立体几何5
- 格式:doc
- 大小:1.49 MB
- 文档页数:7
高考数学一轮复习第7章立体几何第5节空间向量的运算及应用教学案理含解析北师大版第五节 空间向量的运算及应用[考纲传真] 1.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.2.掌握空间向量的线性运算及其坐标表示.3.掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直.4.理解直线的方向向量及平面的法向量.5.能用向量语言表述线线、线面、面面的平行和垂直关系.6.能用向量方法证明立体几何中有关线面位置关系的一些简单定理.1.空间向量的有关概念 名称 定义空间向量 在空间中,具有大小和方向的量方向向量A 、B 是空间直线l 上任意两点,则称AB →为直线l 的方向向量法向量 如果直线l 垂直于平面α,那么把直线l 的方向向量n 叫作平面α的法向量共线向量(或平行向量) 表示空间向量的有向线段所在的直线互相平行或重合的向量 共面向量平行于同一个平面的向量(1)共线向量定理:对空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ,使得a =λB .(2)共面向量定理:如果两个向量a ,b 不共线,那么向量p 与向量a ,b 共面的充要条件是存在唯一的有序实数对(x ,y ),使p =x a +yB .(3)空间向量基本定理:如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =x a +y b +z c ,其中,{a ,b ,c }叫做空间的一个基底.3.两个向量的数量积(1)非零向量a ,b 的数量积a ·b =|a ||b |cos 〈a ,b 〉. (2)空间向量数量积的运算律: ①结合律:(λa )·b =λ(a ·b ); ②交换律:a ·b =b ·a ;③分配律:a ·(b +c )=a ·b +a ·c . 4.空间向量的坐标表示及其应用 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3).1.对空间任一点O ,若OP →=xOA →+yOB →(x +y =1),则P ,A ,B 三点共线.2.对空间任一点O ,若OP →=xOA →+yOB →+zOC →(x +y +z =1),则P ,A ,B ,C 四点共面. 3.平面的法向量的确定:设a ,b 是平面α内两不共线向量,n 为平面α的法向量,则求法向量的方程组为⎩⎪⎨⎪⎧n·a =0,n·b =0.[基础自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)空间中任意两非零向量a ,b 共面.( ) (2)若A ,B ,C ,D 是空间任意四点,则有AB →+BC →+CD →+DA →=0. ( ) (3)设{a ,b ,c }是空间的一个基底,则a ,b ,c 中至多有一个零向量.(4)两向量夹角的范围与两异面直线所成角的范围相同. ( )[答案] (1)√ (2)√ (3)× (4)×2.(教材改编)设u =(-2,2,t ),v =(6,-4,4)分别是平面α,β的法向量.若α⊥β,则t =( )A .3B .4C .5D .6 C [∵α⊥β,则u ·v =-2×6+2×(-4)+4t =0, ∴t =5.]3.(教材改编)在平行六面体ABCD A 1B 1C 1D 1中,M 为A 1C 1与B 1D 1的交点.若AB →=a ,AD →=b ,AA 1→=c ,则下列向量中与BM →相等的向量是( )A .-12a +12b +cB .12a +12b +c C .-12a -12b +cD .12a -12b +c A [BM →=BB 1→+B 1M →=AA 1→+12(AD →-AB →)=c +12(b -a )=-12a +12b +c .]4.已知A (1,0,0),B (0,1,0),C (0,0,1),则下列向量是平面ABC 法向量的是( ) A .(-1,1,1) B .(1,-1,1) C.⎝ ⎛⎭⎪⎫-33,-33,-33 D .⎝⎛⎭⎪⎫33,33,-33 C [设n =(x ,y ,z )为平面ABC 的法向量,则⎩⎨⎧n ·AB →=0,n ·AC →=0,化简得⎩⎪⎨⎪⎧-x +y =0,-x +z =0,∴x =y =z .故选C.]5.(教材改编)已知a =(2,3,1),b =(-4,2,x ),且a ⊥b ,则|b |=________. 26 [∵a ⊥b ,∴a ·b =0,即-8+6+x =0,∴x =2. ∴b =(-4,2,2),∴|b |=16+4+4=2 6.]空间向量的线性运算1.如图所示,已知空间四边形OABC ,其对角线为OB ,AC ,M ,N 分别为OA ,BC 的中点,点G 在线段MN 上,且MG →=2GN →,若OG →=xOA →+yOB →+zOC →,则x +y +z =________.56[连接ON ,设OA →=a ,OB →=b ,OC →=c , 则MN →=ON →-OM →=12(OB →+OC →)-12OA →=12b +12c -12a ,OG →=OM →+MG →=12OA →+23MN →=12a +23⎝ ⎛⎭⎪⎫12b +12c -12a =16a +13b +13c . 又OG →=xOA →+yOB →+zOC →,所以x =16,y =13,z =13,因此x +y +z =16+13+13=56.]2.如图所示,在平行六面体ABCD A 1B 1C 1D 1中,设AA 1→=a ,AB →=b ,AD →=c ,M ,N ,P 分别是AA 1,BC ,C 1D 1的中点,设用a ,b ,c 表示以下各向量: (1)AP →;(2)A 1N →;(3)MP →+NC 1→. [解] (1)因为P 是C 1D 1的中点, 所以AP →=AA 1→+A 1D 1→+D 1P →=a +AD →+12D 1C 1→=a +c +12AB →=a +c +12B .(2)因为N 是BC 的中点,所以A 1N →=A 1A →+AB →+BN →=-a +b +12BC →=-a +b +12AD →=-a +b +12c .(3)因为M 是AA 1的中点, 所以MP →=MA →+AP →=12A 1A →+AP →=-12a +⎝ ⎛⎭⎪⎫a +c +12b =12a +12b +c , 又NC 1→=NC →+CC 1→=12BC →+AA 1→=12AD →+AA 1→=12c +a , 所以MP →+NC 1→=⎝ ⎛⎭⎪⎫12a +12b +c +⎝ ⎛⎭⎪⎫a +12c =32a +12b +32c . [规律方法] 用基向量表示指定向量的方法 (1)结合已知向量和所求向量观察图形.(2)将已知向量和所求向量转化到三角形或平行四边形中.(3)利用三角形法则或平行四边形法则把所求向量用已知基向量表示出来. 共线(共面)向量定理的应用【例1】 已知E ,F ,G ,H 分别为空间四边形ABCD 的边AB ,BC ,CD ,DA 的中点.(1)求证:E ,F ,G ,H 四点共面; (2)求证:BD ∥平面EFGH .[证明] (1)连接BG ,EG ,则EG →=EB →+BG → =EB →+12⎝⎛⎭⎫BC →+BD →=EB →+BF →+EH → =EF →+EH →.所以E ,F ,G ,H 四点共面.(2)因为EH →=AH →-AE →=12AD →-12AB →=12(AD →-AB →)=12BD →.所以EH ∥BD . 又EH 平面EFGH ,BD 平面EFGH ,所以BD ∥平面EFGH .[规律方法] (1)证明点共线问题可转化为证明向量共线问题,如证A ,B ,C 三点共线,即证AB →,AC →共线,只需证AB →=λAC →(λ≠0)即可.(2)证明点共面问题,可转化为证向量共面问题.如证P ,A ,B ,C 四点共面,只需证PA →=xPB →+yPC →或对空间任意一点O ,有OA →=OP →+xPB →+yPC →或OP →=xOA →+yOB →+zOC →(其中x +y +z =1)即可.(1)已知a =(λ+1,0,2),b =(6,2μ-1,2λ),若a ∥b ,则λ与μ的值可以是( )A .2,12B .-13,12C .-3,2D .2,2(2)已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a ,b ,c 三向量共面,则实数λ等于________.(1)A (2)657[(1)∵a ∥b ,∴设b =x a ,∴⎩⎪⎨⎪⎧x λ+1=6,2μ-1=0,2x =2λ,解得⎩⎪⎨⎪⎧μ=12,λ=2,或⎩⎪⎨⎪⎧μ=12,λ=-3.故选A.(2)∵a 与b 不共线,故存在实数x ,y 使得c =x a +y b ,∴⎩⎪⎨⎪⎧2x -y =7,-x +4y =5,3x -2y =λ,解得⎩⎪⎨⎪⎧x =337,y =177,λ=657.故填657.]空间向量的数量积【例2】 如图,在平行六面体ABCD A 1B 1C 1D 1中,以顶点A 为端点的三条棱长度都为1,且两两夹角为60° .