 1,x 2,…,x 2n ,则称x n +x n +12为这组数的中位数. (4)百分位数①定义:一组数的p %(p ∈(0,100))分位数指的是满足下列条件的一个数值:至少有p %的数据不大于该值,且至少有(100-p )%的数据不小于该值.②确定方法:设一组数按照从小到大排列后为x 1,x 2,…,x n ,计算i =np %的值,如果i 不是整数,设i 0为大于i 的最小整数,取xi 0为p %分位数;如果i 是整数,取x i +x i +12为p %分位数. (5)众数一组数据中,出现次数最多的数据称为这组数据的众数. (6)极差、方差与标准差①极差:一组数的极差指的是这组数的最大值减去最小值所得的差,描述了这组数的离散程度. ②方差定义:如果x 1,x 2,…,x n 的平均数为x ,则方差可用求和符号表示为s 2=1n∑n i =1(x i -x -)2=1n∑ni =1x 2i -x -2. 性质:如果a ,b 为常数,则ax 1+b ,ax 2+b ,…,ax n +b 的方差为a 2s 2. ③标准差定义:方差的算术平方根s 表示,即样本数据x 1,x 2,…,x n 的标准差为s =1n∑ni =1(x i -x )2. 性质:如果a ,b 为常数,则ax 1+b ,ax 2+b ,…,ax n +b 的标准差为|a |s .一般情况下,如果样本容量恰当,抽样方法合理,在估计总体的数字特征时,只需直接算出样本对应的数字特征即可. 统计模型(1)相关关系:两个变量有关系,但又没有确切到可由其中的一个去精确地决定另一个的程度,这种关系称为相关关系. (2)相关关系的分类:正相关和负相关.(3)线性相关:如果变量x 与变量y 之间的关系可以近似地用一次函数来刻画,则称x 与y 线性相关.(1)r =∑ni =1(x i -x -)(y i -y -)∑ni =1(x i -x -)2∑ni =1(y i -y -)2=∑ni =1x i y i -nx -y-(∑ni =1x 2i -n x -2)(∑ni =1y 2i -ny 2).(2)当r >0时,成对样本数据正相关;当r <0时,成对样本数据负相关.(3)|r |≤1;当|r |越接近1时,成对样本数据的线性相关程度越强;当|r |越接近0时,成对样本数据的线性相关程度越弱.(1)我们将y ^=b ^x +a ^称为y 关于x 的回归直线方程,其中⎩⎪⎨⎪⎧b ^=∑n i =1(x i -x -)(y i -y -)∑ni =1(x i -x -)2=∑ni =1x i y i -n x -y -∑n i =1x 2i -n x-2,a ^=y ^-b ^x -.(2)残差:观测值减去预测值,称为残差. 4.2×2列联表和χ2如果随机事件A 与B 的样本数据的2×2列联表如下.记n =a +b +c χ2=n (ad-bc )2(a +b )(c +d )(a +c )(b +d ).统计学中,常用的显著性水平α以及对应的分位数k 如下表所示.要推断“A (1)作2×2列联表.(2)根据2×2列联表计算χ2的值.(3)查对分位数kχ2的值后,发现χ2≥k 成立,就称在犯错误的概率不超过α的前提下,可以认为A 与B 不独立(也称为A 与B 有关);或说有1-α的把握认为A 与Bχ2<k 成立,就称不能得到前述结论.这一过程通常称为独立性检验.