(1)求AC 1的长;(2)求BD 1与AC 夹角的余弦值. [解] (1)设AB →=a ,AD →=b ,AA 1→=c , 则|a |=|b |=|c |=1,〈a ,b 〉=〈b ,c 〉=〈c ,a 〉=60°,∴a ·b =b ·c =c ·a =12.|AC 1→|2=(a +b +c )2=a 2+b 2+c 2+2(a ·b +b ·c +c ·a )=1+1+1+2×⎝ ⎛⎭⎪⎫12+12+12=6,∴|AC 1→|=6,即AC 1的长为 6. (2)BD 1→=b +c -a ,AC →=a +b , ∴|BD 1→|=2,|AC →|=3, BD 1→·AC →=(b +c -a )·(a +b ) =b 2-a 2+a ·c +b ·c =1.∴cos〈BD 1→,AC →〉=BD 1→·AC →|BD 1→||AC →|=66.∴AC 与BD 1夹角的余弦值为66. [规律方法] (1)利用向量的数量积可证明线段的垂直关系,也可以利用垂直关系,通过向量共线确定点在线段上的位置.(2)利用夹角公式,可以求异面直线所成的角,也可以求二面角.(3)可以通过|a |=a 2,将向量的长度问题转化为向量数量积的问题求解.如图,已知直三棱柱ABC A 1B 1C 1,在底面△ABC 中,CA =CB =1,∠BCA =90°,棱AA 1=2,M ,N 分别是A 1B 1,A 1A 的中点.(1)求BN →的模;(2)求cos 〈BA 1→,CB 1→〉的值; (3)求证:A 1B ⊥C 1M .[解] (1)如图,以点C 作为坐标原点O ,CA ,CB ,CC 1所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系.由题意得B (0,1,0),N (1,0,1), 所以|BN →| =1-02+0-12+1-02= 3.(2)由题意得A 1(1,0,2),B (0,1,0),C (0,0,0),B 1(0,1,2),所以BA 1→=(1,-1,2),CB 1→=(0,1,2),BA 1→·CB 1→=3,|BA 1→|=6,|CB 1→|=5,所以cos 〈BA 1→,CB 1→〉=BA 1→·CB 1→|BA 1→||CB 1→|=3010. (3)证明:由题意得C 1(0,0,2),M ⎝ ⎛⎭⎪⎫12,12,2,A 1B →=(-1,1,-2),C 1M →=⎝ ⎛⎭⎪⎫12,12,0,所以A 1B →·C 1M →=-12+12+0=0,所以A 1B →⊥C 1M →,即A 1B ⊥C 1M . 利用向量证明平行与垂直问题【例3】 如图所示,在四棱锥P ABCD 中,PC ⊥平面ABCD ,PC =2,在四边形ABCD 中,∠B =∠C =90°,AB =4,CD =1,点M 在PB 上,PB =4PM ,PB 与平面ABCD 成30°角,求证:(1)CM ∥平面PAD ; (2)平面PAB ⊥平面PAD .[解] (1)证明:由题意知,CB ,CD ,CP 两两垂直,以C 为坐标原点,CB 所在直线为x 轴,CD 所在直线为y 轴,CP 所在直线为z 轴建立如图所示的空间直角坐标系C xyz .∵PC ⊥平面ABCD ,∴∠PBC 为PB 与平面ABCD 所成的角, ∴∠PBC =30°.∵PC =2,∴BC =23,PB =4,∴D (0,1,0),B (23,0,0),A (23,4,0),P (0,0,2),M ⎝ ⎛⎭⎪⎫32,0,32,∴DP →=(0,-1,2),DA →=(23,3,0), CM →=⎝⎛⎭⎪⎫32,0,32.(1)设n =(x ,y ,z )为平面PAD 的一个法向量,由⎩⎨⎧DP →·n =0,DA →·n =0,即⎩⎨⎧-y +2z =0,23x +3y =0,令y =2,得n =(-3,2,1). ∵n ·CM →=-3×32+2×0+1×32=0,∴n ⊥CM →.又CM平面PAD ,∴CM ∥平面PAD .(2)法一:由(1)知BA →=(0,4,0),PB →=(23,0,-2), 设平面PAB 的一个法向量为m =(x 0,y 0,z 0),由⎩⎨⎧BA →·m =0,PB →·m =0,即⎩⎨⎧4y 0=0,23x 0-2z 0=0,令x 0=1,得m =(1,0,3).又∵平面PAD 的一个法向量n =(-3,2,1), ∴m·n =1×(-3)+0×2+3×1=0,∴平面PAB ⊥平面PAD . 法二:取AP 的中点E ,连接BE , 则E (3,2,1),BE →=(-3,2,1). ∵PB =AB ,∴BE ⊥P A.又∵BE →·DA →=(-3,2,1)·(23,3,0)=0, ∴BE →⊥DA →.∴BE ⊥D A. 又PA ∩DA =A , ∴BE ⊥平面PAD . 又∵BE 平面PAB , ∴平面PAB ⊥平面PAD .[规律方法] 1.利用向量法证明平行问题的类型及方法 (1)证明线线平行:两条直线的方向向量平行. (2)证明线面平行:①该直线的方向向量与平面的某一法向量垂直;②证明该直线的方向向量与平面内某直线的方向向量平行;③证明该直线的方向向量可以用平面内的两个不共线的向量线性表示. (3)证明面面平行:两个平面的法向量平行. 2.利用向量法证明垂直问题的类型及方法(1)证明线线垂直:两条直线的方向向量的数量积为0. (2)证明线面垂直:直线的方向向量与平面的法向量平行. (3)证明面面垂直:①根据面面垂直的判定定理转化为证相应的线面垂直、线线垂直;②两个平面的法向量垂直.如图所示,在长方体ABCD A 1B 1C 1D 1中,AA 1=AD =1,E 为CD 中点.(1)求证:B 1E ⊥AD 1;(2)在棱AA 1上是否存在一点P ,使得DP ∥平面B 1AE ?若存在,求AP 的长;若不存在,说明理由.[解] 以A 为原点,AB →,AD →,AA 1→的方向分别为x 轴,y 轴,z 轴的正方向建立如图所示的空间直角坐标系.设AB =a .(1)证明:A (0,0,0),D (0,1,0),D 1(0,1,1),E ⎝ ⎛⎭⎪⎫a2,1,0,B 1(a,0,1),故AD 1→=(0,1,1),B 1E →=⎝ ⎛⎭⎪⎫-a2,1,-1. 因为B 1E →·AD 1→=-a2×0+1×1+(-1)×1=0, 因此B 1E →⊥AD 1→,所以B 1E ⊥AD 1.(2)存在满足要求的点P , 假设在棱AA 1上存在一点P (0,0,z 0),使得DP ∥平面B 1AE ,此时DP →=(0,-1,z 0), 再设平面B 1AE 的一个法向量为n =(x ,y ,z ). AB 1→=(a,0,1),AE →=⎝ ⎛⎭⎪⎫a2,1,0.因为n ⊥平面B 1AE ,所以n ⊥AB 1→,n ⊥AE →, 得⎩⎪⎨⎪⎧ax +z =0,ax2+y =0,取x =1,则y =-a2,z =-a ,则平面B 1AE 的一个法向量n =⎝ ⎛⎭⎪⎫1,-a2,-a .要使DP ∥平面B 1AE ,只要n ⊥DP →,有a 2-az 0=0,解得z 0=12.所以存在点P ,满足DP ∥平面B 1AE , 此时AP =12.。
第六章 5.2A组·素养自测一、选择题1.如图所示,对于面面垂直的性质定理的符号叙述正确的是( D )A.α⊥β,α∩β=l,b⊥l⇒b⊥βB.α⊥β,α∩β=l,b⊂α⇒b⊥βC.α⊥β,b⊂α,b⊥l⇒b⊥βD.α⊥β,α∩β=l,b⊂α,b⊥l⇒b⊥β[解析]根据面面垂直的性质定理知,D正确.2.在棱长都相等的四面体P-ABC中,D、E、F分别是AB、BC、CA的中点,则下面四个结论中不成立的是( C )A.BC∥平面PDF B.DF⊥平面PAEC.平面PDF⊥平面ABC D.平面PAE⊥平面ABC[解析]可画出对应图形,如图所示,则BC∥DF,又DF⊂平面PDF,BC⊂/平面PDF,∴BC∥平面PDF,故A成立;由AE⊥BC,PE⊥BC,BC∥DF,知DF⊥AE,DF⊥PE,∴DF⊥平面PAE,故B成立;又DF⊂平面ABC,∴平面ABC⊥平面PAE,故D成立.3.(多选)在四棱锥P-ABCD中,已知PA⊥底面ABCD,且底面ABCD为矩形,则下列结论中正确的是( ABD )A.平面PAB⊥平面PADB.平面PAB⊥平面PBCC.平面PBC⊥平面PCDD.平面PCD⊥平面PAD[解析]对于A选项,AB⊥PA,AB⊥AD,且PA∩AD=A,所以AB⊥平面PAD,又AB⊂平面PAB,所以平面PAB⊥平面PAD;对于B选项,由BC⊥AB,BC⊥PA,且AB∩PA=A,所以BC⊥平面PAB,又BC⊂平面PBC,所以平面PBC⊥平面PAB;对于D选项,CD⊥AD,CD⊥PA,且PA∩AD=A,所以CD⊥平面PAD,又CD⊂平面PCD,所以平面PCD⊥平面PAD.4.如图所示,在长方体ABCD-A1B1C1D1的棱AB上任取一点E,作EF⊥A1B1于F,则EF与平面A1B1C1D1的关系是( D )A.平行B.EF⊂平面A1B1C1D1C.相交但不垂直D.相交且垂直[解析]由于长方体中平面ABB1A1⊥平面ABCD,所以根据面面垂直的性质定理可知,EF⊥平面A1B1C1D1,相交且垂直.5.如图所示,三棱锥P-ABC中,平面ABC⊥平面PAB,PA=PB,AD=DB,则( B )A.PD⊂平面ABCB.PD⊥平面ABCC.PD与平面ABC相交但不垂直D.PD∥平面ABC[解析]∵PA=PB,AD=DB,∴PD⊥AB.又∵平面ABC⊥平面PAB,PD⊂平面PAB,平面ABC∩平面PAB=AB,∴PD⊥平面ABC.6.在二面角α-l-β中,A∈α,AB⊥平面β于B,BC⊥平面α于C,若AB=6,BC=3,则二面角α-l-β的平面角的大小为( D )A.30°B.60°C.30°或150°D.60°或120°[解析]如图,∵AB⊥β,∴AB⊥l,∵BC⊥α,∴BC⊥l,∴l⊥平面ABC,设平面ABC∩l=D,则∠ADB为二面角α-l-β的平面角或补角,∵AB=6,BC=3,∴∠BAC=30°,∴∠ADB=60°,∴二面角大小为60°或120°.二、填空题7.如图所示,已知AB⊥平面BCD,BC⊥CD,则图中互相垂直的平面共有 3 对.[解析]∵AB⊥平面BCD,且AB⊂平面ABC和AB⊂平面ABD,∴平面ABC⊥平面BCD,平面ABD⊥平面BCD.∵AB⊥平面BCD,∴AB⊥CD.又∵BC⊥CD,AB∩BC=B,∴CD⊥平面ABC.∵CD⊂平面ACD,∴平面ABC⊥平面ACD.故图中互相垂直的平面有平面ABC⊥平面BCD,平面ABD⊥平面BCD,平面ABC⊥平面ACD.8.如图,在三棱锥P-ABC内,侧面PAC⊥底面ABC,且∠PAC=90°,PA=1,AB=2,则PB=5 .[解析]∵侧面PAC⊥底面ABC,交线为AC,∠PAC=90°(即PA⊥AC),∴PA⊥平面ABC,又AB⊂平面ABC,∴PA⊥AB,∴PB=PA2+AB2=1+4= 5.9.已知正四棱锥(底面为正方形各侧面为全等的等腰三角形)的高为3,底面对角线的长为26,则侧面与底面所成的二面角的大小为 60° .[解析] 设正四棱锥为S -ABCD , 如图所示,高为h ,底面边长为a ,则2a 2=(26)2, ∴a 2=12.设O 为S 在底面上的投影,作OE ⊥CD 于E ,连接SE , 可知SE ⊥CD ,∠SEO 为所求二面角的平面角. tan ∠SEO =h a 2=3×212=3,∴∠SEO =60°.∴侧面与底面所成二面角的大小为60°. 三、解答题10.如图所示,△ABC 为正三角形,CE ⊥平面ABC ,BD ∥CE ,且CE =AC =2BD ,M 是AE 的中点.(1)求证:DE =DA ;(2)求证:平面BDM ⊥平面ECA . [解析] (1)取EC 的中点F ,连接DF . ∵CE ⊥平面ABC , ∴CE ⊥BC .易知DF ∥BC , ∴CE ⊥DF . ∵BD ∥CE , ∴BD ⊥平面ABC . 在Rt △EFD 和Rt △DBA 中,EF =12CE =DB ,DF =BC =AB ,∴Rt △EFD ≌Rt △DBA .故DE =DA .(2)取AC的中点N,连接MN,BN,则MN綊CF.∵BD綊CF,∴MN綊BD,∴N∈平面BDM.∵EC⊥平面ABC,∴EC⊥BN.又∵AC⊥BN,EC∩AC=C,∴BN⊥平面ECA.又∵BN⊂平面BDM,∴平面BDM⊥平面ECA.B组·素养提升一、选择题1.下列命题中正确的是( C )A.若平面α和β分别过两条互相垂直的直线,则α⊥βB.若平面α内的一条直线垂直于平面β内的两条平行直线,则α⊥βC.若平面α内的一条直线垂直于平面β内的两条相交直线,则α⊥βD.若平面α内的一条直线垂直于平面β内的无数条直线,则α⊥β[解析]当平面α和β分别过两条互相垂直且异面的直线时,平面α和β有可能平行,故A错;由直线与平面垂直的判定定理知B、D错,C正确.2.(多选)如图所示,四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,将△ABD 沿BD折起,使平面ABD⊥平面BCD,构成四面体ABCD,则在四面体ABCD中,下列结论错误的是( ABC )A.平面ABD⊥平面ABC B.平面ADC⊥平面BDCC.平面ABC⊥平面BDC D.平面ADC⊥平面ABC[解析]由平面图形易知∠BDC=90°.∵平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,且CD⊥BD,∴CD⊥平面ABD,∴CD⊥AB.又AB⊥AD,CD∩AD=D,∴AB⊥平面ADC.又AB⊂平面ABC,∴平面ADC⊥平面ABC.则A,B,C均错.3.如图所示,在斜三棱柱ABC-A1B1C1中,∠BAC=90°,BC1⊥AC,则点C1在底面ABC上的射影H必在( A ) A .直线AB 上 B .直线BC 上 C .直线AC 上 D .△ABC 内部[解析] 连接AC 1.∠BAC =90°,即AC ⊥AB ,又AC ⊥BC 1,AB ∩BC 1=B ,所以AC ⊥平面ABC 1.又AC ⊂平面ABC ,于是平面ABC 1⊥平面ABC ,且AB 为交线,因此,点C 1在平面ABC 上的射影必在直线AB 上,故选A .4.如图,平面α⊥平面β,A ∈α,B ∈β,AB 与两平面α、β所成的角分别为π4和π6.过A 、B 分别作两平面交线的垂线,垂足为A ′、B ′,则AB A ′B ′等于( A )A .2 1B .3 1C .32D .43[解析] 由已知条件可知∠BAB ′=π4,∠ABA ′=π6,设AB =2a ,则BB ′=2a sin π4=2a ,A ′B =2a cos π6=3a ,∴在Rt △BB ′A ′中,得A ′B ′=a ,∴AB A ′B ′=21.二、填空题5.在三棱锥P -ABC 中,PA =PB =AC =BC =2,PC =1,AB =23,则二面角P -AB -C 的大小为 60° .[解析]取AB中点M,连接PM,MC,则PM⊥AB,CM⊥AB,∴∠PMC就是二面角P-AB-C的平面角.在△PAB中,PM=22-32=1,同理MC=1,则△PMC是等边三角形,∴∠PMC=60°.6.如图所示,在四棱锥P-ABCD中,PA⊥底面ABCD.底面各边都相等,M是PC上的一动点,当点M满足BM⊥PC(其他合理即可) 时,平面MBD⊥平面PCD.(注:只要填写一个你认为正确的条件即可)[解析]∵四边形ABCD的边长相等,∴四边形ABCD为菱形.∵AC⊥BD,又∵PA⊥平面ABCD,∴PA⊥BD,∴BD⊥平面PAC,∴BD⊥PC.若PC⊥平面BMD,则PC垂直于平面BMD中两条相交直线.∴当BM⊥PC时,PC⊥平面BDM.∴平面PCD⊥平面BDM.三、解答题7.如图所示,在长方体ABCD-A1B1C1D1中,AB=AD=1,AA1=2,M是棱CC1的中点.证明:平面ABM⊥平面A1B1M.[解析]由长方体的性质可知A1B1⊥平面BCC1B1,又BM⊂平面BCC1B1,所以A1B1⊥BM.又CC1=2,M为CC1的中点,所以C1M=CM=1.在Rt△B1C1M中,B1M=B1C21+MC21=2,同理BM =BC 2+CM 2=2, 又B 1B =2,所以B 1M 2+BM 2=B 1B 2, 从而BM ⊥B 1M .又A 1B 1∩B 1M =B 1,所以BM ⊥平面A 1B 1M , 因为BM ⊂平面ABM ,所以平面ABM ⊥平面A 1B 1M .8.如图,在四棱锥P -ABCD 中,侧面PAD 是正三角形,且与底面ABCD 垂直,底面ABCD 是边长为2的菱形,∠BAD =60°,N 是PB 的中点,过A ,D ,N 三点的平面交PC 于M ,E 为AD 的中点.求证:(1)EN ∥平面PDC ; (2)BC ⊥平面PEB ; (3)平面PBC ⊥平面ADMN .[证明] (1)∵AD ∥BC ,BC ⊂平面PBC ,AD ⊂/平面PBC ,∴AD ∥平面PBC .又∵平面ADMN ∩平面PBC =MN , ∴AD ∥MN .又∵BC ∥AD ,∴MN ∥BC .又∵N 是PB 的中点,∴点M 为PC 的中点. ∴MN ∥BC 且MN =12BC ,又∵E 为AD 的中点, ∴MN ∥DE 且MN =DE .∴四边形DENM 为平行四边形. ∴EN ∥DM ,且DM ⊂平面PDC . ∴EN ∥平面PDC .(2)∵四边形ABCD 是边长为2的菱形,且∠BAD =60°,∴BE ⊥AD . 又∵侧面PAD 是正三角形,且E 为中点, ∴PE ⊥AD ,又∵PE ∩BE =E , ∴AD ⊥平面PBE .又∵AD ∥BC ,∴BC ⊥平面PEB . (3)由(2)知AD ⊥平面PBE , 又PB ⊂平面PBE ,∴AD⊥PB.又∵PA=AB,N为PB的中点,∴AN⊥PB.且AN∩AD=A,∴PB⊥平面ADMN.又∵PB⊂平面PBC.∴平面PBC⊥平面ADMN.。
共面问题与异面直线的垂直问题异面直线的垂直问题:1.如图,在直三棱柱ABC-A 1B 1C 1中, ∠ACB=90。
,AC=BC=a, D 为棱AB 的中点.求证: A 1B 1⊥C 1D.2.如图,在三棱锥P-ABC 中,AC=BC=2, ∠ACB=90。
,AP=BP=AB,PC ⊥AC.求证:PC ⊥AB.3.如图,在直四棱柱ABCD-A 1B 1C 1D 1中,已知DC=DD 1=2AD=2AB,AD ⊥DC,AB ∥DC.求证:D 1C ⊥AC 1.4. 如图,平面PCBM ⊥平面ABC, ∠PCB=90。
,PM ∥BC,直线AM 与直线PC 所成的角为60。
,又AC=1,BC=2PM=2, ∠ACB=90。
.求证:AC ⊥BM.ABB 1CA 1C 1DPABBA CDA 1B 1C 1D 1PMABC5.四棱锥S-ABCD 中,底面ABCD 为平行四边形,侧面SBC ⊥底面ABCD.已知∠ABC=45。