二、考点和典型例题1、数据的收集与直观表示【典例1-1】北京2022年冬奥会期间,某大学派出了100名志愿者,为了解志愿者的工作情况,该大学学生会将这100名志愿者随机编号为1,2,…,100,再从中利用系统抽样的方法抽取一个容量为20的样本进行问卷调查,若所抽中的最小编号为3,则所抽中的最大编号为()A.96 B.97 C.98 D.99【典例1-2】某社区卫生室为了了解该社区居民的身体健康状况,对该社区1100名男性居民和900名女性居民按性别采用等比例分层随机抽样的方法进行抽样调查,抽取了一个容量为100的样本,则应从男性居民中抽取的人数为()A.45 B.50 C.55 D.60【典例1-3】已知某地区中小学生人数比例和近视情况分别如图甲和图乙所示,为了了解该地区中小学生的近视形成原因,用分层抽样的方法随机抽取1%的学生进行调查,其中被抽取的小学生有80人,则样本容量和该地区的高中生近视人数分别为()A.200,25 B.200,2500 C.8000,25 D.8000,2500【典例1-4】将某市参加高中数学建模竞赛的学生成绩分成5组:[50,60),[60,70),[70,80),[80,90),[90,100),并整理得到频率分布直方图(如图所示).现按成绩运用分层抽样的方法抽取100位同学进行学习方法的问卷调查,则成绩在区间[70,80)内应抽取的人数为()A .10B .20C .30D .35【典例1-5】某学校为调查学生参加课外体育锻炼的时间,将该校某班的40名学生进行编号,分别为00,01,02,…,39,现从中抽取一个容量为10的样本进行调查,选取方法是从下面的随机数表的第1行第11列开始向右读取数据,直到取足样本,则抽取样本的第6个号码为( )90 84 60 79 80 24 36 59 87 38 82 07 53 89 35 96 35 23 79 18 05 98 90 07 3546 40 62 98 80 54 97 20 56 95 15 74 80 08 32 16 46 70 50 80 67 72 16 42 75 A .07 B .40C .35D .232、数据的数字特征、用样本估计总体【典例2-1】某学校举行诗歌朗诵比赛,10位评委对甲、乙两位同学的表现打分,满分为10分,将两位同学的得分制成如下茎叶图,其中茎叶图茎部分是得分的个位数,叶部分是得分的小数,则下列说法错误的是( )A .甲同学的平均分大于乙同学的平均分C .甲、乙两位同学得分的中位数相同D .甲同学得分的方差更小【典例2-2】已知数据1x ,2x ,…,n x 的平均值为2,方差为1,若数据11ax ,21ax +,…,()10n ax a +>的平均值为b ,方差为4,则b =( ).A .5B .4C .3D .2【典例2-3】某校高一年级1000名学生在一次考试中的成绩的频率分布直方图如图所示,现用分层抽样的方法从成绩40~70分的同学中共抽取80名同学,则抽取成绩50~60分的人数是( )A .20B .30C .40D .50【典例2-4】某高中为了了解本校学生考入大学一年后的学习情况,对本校上一年考入大学的同学进行了调查,根据学生所属的专业类型,制成饼图,现从这些同学中抽出100人进行进一步调查,已知张三为理学专业,李四为工学专业,则下列说法不正确的是( )A .若按专业类型进行分层抽样,则张三被抽到的可能性比李四大B .若按专业类型进行分层抽样,则理学专业和工学专业应抽取30人和20人C .采用分层抽样比简单随机抽样更合理D .该问题中的样本容量为100【典例2-5】如图是2021年青年歌手大奖赛中,七位评委为甲、乙两名选手打出的分数的茎叶图(其中m n 、均为数字09中的一个),在去掉一个最高分和一个是低分后,则下列说法错误的是( )A .甲选手得分的平均数一定大于乙选手得分的平均数B .甲选手得分的中位数一定大于乙选手得分的中位数C .甲选手得分的众数与m 的值无关D .甲选手得分的方差与n 的值无关 3、统计模型【典例3-1】已知下列命题:①回归直线y bx a =+恒过样本点的中心(),x y ;②两个变量线性相关性越强,则相关系数r 就越接近于1; ③两个模型中残差平方和越小的模型拟合的效果越好. 则正确命题的个数是( ). A .0B .1C .2D .3【典例3-2】下列说法错误的是( ) A .相关系数r 的绝对值越大,两个变量的线性相关性越强 B .在回归分析中,残差平方和越大,模型的拟合效果越好C .