,AB=2,BC=2√2,SA=SB=√3.求证:SA ⊥BC.6.如图,四棱锥A-BCDE 中,底面BCDE 为矩形,侧面ABC ⊥底面BCDE,BC=2,CD=√2,AB=AC.求证:AD ⊥CE.共面问题:1.如图,在正方体ABCD-A 1B 1C 1D 1中,点E 在AA 1上,点F 在CC 1上,且AE=FC 1.求证:E 、B 、F 、D 1 四点共面.2.如图,平面ABEF ⊥平面ABCD,四边形ABEF 与ABCD 都是直角梯形,∠BAD=∠FAB=90。
,BC 1/2 AD,BE 1/2 FA,G 、H 分别为FA 、FD 的中点.(1)证明:四边形BCHG 是平行四边形; (2)C 、E 、F 、D 四点是否共面?为什么?SABCDABCDABC D EFA CDFEHGBA CDE∥ ∥。
第5讲 简单几何体的再认识(表面积与体积)一、知识梳理1.圆柱、圆锥、圆台的侧面展开图及侧面积公式圆柱圆锥圆台侧面展开图侧面积公式S 圆柱侧=2πrl S 圆锥侧=πrlS 圆台侧=π(r +r ′)l名称几何体表面积体积柱体(棱柱和圆柱) S 表面积=S 侧+2S 底 V =S 底h 锥 体(棱锥和圆锥) S 表面积=S 侧+S 底 V =13S 底h台 体(棱台和圆台)S 表面积=S 侧+S 上+S 下V =13(S 上+S 下+S 上S 下)h球S =4πR 2V =43πR 31.正方体的外接球、内切球及与各条棱相切球的半径 (1)外接球:球心是正方体的中心;半径r =32a (a 为正方体的棱长).(2)内切球:球心是正方体的中心;半径r =a2(a 为正方体的棱长).(3)与各条棱都相切的球:球心是正方体的中心;半径r =22a (a 为正方体的棱长).2.正四面体的外接球、内切球的球心和半径(1)正四面体的外接球与内切球(正四面体可以看作是正方体的一部分).(2)外接球:球心是正四面体的中心;半径r =64a (a 为正四面体的棱长).(3)内切球:球心是正四面体的中心;半径r =612a (a 为正四面体的棱长).二、教材衍化1.已知圆锥的表面积等于12π cm 2,其侧面展开图是一个半圆,则底面圆的半径为________.解析:S 表=πr 2+πrl =πr 2+πr ·2r =3πr 2=12π, 所以r 2=4,所以r =2. 答案:2 cm 2.如图,将一个长方体用过相邻三条棱的中点的平面截出一个棱锥,则该棱锥的体积与剩下的几何体体积的比为________.解析:设长方体的相邻三条棱长分别为a ,b ,c ,它截出棱锥的体积V 1=13×12×12a ×12b ×12c =148abc ,剩下的几何体的体积V 2=abc -148abc =4748abc ,所以V 1∶V 2=1∶47.答案:1∶47 一、思考辨析判断正误(正确的打“√”,错误的打“×”) (1)多面体的表面积等于各个面的面积之和.( ) (2)锥体的体积等于底面积与高之积.( )(3)球的体积之比等于半径比的平方.( )(4)简单组合体的体积等于组成它的简单几何体体积的和或差.( )(5)长方体既有外接球又有内切球.( )答案:(1)√(2)×(3)×(4)√(5)×二、易错纠偏常见误区|K(1)不能把三视图正确还原为几何体而错解表面积或体积;(2)考虑不周忽视分类讨论;(3)几何体的截面性质理解有误;(4)混淆球的表面积公式和体积公式.1.已知一个四棱锥的底面是平行四边形,该四棱锥的三视图如图所示(单位:m),则该四棱锥的体积为________m3.解析:根据三视图可知该四棱锥的底面是底边长为2 m,高为1 m的平行四边形,四棱锥的高为 3 m.故该四棱锥的体积V=1 3×2×1×3=2(m3).答案:22.将一个相邻边长分别为4π,8π的矩形卷成一个圆柱,则这个圆柱的表面积是________.解析:当底面周长为4π时,底面圆的半径为2,两个底面的面积之和是8π;当底面周长为8π时,底面圆的半径为4,两个底面的面积之和为32π.无论哪种方式,侧面积都是矩形的面积32π2,故所求的表面积是32π2+8π或32π2+32π.答案:32π2+8π或32π2+32π3.已知圆柱的上、下底面的中心分别为O 1,O 2,过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为________.解析:因为过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形,所以圆柱的高为22,底面圆的直径为22,所以该圆柱的表面积为2×π×(2)2+22π×22=12π.答案:12π4.一个球的表面积是16π,那么这个球的体积为________. 解析:设球的半径为R ,则由4πR 2=16π,解得R =2,所以这个球的体积为43πR 3=323π.答案:323π空间几何体的表面积(师生共研)(1)(2020·河南周口模拟)如图,在三棱柱ABC A 1B 1C 1中,AA 1⊥底面ABC ,AB ⊥BC ,AA 1=AC =2,直线A 1C 与侧面AA 1B 1B 所成的角为30°,则该三棱柱的侧面积为( )A .4+4 2B .4+43C .12D .8+42(2)(2020·四川泸州一诊)在梯形ABCD 中,∠ABC =π2,AD ∥BC ,BC =2AD =2AB =2.将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的表面积为( )A .(5+2)πB .(4+2)πC .(5+22)πD .(3+2)π【解析】 (1)连接A 1B .因为AA 1⊥底面ABC ,则AA 1⊥BC ,又AB ⊥BC ,AA 1∩AB =A ,所以BC ⊥平面AA 1B 1B ,所以直线A 1C 与侧面AA 1B 1B 所成的角为∠CA 1B=30°.又AA 1=AC =2,所以A 1C =22,BC = 2.又AB ⊥BC ,则AB =2,则该三棱柱的侧面积为22×2+2×2=4+42,故选A.(2)因为在梯形ABCD 中,∠ABC =π2,AD ∥BC ,BC =2AD =2AB =2,所以将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体是一个底面半径为AB =1,高为BC -AD =2-1=1的圆锥,所以该几何体的表面积S =π×12+2π×1×2+π×1×12+12=(5+2)π.故选A.【答案】 (1)A (2)A空间几何体表面积的求法(1)以三视图为载体的几何体的表面积问题,关键是分析三视图确定几何体中各元素之间的位置关系及数量.(2)多面体的表面积是各个面的面积之和;组合体的表面积注意衔接部分的处理.(3)旋转体的表面积问题注意其侧面展开图的应用. 1.在如图所示的斜截圆柱中,已知圆柱底面的直径为40 cm ,母线长最短50 cm ,最长80 cm ,则斜截圆柱的侧面面积S =________cm 2.解析:将题图所示的相同的两个几何体对接为圆柱,则圆柱的侧面展开图为矩形.由题意得所求侧面展开图的面积S=12×(50+80)×(π×40)=2 600π(cm2).答案:2 600π2.已知一几何体的三视图如图所示,它的主视图与左视图相同,则该几何体的表面积为________.解析:由三视图知,该几何体是一个正四棱柱与半球的组合体,且正四棱柱的高为2,底面对角线长为4,球的半径为2,所以该正四棱柱的底面正方形的边长为22,该几何体的表面积S=1 2×4π×22+π×22+22×2×4=12π+16.答案:12π+16空间几何体的体积(多维探究)角度一直接利用公式求体积(2020·山东省实验中学模拟)我国古代《九章算术》里,记载了一个“商功”的例子:今有刍童,下广二丈,袤三丈,上广三丈,袤四丈,高三丈.问积几何?其意思是:今有上下底面皆为长方形的草垛(如图所示),下底宽2丈,长3丈,上底宽3丈,长4丈,高3丈.问它的体积是多少?该书提供的算法是:上底长的2倍与下底长的和与上底宽相乘,同样下底长的2倍与上底长的和与下底宽相乘,将两次运算结果相加,再乘以高,最后除以6.则这个问题中的刍童的体积为( )A.13.25立方丈B.26.5立方丈C.53立方丈D.106立方丈【解析】 由题意知,刍童的体积为[(4×2+3)×3+(3×2+4)×2]×3÷6=26.5(立方丈),故选B.【答案】 B角度二 割补法求体积《九章算术》卷五商功中有如下问题:今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高一丈,问积几何?刍甍:底面为矩形的屋脊状的几何体(网格纸中粗线部分为其三视图,设网格纸上每个小正方形的边长为1),那么该刍甍的体积为( )A .4B .5C .6D .12【解析】 如图所示,由三视图可还原得到几何体ABCDEF ,过E ,F 分别作垂直于底面的截面EGH 和FMN ,可将原几何体切割成三棱柱EHG FNM ,四棱锥E ADHG 和四棱锥F MBCN ,易知三棱柱的体积为12×3×1×2=3,两个四棱锥的体积相同,都为13×1×3×1=1,则原几何体的体积为3+1+1=5.故选B.【答案】 B角度三 等体积法求体积(2020·贵州部分重点中学联考)如图,在直四棱柱ABCD A 1B 1C 1D 1中,底面ABCD 是平行四边形,点E 是棱BB 1的中点,点F 是棱CC 1上靠近C 1的三等分点,且三棱锥A 1AEF 的体积为2,则四棱柱ABCD A 1B 1C 1D 1的体积为( )A .12B .8C .20D .18【解析】 设点F 到平面ABB 1A 1的距离为h ,由题意得V A 1AEF=V F A 1AE .又V F A 1AE =13S △A 1AE ·h =13×⎝ ⎛⎭⎪⎫12AA 1·AB ·h =16(AA 1·AB )·h =16S 四边形ABB 1A 1·h =16V ABCD A 1B 1C 1D 1,所以V ABCD A 1B 1C 1D 1=6V A 1AEF =6×2=12.所以四棱柱ABCD A 1B 1C 1D 1的体积为12.故选A.【答案】 A(1)处理体积问题的思路①“转”:指的是转换底面与高,将原来不易求面积的底面转换为易求面积的底面,或将原来不易看出的高转换为易看出并易求解长度的高;②“拆”:指的是将一个不规则的几何体拆成几个简单的几何体,便于计算;③“拼”:指的是将小几何体嵌入一个大几何体中,如将一个三棱锥复原成一个三棱柱,将一个三棱柱复原成一个四棱柱,这些都是拼补的方法.(2)求空间几何体的体积的常用方法①公式法:对于规则几何体的体积问题,可以直接利用公式进行求解;②割补法:把不规则的图形分割成规则的图形,然后进行体积计算;或者把不规则的几何体补成规则的几何体,不熟悉的几何体补成熟悉的几何体,便于计算其体积;③等体积法:一个几何体无论怎样转化,其体积总是不变的.如果一个几何体的底面面积和高较难求解时,我们可以采用等体积法进行求解.等体积法也称等积转化或等积变形,它是通过选择合适的底面来求几何体体积的一种方法,多用来解决有关锥体的体积,特别是三棱锥的体积.1.(2020·江西上饶二模)已知下图为某几何体的三视图,则其体积为( )A .π+23B .π+13C .π+43D .π+34解析:选C.几何体为半圆柱与四棱锥的组合体(如图),半圆柱的底面半径为1,高为2,四棱锥的底面为边长为2的正方形,高为1,故几何体的体积V =12×π×12×2+13×22×1=π+43.故选C.2.(2019·高考全国卷Ⅲ)学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方体ABCD A 1B 1C 1D 1挖去四棱锥O EFGH 后所得的几何体,其中O 为长方体的中心,E ,F ,G ,H 分别为所在棱的中点,AB =BC =6 cm ,AA 1=4 cm.3D 打印所用原料密度为0.9 g/cm 3.不考虑打印损耗,制作该模型所需原料的质量为________g.解析:由题易得长方体ABCD A 1B 1C 1D 1的体积为6×6×4=144(cm 3),四边形EFGH 为平行四边形,如图所示,连接GE ,HF ,易知四边形EFGH 的面积为矩形BCC 1B 1面积的一半,即12×6×4=12(cm 2),所以V四棱锥O EFGH =13×3×12=12(cm 3),所以该模型的体积为144-12=132(cm 3),所以制作该模型所需原料的质量为132×0.9=118.8(g).答案:118.8球与空间几何体的接、切问题(多维探究) 角度一 外接球(1)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A .πB .3π4C.π2D .π4(2)已知三棱锥S ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S ABC的体积为9,则球O 的表面积为________.【解析】 (1)设圆柱的底面圆半径为r ,则r 2=12-⎝ ⎛⎭⎪⎫122=34,所以,圆柱的体积V =34π×1=3π4,故选B.(2)设球O 的半径为R ,因为SC 为球O 的直径,所以点O 为SC 的中点,连接AO ,OB ,因为SA =AC ,SB =BC ,所以AO ⊥SC ,BO ⊥SC ,因为平面SCA ⊥平面SCB ,平面SCA ∩平面SCB =SC ,所以AO ⊥平面SCB ,所以V S ABC =V A SBC =13×S △SBC ×AO =13×(12×SC ×OB )×AO ,即9=13×(12×2R ×R )×R ,解得R =3,所以球O 的表面积为S =4πR2=4π×32=36π.【答案】 (1)B (2)36π角度二 内切球(1)如图,在圆柱O 1O 2内有一个球O ,该球与圆柱的上、下底面及母线均相切.记圆柱O 1O 2的体积为V 1,表面积为S 1,球O 的体积为V 2,表面积为S 2,则V 1V 2的值是__________,S 1S 2=________. (2)已知棱长为a 的正四面体,则此正四面体的表面积S 1与其内切球的表面积S 2的比值为________.【解析】 (1)设圆柱内切球的半径为R ,则由题设可得圆柱O 1O 2的底面圆的半径为R ,高为2R ,所以V 1V 2=πR 2·2R 43πR 3=32.S 1S 2=2πR ·2R +2πR 24πR 2=32. (2)正四面体的表面积为S 1=4×34×a 2=3a 2,其内切球半径r 为正四面体高的14,即r =14×63a =612a ,因此内切球表面积为S 2=4πr 2=πa 26,则S 1S 2=3a 2πa 26=63π. 【答案】 (1)32 32 (2)63π解决与球有关的切、接问题,其通法是作截面,将空间几何问题转化为平面几何问题求解,其解题的思维流程是:1.(2020·四川成都一诊)如图,在矩形ABCD 中,EF ∥AD ,GH ∥BC ,BC =2,AF =FG =BG =1.现分别沿EF ,GH 将矩形折叠使得AD 与BC 重合,则折叠后的几何体的外接球的表面积为( )A .24πB .6π C.163π D .83π 解析:选C.由题意可知,折叠后的几何体是底面为等边三角形的三棱柱,底面等边三角形外接圆的半径为23× 12-⎝ ⎛⎭⎪⎫122=33.因为三棱柱的高为BC =2,所以其外接球的球心与底面外接圆圆心的距离为1,则三棱柱外接球的半径为R =⎝ ⎛⎭⎪⎪⎫332+12=233,所以三棱柱外接球的表面积S =4πR 2=16π3.故选C.2.(2020·黑龙江哈尔滨师范大学附属中学模拟)在底面是边长为2的正方形的四棱锥P ABCD 中,点P 在底面的射影H 为正方形ABCD 的中心,异面直线PB 与AD 所成角的正切值为2.若四棱锥P ABCD 的内切球半径为r ,外接球的半径为R ,则r R=( ) A.23B .25 C.12D .13解析:选B.如图,取E ,F 分别为AB ,CD 的中点,连接EF ,PE ,PF .由题意知,P ABCD 为正四棱锥,底面边长为2.因为BC ∥AD ,所以∠PBC 即为异面直线PB 与AD 所成的角.因为∠PBC 的正切值为2,所以四棱锥的斜高为2,所以△PEF 为等边三角形,则正四棱锥P ABCD 的内切球的半径r 即为△PEF 的内切圆的半径,为33. 设O 为正四棱锥外接球的球心,连接OA ,AH .由题可得AH =2,PH = 3.在Rt △OHA 中,R 2=(2)2+(3-R )2,解得R =536, 所以r R =25. 确定球心位置的三种方法决定球的几何要素是球心的位置和球的半径,在球与其他几何体的结合问题中,通过位置关系的分析,找出球心所在的位置是解题的关键,不妨称这个方法为球心位置分析法.方法一 由球的定义确定球心若一个多面体的各顶点都在一个球的球面上,则称这个多面体是这个球的内接多面体,这个球是这个多面体的外接球.也就是说如果一个定点到一个简单多面体的所有顶点的距离都相等,那么这个定点就是该简单多面体外接球的球心.(1)长方体或正方体的外接球的球心是其体对角线的中点;(2)正三棱柱的外接球的球心是上、下底面中心连线的中点;(3)直三棱柱的外接球的球心是上、下底面三角形外心连线的中点;(4)正棱锥的外接球球心在其高上,具体位置可通过建立直角三角形运用勾股定理计算得到;(5)若棱锥的顶点可构成共斜边的直角三角形,则公共斜边的中点就是其外接球的球心.已知各顶点都在同一个球面上的正四棱柱的高为4,体积为16,则这个球的表面积是( )A.16π B.20πC.24πD.32π【解析】已知各顶点都在同一个球面上的正四棱柱的高为4,体积为16,可求得底面边长为2,故球的直径为22+22+42=26,则半径为6,故球的表面积为24π,故选C.【答案】C方法二构造长方体或正方体确定球心(1)正四面体、三条侧棱两两垂直的正三棱锥、四个面都是直角三角形的三棱锥,可将三棱锥补形成长方体或正方体;(2)同一个顶点上的三条棱两两垂直的四面体、相对的棱相等的三棱锥,可将三棱锥补形成长方体或正方体;(3)若已知棱锥含有线面垂直关系,则可将棱锥补形成长方体或正方体;(4)若三棱锥的三个侧面两两垂直,则可将三棱锥补形成长方体或正方体.如图,边长为2的正方形ABCD中,点E,F分别是边AB,BC的中点,将△AED,△EBF,△FCD分别沿DE,EF,FD折起,使A,B,C三点重合于点A′,若四面体A′EFD的四个顶点在同一个球面上,则该球的半径为( )A. 2 B.6 2C.112D.52【解析】易知四面体A′EFD的三条侧棱A′E,A′F,A′D 两两垂直,且A′E=1,A′F=1,A′D=2,把四面体A′EFD补成从顶点A′出发的三条棱长分别为1,1,2的一个长方体,则长方体的外接球即为四面体A′EFD的外接球,球的半径为r=1 212+12+22=62.故选B.