相关指数20.64R =,表示解释变量对于预报变量变化的贡献率为64%D .在残差图中,残差点分布的带状区域的宽度越狭窄,其模型拟合的精度越高 【典例3-3】如图是一组实验数据构成的散点图,以下函数中适合作为y 与x 的回归方程的类型是( )A .y ax b =+B .2y ax c =+C .log a y b x c =+D .x y ba c =+【典例3-4】当下,大量的青少年沉迷于各种网络游戏,极大地毒害了青少年的身心健康.为了引导青少年抵制不良游戏,适度参与益脑游戏,某游戏公司开发了一款益脑游戏,在内测时收集了玩家对每一关的平均过关时间,如下表:计算得到一些统计量的值为:661128.5,106.05i i i i i u x u ====∑∑,其中,ln i i u y =.若用模型e bx y a =拟合y 与x 的关系,根据提供的数据,求出y 与x 的经验回归方程;参考公式:对于一组数据(),i i x y (1,2,3,,i n =⋅⋅⋅),其经验回归直线ˆˆˆybx a =+的斜率和截距的最小二乘估计分别为1221ˆniii nii x ynxybxnx =-=-=-∑∑,ˆˆay bx =-. 【典例3-5】2022年北京冬奥会即第24届冬季奥林匹克运动会在2022年2月4日至2月20日在北京和张家口举行.某研究机构为了解大学生对冰壶运动是否有兴趣,从某大学随机抽取男生、女生各200人,对冰壶运动有兴趣的人数占总数的2740,女生中有80人对冰壶运动没有兴趣.(1)完成上面2×2列联表,并判断是否有99%的把握认为对冰壶运动是否有兴趣与性别有关?(2)按性别用分层抽样的方法从对冰壶运动有兴趣的学生中抽取9人,若从这9人中随机选出2人作为冰壶运动的宣传员,设X 表示选出的2人中女生的人数,求X 的分布列和数学期望.附:22()()()()()()n ad bc K n a b c d a b c d a c b d -==+++++++.。
§11.2 统计图表、数据的数字特征、用样本估计总体会这样考 1.考查样本的频率分布(分布表、直方图、茎叶图)中的有关计算,样本特征数(众数、中位数、平均数、标准差)的计算.主要以选择题、填空题为主;2.考查以样本的分布估计总体的分布(以样本的频率估计总体的频率、以样本的特征数估计总体的特征数).1.统计数据(1)众数、中位数、平均数、极差、众数:在一组数据中,出现次数最多的数据叫作这组数据的众数.(可以没有或者多个). 中位数:将一组数据按大小依次排列,处在最中间位置的一个数据(或最中间两个数据的平均数).平均数:样本数据的算术平均数,即x =1n (x 1+x 2+…+x n ).(2)方差、标准差 方差()()()[]2222121x x x x x x nS n -++-+-=标准差S =1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2], 其中x n 是样本数据的第n 项,n 是样本容量,x 是平均数.标准差是反映总体波动大小的特征数,样本方差是标准差的平方.通常用样本方差估计总体方差,当样本容量接近总体容量时,样本方差很接近总体方差. 2.统计图表统计图表是表达和分析数据的重要工具,常用的统计图表有条形统计图、扇形统计图、折线统计图、茎叶图、频率分布直方图等.(1)当样本数据较少时,用茎叶图表示数据的效果较好,它不但可以保留所有信息,而且可以随时记录,给数据的记录和表示都带来方便. (2)在频率分布直方图中:①纵轴表示频率组距,②每小长方形的面积表示该组数据的频率或比例, ③各小长方形的面积之和等于1.3.用样本估计总体(1)通常我们对总体作出的估计一般分成两种,一种是用样本的频率分布估计总体的频率分布,另一种是用样本的数字特征估计总体的数字特征.(2)在频率分布直方图中,按照分组原则,再在左边和右边各加一个区间.