【答案】B方法三由性质确定球心利用球心O与截面圆圆心O′的连线垂直于截面圆及球心O与弦中点的连线垂直于弦的性质,确定球心.正三棱锥ABCD内接于球O,且底面边长为3,侧棱长为2,则球O的表面积为________.【解析】如图,M为底面△BCD的中心,易知AM⊥MD,DM=1,AM= 3.在Rt△DOM中,OD2=OM2+MD2,即OD2=(3-OD)2+1,解得OD=23 3,故球O的表面积为4π×⎝⎛⎭⎪⎪⎫2332=163π.【答案】163π[基础题组练]1.圆柱的底面积为S ,侧面展开图是一个正方形,那么圆柱的侧面积是( )A .4πSB .2πSC .πSD .233πS 解析:选A.由πr 2=S 得圆柱的底面半径是S π,故侧面展开图的边长为2π·S π=2πS ,所以圆柱的侧面积是4πS ,故选A. 2.已知圆锥的高为3,底面半径长为4,若一球的表面积与此圆锥的侧面积相等,则该球的半径长为( ) A .5B .5C .9D .3解析:选B.因为圆锥的底面半径R =4,高h =3,所以圆锥的母线l =5,所以圆锥的侧面积S =πRl =20π.设球的半径为r ,则4πr 2=20π,所以r =5,故选B.3.(2020·安徽黄山一模)如图所示为某几何体的三视图,则几何体的体积为( )A.12B .1 C.32D .3 解析:选B.由主视图可得如图的四棱锥P ABCD ,其中平面ABCD ⊥平面PCD .由主视图和俯视图可知AD =1,CD =2,P 到平面ABCD 的距离为32. 所以四棱锥P ABCD 的体积为V =13×S 长方形ABCD ×h =13×1×2×32=1.故选B.4.(2020·河南郑州三模)某几何体的三视图如图所示,则该几何体的体积为( )A.5π3B .4π3 C.π3D .2π3 解析:选D.几何体是半个圆柱挖去半个圆锥所形成的,如图,由题意可知几何体的体积为:12×12·π×2-13×12×12·π×2=2π3.故选D. 5.(2020·广东茂名一模)在长方体ABCD A 1B 1C 1D 1中,四边形ABCD 是边长为2的正方形,D 1B 与DC 所成的角是60°,则长方体的外接球的表面积是( )A .16πB .8πC .4πD .42π解析:选A.如图,在长方体ABCD A 1B 1C 1D 1中,因为DC ∥AB ,所以相交直线D 1B 与AB 所成的角是异面直线D 1B 与DC 所成的角.连接AD 1,由AB ⊥平面ADD 1A 1,得AB ⊥AD 1,所以在Rt △ABD 1中,∠ABD 1就是D 1B 与DC 所成的角,即∠ABD 1=60°,又AB =2,AB =BD 1cos 60°,所以BD 1=AB cos 60°=4,设长方体ABCD A 1B 1C 1D 1外接球的半径为R ,则由长方体的体对角线就是长方体外接球的直径得4R 2=D 1B 2=16,则R =2,所以长方体外接球的表面积是4πR 2=16π.故选A.6.一个四棱锥的侧棱长都相等,底面是正方形,其主视图如图所示,则该四棱锥的侧面积是________.解析:因为四棱锥的侧棱长都相等,底面是正方形,所以该四棱锥为正四棱锥,如图,由题意知底面正方形的边长为2,正四棱锥的高为2, 取正方形的中心O ,AD 的中点E ,连接PO ,OE ,PE ,可知PO 为正四棱锥的高,△PEO 为直角三角形,则正四棱锥的斜高PE =22+12= 5.所以该四棱锥的侧面积S =4×12×2×5=4 5. 答案:457.已知圆锥SO ,过SO 的中点P 作平行于圆锥底面的截面,以截面为上底面作圆柱PO ,圆柱的下底面落在圆锥的底面上(如图),则圆柱PO 的体积与圆锥SO 的体积的比值为________.解析:设圆锥SO 的底面半径为r ,高为h ,则圆柱PO 的底面半径是r 2,高为h 2, 所以V 圆锥SO =13πr 2h ,V 圆柱PO =π⎝ ⎛⎭⎪⎫r 22·h 2=πr 2h 8,所以V 圆柱PO V 圆锥SO =38. 答案:388.已知正三棱锥的高为1,底面边长为23,内有一个球与四个面都相切,则棱锥的内切球的半径为________.解析:如图,过点P 作PD ⊥平面ABC 于点D ,连接AD 并延长交BC 于点E ,连接PE ,因为△ABC 是正三角形,所以AE 是BC 边上的高和中线,D 为△ABC 的中心.因为AB =BC =23,所以S △ABC =33,DE =1,PE = 2.所以S 表=3×12×23×2+33=36+3 3. 因为PD =1,所以三棱锥的体积V =13×33×1= 3. 设球的半径为r ,以球心O 为顶点,三棱锥的四个面为底面,把正三棱锥分割为四个小棱锥,则r =3336+33=2-1. 答案:2-19.已知一个几何体的三视图如图所示.(1)求此几何体的表面积;(2)如果点P ,Q 在正视图中所示位置,P 为所在线段的中点,Q 为顶点,求在几何体表面上,从P 点到Q 点的最短路径的长.解:(1)由三视图知该几何体是由一个圆锥与一个圆柱组成的组合体,其表面积是圆锥的侧面积、圆柱的侧面积和圆柱的一个底面积之和.S 圆锥侧=12(2πa )·(2a )=2πa 2, S 圆柱侧=(2πa )·(2a )=4πa 2,S 圆柱底=πa 2,所以S 表=2πa 2+4πa 2+πa 2=(2+5)πa 2.(2)沿P 点与Q 点所在母线剪开圆柱侧面,如图.则PQ =AP 2+AQ 2=a 2+(πa )2=a 1+π2,所以从P 点到Q 点在侧面上的最短路径的长为a 1+π2.10.如图,四边形ABCD 为菱形,G 为AC 与BD 的交点,BE ⊥平面ABCD .(1)证明:平面AEC ⊥平面BED ;(2)若∠ABC =120°,AE ⊥EC ,三棱锥E ACD 的体积为63,求该三棱锥的侧面积.解:(1)证明:因为四边形ABCD 为菱形,所以AC ⊥BD . 因为BE ⊥平面ABCD ,所以AC ⊥BE .故AC ⊥平面BED .又AC 平面AEC , 所以平面AEC ⊥平面BED .(2)设AB =x ,在菱形ABCD 中,由∠ABC =120°,可得AG =GC=32x ,GB =GD =x 2.因为AE ⊥EC ,所以在Rt △AEC 中,可得EG =32x .由BE ⊥平面ABCD ,知△EBG 为直角三角形,可得BE =22x .由已知得,三棱锥E ACD 的体积V 三棱锥E ACD =13×12·AC ·GD ·BE=624x 3=63,故x =2.从而可得AE =EC =ED = 6.所以△EAC 的面积为3,△EAD 的面积与△ECD 的面积均为 5. 故三棱锥E ACD 的侧面积为3+2 5.[综合题组练])1.如图,以棱长为1的正方体的顶点A 为球心,以2为半径作一个球面,则该正方体的表面被球面所截得的所有弧长之和为( )A.3π4 B .2π C.3π2D .9π4解析:选C.正方体的表面被该球面所截得的弧长是相等的三部分,如图,上底面被球面截得的弧长是以A 1为圆心,1为半径的圆周长的14,所以所有弧长之和为3×2π4=3π2.故选C.2.(2020·江西萍乡一模)如图,网格纸上小正方形的边长为1,粗线画的是某几何体的三视图,则该几何体的体积为( )A.236 B .72C.76D .4解析:选A.由三视图可得,该几何体是如图所示的三棱柱ABB 1DCC 1,挖去一个三棱锥E FCG 所形成的,故所求几何体的体积为12×(2×2)×2-13×⎝ ⎛⎭⎪⎫12×1×1×1=236. 故选A.3.(2020·福建厦门外国语学校模拟)已知等腰直角三角形ABC 中,∠ACB =90°,斜边AB =2,点D 是斜边AB 上一点(不同于点A ,B ).沿线段CD 折起形成一个三棱锥A CDB ,则三棱锥A CDB 体积的最大值是( )A .1B .12C.13D .16解析:选D.设AD =x ,将△ACD 折起使得平面ACD ⊥平面BCD .在△ACD 中,由面积公式得12CD ·h 1=12AD ·1(h 1为点A 到直线CD 的距离),则h 1=x1+(x -1)2.由题易知h 1为点A 到平面BCD 的距离,故三棱锥A CDB 体积为V =13S △BCD ·h 1=13×⎝ ⎛⎭⎪⎫12BD ·1·h 1=16·2x -x 2x 2-2x +2,x ∈(0,2).令t =x 2-2x +2,则t ∈[1,2),故V =16·2-t 2t =16·⎝ ⎛⎭⎪⎫2t -t .由于2t -t 是减函数,故当t =1时,V取得最大值为16×(2-1)=16.故选D.4.设A ,B ,C ,D 是同一个半径为4的球的球面上的四点,△ABC 为等边三角形且其面积为93,则三棱锥D ABC 体积的最大值为( )A .12 3B .183C .24 3D .543解析:选B.如图,E 是AC 的中点,M 是△ABC 的重心,O 为球心,连接BE ,OM ,OD ,BO .因为S △ABC =34AB 2=93,所以AB =6,BM =23BE=23AB 2-AE 2=2 3.易知OM ⊥平面ABC ,所以在Rt △OBM 中,OM =OB 2-BM 2=2,所以当D ,O ,M 三点共线且DM =OD +OM 时,三棱锥D ABC 的体积取得最大值,且最大值V max =13S △ABC ×(4+OM )=13×93×6=18 3.故选B. 5.如图所示,已知三棱柱ABC A 1B 1C 1的所有棱长均为1,且AA 1⊥底面ABC ,则三棱锥B 1ABC 1的体积为________.解析:三棱锥B 1ABC 1的体积等于三棱锥A B 1BC 1的体积,三棱锥A B 1BC 1的高为32,底面积为12,故其体积为13×12×32=312.答案:3126.已知半球O 的半径r =2,正三棱柱ABC A 1B 1C 1内接于半球O ,其中底面ABC 在半球O 的大圆面内,点A 1,B 1,C 1在半球O 的球面上.若正三棱柱ABC A 1B 1C 1的侧面积为63,则其侧棱的长是________.解析:依题意O 是正三角形ABC 的中心,设AB =a ,分析计算易得0<a <23,AO =33a ,在Rt △AOA 1中,A ′O =r =2,则AA 1=r 2-AO 2=4-a 23,所以正三棱柱ABC A 1B 1C 1的侧面积S =3a ·AA 1=3a4-a 23=3-a 43+4a 2=63,整理得a 4-12a 2+36=0,解得a 2=6,即a =6,此时侧棱AA 1= 2.答案:27.如图,正方体ABCD A 1B 1C 1D 1的棱长为1,P 为BC 边的中点,Q 为线段CC 1上的动点,过点A ,P ,Q 的平面截正方体所得的截面为S ,当CQ =1时,S 的面积为________.解析:当CQ =1时,Q 与C 1重合.如图,取A 1D 1,AD 的中点分别为F ,G .连接AF ,AP ,PC 1,C 1F ,PG ,D 1G ,AC 1,PF .因为F 为A 1D 1的中点,P 为BC 的中点,G 为AD 的中点, 所以AF =FC 1=AP =PC 1=52,PG 綊CD ,AF 綊D 1G .由题意易知CD 綊C 1D 1,所以PG 綊C 1D 1,所以四边形C 1D 1GP 为平行四边形, 所以PC 1綊D 1G ,所以PC 1綊AF , 所以A ,P ,C 1,F 四点共面, 所以四边形APC 1F 为菱形.因为AC 1=3,PF =2,过点A ,P ,Q 的平面截正方体所得的截面S 为菱形APC 1F ,所以其面积为12AC 1·PF =12×3×2=62.答案:628.已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45°.若△SAB 的面积为515,则该圆锥的侧面积为________.解析:如图所示,设S 在底面的射影为S ′,连接AS ′,SS ′.△SAB 的面积为12·SA ·SB ·sin ∠ASB =12·SA 2·1-cos 2∠ASB =1516·SA 2=515,所以SA 2=80,SA =4 5.因为SA 与底面所成的角为45°,所以∠SAS ′=45°,AS ′=SA ·cos 45°=45×22=210.所以底面周长l =2π·AS ′=410π,所以圆锥的侧面积为12×45×410π=402π.答案:402π。
2021年高考数学解答题专项练习《立体几何》五1.如图,四棱锥S-ABCD的底面是正方形,每条侧棱的长都是底面边长的2倍,P为侧棱SD上的点.(1)求证:AC⊥SD;(2)若SD⊥平面PAC,求二面角P-AC-D的大小;(3)在(2)的条件下,侧棱SC上是否存在一点E,使得BE∥平面PAC?若存在,求SE∶EC的值;若不存在,试说明理由.2.已知一个三棱台的上、下底面分别是边长为20 cm和30 cm的正三角形,各侧面是全等的等腰梯形,且各侧面的面积之和等于两底面面积之和,求棱台的体积.3.如图所示,平面四边形ADEF所在的平面与梯形ABCD所在的平面垂直,AD⊥CD,AD⊥ED,AF∥DE,AB∥CD,CD=2AB=2AD=2ED=xAF.(1)若四点F,B,C,E共面,AB=a,求x的值;(2)求证:平面CBE⊥平面EDB.4.如图,已知ABCD是平行四边形,点P是平面ABCD外一点,M是PC的中点,在DM上取一点G,过G和AP作平面交平面BDM于GH.求证:AP//GH.5.如图,三棱柱ABC-A1B1C1的各棱长均相等,AA1⊥底面ABC,E,F分别为棱AA1,BC的中点.(1)过FA1作平面α,使得直线BE//平面α,若平面α与直线BB1交于点H,指出点H所在的位置,并说明理由;(2)求二面角B-FH-A1的余弦值.6.如图,一简单几何体ABCDE的一个面ABC内接于圆O,G,H分别是AE,BC的中点,AB是圆O的直径,四边形DCBE为平行四边形,且DC⊥平面ABC.(1)证明:GH∥平面ACD;(2)若AC=BC=BE=2,求二面角O-CE-B的余弦值.7.已知正方体ABCD-A1B1C1D1中,E,F分别为D1C1,C1B1的中点,AC∩BD=P,A1C1∩EF=Q.求证:(1)D,B,F,E四点共面;(2)若A1C交平面DBFE于R点,则P,Q,R三点共线.8.如图,在四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,△PAD是等边三角形,四边形ABCD是平行四边形,∠ADC=120°,AB=2AD.(1)求证:平面PAD⊥平面PBD;(2)求二面角A﹣PB﹣C的余弦值.9.如图,已知正四棱锥V﹣ABCD中,AC与BD交于点M,VM是棱锥的高,若AC=6cm,VC=5cm.(1)求正四棱锥V﹣ABCD的体积;(2)求直线VD与底面ABCD所成角的正弦值.10.如图,在四棱锥P-ABCD中,AD=CD=AB,AB∥DC,AD⊥CD,PC⊥平面ABCD.(1)求证:BC⊥平面PAC;(2)若M为线段PA的中点,且过C,D,M三点的平面与PB交于点N,求PN:PB的值.11.如图,四棱柱ABCD-A1B1C1D1的底面ABCD为菱形,且∠A1AB=∠A1AD.(1)证明:四边形BB1D1D为矩形;(2)若AB=A1A,∠BAD=60°,A1A与平面ABCD所成的角为30°,求二面角A1-BB1-D的余弦值.12.如图所示,在四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,点E在线段PC上,PC⊥平面BDE.(1)证明:BD⊥平面PAC;(2)若PA=1,AD=2,求二面角B﹣PC﹣A的正切值.13.四棱台被过点A1,C1,D的平面截去一部分后得到如图所示的几何体,其下底面四边形ABCD是边长为2的菱形,BAD=60°,BB1⊥平面ABCD,BB1=2.(1)求证:平面AB1C⊥平面BB1D;(2)若AA1与底面ABCD所成角的正切值为2,求二面角A1-BD-C1的余弦值.14.如图,三棱柱ABC﹣AB1C1中,侧面BB1C1C为菱形,AC=AB1.1(1)证明:AB⊥B1C;(2)若∠CAB1=90°,∠CBB1=60°,AB=BC=2,求三棱锥B1﹣ACB的体积.15.如图,菱形ABCD的对角线AC与BD交于点O,点E、F分别在AD,CD上,AE=CF,EF交BD于点H,将沿EF折到的位置.(I)证明:;(II)若,求五棱锥体积.答案解析16.答案:(1)证明:连接BD ,设AC 交BD 于O ,连接SO.由题意知SO ⊥AC.在正方形ABCD 中,AC ⊥BD ,所以AC ⊥平面SBD ,得AC ⊥SD. (2)解:设正方形边长为a ,则SD=22a ,又OD=22a ,所以∠SDO=60°.连接OP ,由(1)知AC ⊥平面SBD ,所以AC ⊥OP ,且AC ⊥OD ,所以∠POD 是二面角P -AC -D 的平面角.由SD ⊥平面PAC ,知SD ⊥OP ,所以∠POD=30°,即二面角P -AC -D 的大小为30°.(3)解:在棱SC 上存在一点E ,使BE ∥平面PAC.由(2)可得PD=24a ,故可在SP 上取一点N ,使PN=PD.过N 作PC 的平行线与SC 的交点即为E.连接B N ,在△BDN 中,知BN ∥PO.又由于NE ∥PC ,故平面BEN ∥平面PAC ,可得BE ∥平面PAC.由于SN ∶NP=2∶1,故SE ∶EC=2∶1.17.解:如图所示,在三棱台ABC -A′B′C′中,O′,O 分别为上、下底面的中心,D ,D′ 分别是BC ,B′C′的中点,则DD′是等腰梯形BCC′B′的高,又C′B′=20 cm ,CB=30 cm ,所以S 侧=3×12×(20+30)×DD′=75DD′. S 上+S 下=34×(202+302)=3253(cm 2). 由S 侧=S 上+S 下,得75DD′=3253,所以DD′=1333(cm), 又因为O′D′=36×20=1033(cm),OD=36×30=53(cm), 所以棱台的高h=O′O =D′D 2-(OD -O′D′)2=⎝ ⎛⎭⎪⎫13332-⎝⎛⎭⎪⎫53-10332=43(cm), 由棱台的体积公式,可得棱台的体积为V=h 3(S 上+S 下+S 上S 下)=433×⎝ ⎛⎭⎪⎫3253+34×20×30=1900(cm 3). 故棱台的体积为1900 cm 3.18.解:(1)∵AF ∥DE ,AB ∥DC ,AF∩AB=A,DE∩DC=D,∴平面ABF ∥平面DCE .∵四点F ,B ,C ,E 共面,∴FB ∥CE ,∴△ABF 与△DCE 相似.∵AB=a ,∴ED=a ,CD=2a ,AF=2a x , 由相似比得AF ED =AB CD ,即2ax a =a 2a,所以x=4. (2)证明:不妨设AB=1,则AD=AB=1,CD=2,在Rt △BAD 中,BD=2,取CD 中点为M ,则MD 与AB 平行且相等, 连接BM ,可得△BMD 为等腰直角三角形,因此BC=2,因为BD 2+BC 2=CD 2,所以BC ⊥BD ,又因为平面四边形ADEF 所在的平面与梯形ABCD 所在的平面垂直, 平面ADEF∩平面ABCD=AD ,ED ⊥AD ,所以ED ⊥平面ABCD ,所以BC ⊥DE ,又因为BD∩DE=D,所以BC ⊥平面EDB ,因为BC ⊂平面CBE ,所以平面CBE ⊥平面EDB .19.20.解:21.解:22.答案:证明:如图.23.24.25.26.27.28.29.30.。