从所加的左边区间的中点开始,用线段依次连接各个矩形的顶端中点,直至右边所加区间的中点,就可以得到一条折线,称之为频率折线图.4.利用频率分布直方图估计样本的数字特征(1)众数:最高那组的组中值.(2)平均数:每个小长方形的面积与每个组中值的乘积之和. (3)中位数:等分面积那条线的横坐标. [难点正本 疑点清源] 1.作频率分布直方图的步骤(1)求极差;(2)确定组距和组数;(3)将数据分组;(4)列频率分布表;(5)画频率分布直方图. 频率分布直方图能很容易地表示大量数据,非常直观地表明分布的形状.1.一个容量为20的样本,数据的分组及各组的频数如下:[10,20),2;[20,30),3;[30,40),x ;[40,50),5;[50,60),4;[60,70),2;则x =________;根据样本的频率分布估计,数据落在[10,50)的概率约为________. 答案 4 0.72.某中学为了解学生数学课程的学习情况,在3 000名学生中随机抽取200名,并统计这200名学生的某次数学考试成绩,得到了样本的频率分布直方图(如图).根据频率分布直方图推测,这3 000名学生在该次数学考试中成绩小于60分的学生数是____.答案 6003.如上图所示是某学校一名篮球运动员在五场比赛中所得分数的茎叶图,则该运动员在这五场比赛中得分的方差为________.(注:方差s 2=1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2],其中x 为x 1,x 2,…,x n 的平均数)答案 6.84.某雷达测速区规定:凡车速大于或等于70 km/h 的汽车视为“超速”,并将受到处罚,如图是某路段的一个检测点对200辆汽车的车速进行检测所得结果的频率分布直方图,则从上图中可以看出被处罚的汽车大约有的辆数为________. 答案 40题型一 频率分布直方图的绘制与应用例1 (1)某校从参加高一年级期中考试的学生中随机抽出60名学生,将其物理成绩(均为整数)分成六段[40,50),[50,60),…,[90,100]后得到如图所示的频率分布直方图,观察图形的信息,回答下列问题:(1)求分数在[70,80)内的频率,并补全这个频率分布直方图; (2)据此估计本次考试中的平均分和中位数(保留整数).思维启迪:利用各小长方形的面积和等于1求分数在[70,80)内的频率,再补齐频率分布直方图. 解 (1)设分数在[70,80)内的频率为x ,根据频率分布直方图,有(0.010+0.015×2+0.025+0.005)×10+x =1,可得x =0.3,所以频率分布直方图如图所示.(2)平均分为x =45×0.1+55×0.15+65×0.15+75×0.3+85×0.25+95×0.05=71(分).中位数为73 探究提高 频率分布直方图直观形象地表示了样本的频率分布,从这个直方图上可以求出样本数据在各个组的频率分布.根据频率分布直方图估计样本(或者总体)的平均值时,一般是采取组中值乘以各组的频率的方法.(2)从某小学随机抽取l00名同学,将他们的身高(单位:厘米)数据绘制成频率分布图(如上图).若要从身高在[120,130),[130,140),[l40,150]三组内的学生中,用分层抽样的方法选取30人参加一项活动,则从身高在[120,130)的学生中选取的人数应为 .答案:15题型二 茎叶图的应用例2 (1)甲、乙两名同学在5次数学考试中,成绩统计用茎叶图表示如图所示,若甲、乙两人的平均成绩分别用x 甲、x 乙表示,则下列结论正确的是( )A 、x x <甲乙;乙比甲成绩稳定B 、x x >甲乙;乙比甲成绩稳定C 、x x <甲乙;甲比乙成绩稳定D 、x x >甲乙;甲比乙成绩稳定答案及解析:D(2)某学校从高二甲、乙两个班中各选6名同掌参加数学竞赛,他们取得的成绩(满分100分)的茎叶图如上图,其中甲班学生成绩的中位数数是81,乙班学生成绩的平均分为81,则成绩更稳定的班级为______.答案及解析:乙。