第5讲直线、平面垂直的判定及其性质【2014年高考会这样考】1.以选择题、填空题的形式考查垂直关系的判定,经常与命题或充要条件相结合.2.以锥体、柱体为载体考查线面垂直的判定.考查空间想象能力、逻辑思维能力,考查转化与化归思想的应用能力.3.能以立体几何中的定义、公理和定理为出发点,运用公理、定理和已获得的结论,证明一些有关空间中线面垂直的有关性质和判定定理的简单命题.【复习指导】1.垂直是立体几何的必考题目,且几乎每年都有一个解答题出现,所以是高考的热点,是复习的重点.纵观历年来的高考题,立体几何中没有难度过大的题,所以复习要抓好三基:基础知识,基本方法,基本能力.2.要重视和研究数学思想、数学方法.在本讲中“化归”思想尤为重要,不论何种“垂直”都要化归到“线线垂直”,观察与分析几何体中线与线的关系是解题的突破口.基础梳理1.直线与平面垂直(1)判定直线和平面垂直的方法①定义法.②利用判定定理:如果一条直线与平面内的两条相交直线垂直,则这条直线与这个平面垂直.③推论:如果在两条平行直线中,有一条垂直于平面,那么另一条直线也垂直于这个平面.(2)直线和平面垂直的性质①直线垂直于平面,则垂直于平面内任意直线.②垂直于同一个平面的两条直线平行.③垂直于同一直线的两平面平行.2.斜线和平面所成的角斜线和它在平面内的射影所成的锐角,叫斜线和平面所成的角. 3.平面与平面垂直(1)平面与平面垂直的判定方法 ①定义法②利用判定定理:如果一个平面过另一个平面的一条垂线,则这两个平面互相垂直.(2)平面与平面垂直的性质如果两平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面.一个关系垂直问题的转化关系 线线垂直面面垂直判定性质线面垂直 判定性质三类证法(1)证明线线垂直的方法①定义:两条直线所成的角为90°; ②平面几何中证明线线垂直的方法; ③线面垂直的性质:a ⊥α,b ⊂α⇒a ⊥b ; ④线面垂直的性质:a ⊥α,b ∥α⇒a ⊥b . (2)证明线面垂直的方法①线面垂直的定义:a 与α内任何直线都垂直⇒a ⊥α; ②判定定理1:⎭⎬⎫m 、n ⊂α,m ∩n =A l ⊥m ,l ⊥n ⇒l ⊥α; ③判定定理2:a ∥b ,a ⊥α⇒b ⊥α; ④面面平行的性质:α∥β,a ⊥α⇒a ⊥β;⑤面面垂直的性质:α⊥β,α∩β=l ,a ⊂α,a ⊥l ⇒a ⊥β. (3)证明面面垂直的方法①利用定义:两个平面相交,所成的二面角是直二面角;②判定定理:a⊂α,a⊥β⇒α⊥β.双基自测1.(人教A版教材习题改编)下列条件中,能判定直线l⊥平面α的是().A.l与平面α内的两条直线垂直B.l与平面α内无数条直线垂直C.l与平面α内的某一条直线垂直D.l与平面α内任意一条直线垂直解析由直线与平面垂直的定义,可知D正确.答案 D2.(2012·安庆月考)在空间中,下列命题正确的是().A.平行直线的平行投影重合B.平行于同一直线的两个平面平行C.垂直于同一平面的两个平面平行D.垂直于同一平面的两条直线平行解析选项A,平行直线的平行投影可以依然是两条平行直线;选项B,两个相交平面的交线与某一条直线平行,则这条直线平行于这两个平面;选项C,两个相交平面可以同时垂直于同一个平面;选项D正确.答案 D3.(2012·兰州模拟)用a,b,c表示三条不同的直线,γ表示平面,给出下列命题:①若a∥b,b∥c,则a∥c;②若a⊥b,b⊥c,则a⊥c;③若a∥γ,b∥γ,则a∥b;④若a⊥γ,b⊥γ,则a∥b.其中真命题的序号是().A.①②B.②③C.①④D.③④解析由公理4知①是真命题.在空间内a⊥b,b⊥c,直线a、c的关系不确定,故②是假命题.由a∥γ,b∥γ,不能判定a、b的关系,故③是假命题.④是直线与平面垂直的性质定理.答案 C4.(2011·聊城模拟)设a 、b 、c 表示三条不同的直线,α、β表示两个不同的平面,则下列命题中不正确的是( ). A.⎭⎬⎫c ⊥αα∥β⇒c ⊥β B.⎭⎬⎫b ⊂β,a ⊥bc 是a 在β内的射影⇒b ⊥cC.⎭⎬⎫b ∥cb ⊂αc ⊄α⇒c ∥α D.⎭⎬⎫a ∥αb ⊥a ⇒b ⊥α 解析 由a ∥α,b ⊥α可得b 与α的位置关系有:b ∥α,b ⊂α,b 与α相交,所以D 不正确. 答案D5.如图,已知P A ⊥平面ABC ,BC ⊥AC ,则图中直角三角形的个数为________. 解析 由线面垂直知,图中直角三角形为4个. 答案 4考向一 直线与平面垂直的判定与性质【例1】►(2011·天津改编)如图,在四棱锥P ABCD 中,底面ABCD 为平行四边形,∠ADC =45°,AD =AC =1,O为AC 的中点,PO ⊥平面ABCD . 证明:AD ⊥平面P AC .[审题视点] 只需证AD ⊥AC ,再利用线面垂直的判定定理即可. 证明 ∵∠ADC =45°,且AD =AC =1. ∴∠DAC =90°,即AD ⊥AC ,又PO ⊥平面ABCD ,AD ⊂平面ABCD , ∴PO ⊥AD ,而AC ∩PO =O , ∴AD ⊥平面P AC .(1)证明直线和平面垂直的常用方法有:①判定定理;②a ∥b ,a ⊥α⇒b⊥α;③α∥β,a ⊥α⇒a ⊥β;④面面垂直的性质. (2)线面垂直的性质,常用来证明线线垂直. 【训练1】 如图,已知BD ⊥平面ABC ,MC 綉12BD ,AC =BC ,N 是棱AB 的中点. 求证:CN ⊥AD .证明 ∵BD ⊥平面ABC ,CN ⊂平面ABC ,∴BD ⊥CN . 又∵AC =BC ,N 是AB 的中点. ∴CN ⊥AB . 又∵BD ∩AB =B , ∴CN ⊥平面ABD . 而AD ⊂平面ABD , ∴CN ⊥AD .考向二 平面与平面垂直的判定与性质【例2】►如图所示,在四棱锥P ABCD中,平面P AD⊥平面ABCD,AB∥DC,△P AD是等边三角形,已知BD=2AD=8,AB=2DC=4 5.M是PC上的一点,证明:平面MBD⊥平面P AD.[审题视点] 证明BD⊥平面P AD,根据已知平面P AD⊥平面ABCD,只要证明BD ⊥AD即可.证明在△ABD中,由于AD=4,BD=8,AB=45,所以AD2+BD2=AB2.故AD⊥BD.又平面P AD⊥平面ABCD,平面P AD∩平面ABCD=AD,BD⊂平面ABCD,所以BD⊥平面P AD.又BD⊂平面MBD,故平面MBD⊥平面P AD.面面垂直的关键是线面垂直,线面垂直的证明方法主要有:判定定理法、平行线法(若两条平行线中一条垂直于这个平面,则另一条也垂直于这个平面)、面面垂直性质定理法,本题就是用的面面垂直性质定理法,这种方法是证明线面垂直、作线面角、二面角的一种核心方法.【训练2】如图所示,在长方体ABCDA1B1C1D1中,AB=AD=1,AA1=2,M是棱CC1的中点.证明:平面ABM⊥平面A1B1M.证明∵A1B1⊥平面B1C1CB,BM⊂平面B1C1CB,∴A1B1⊥BM,由已知易得B1M=2,又BM=BC2+CM2=2,B1B=2,∴B1M2+BM2=B1B2,∴B1M⊥BM.又∵A1B1∩B1M=B1,∴BM⊥平面A1B1M.而BM⊂平面ABM,∴平面ABM⊥平面A1B1M.考向三平行与垂直关系的综合应用【例3】►如图,在四面体ABCD中,CB=CD,AD⊥BD,点E、F分别是AB、BD的中点.求证:(1)直线EF∥平面ACD;(2)平面EFC⊥平面BCD.[审题视点] 第(1)问需证明EF∥AD;第(2)问需证明BD⊥平面EFC.证明(1)在△ABD中,因为E、F分别是AB、BD的中点,所以EF∥AD.又AD⊂平面ACD,EF⊄平面ACD,所以直线EF∥平面ACD.(2)在△ABD中,因为AD⊥BD,EF∥AD,所以EF⊥BD.在△BCD中,因为CD=CB,F为BD的中点,所以CF⊥BD.因为EF⊂平面EFC,CF⊂平面EFC,EF与CF交于点F,所以BD⊥平面EFC.又因为BD⊂平面BCD,所以平面EFC⊥平面BCD.解答立体几何综合题时,要学会识图、用图与作图.图在解题中起着非常重要的作用,空间平行、垂直关系的证明,都与几何体的结构特征相结合,准确识图,灵活利用几何体的结构特征找出平面图形中的线线的平行与垂直关系是证明的关键.【训练3】如图,正方形ABCD和四边形ACEF所在的平面互相垂直,EF∥AC,AB=2,CE=EF=1.(1)求证:AF∥平面BDE;(2)求证:CF⊥平面BDE.证明(1)设AC与BD交于点G.因为EF∥AG,且EF=1,AG=12AC=1.所以四边形AGEF为平行四边形,所以AF∥EG.因为EG⊂平面BDE,AF⊄平面BDE,所以AF∥平面BDE.(2)如图,连接FG.因为EF∥CG,EF=CG=1,且CE=1,所以四边形CEFG为菱形.所以CF⊥EG.因为四边形ABCD为正方形,所以BD⊥AC.又因为平面ACEF⊥平面ABCD,且平面ACEF∩平面ABCD=AC,所以BD⊥平面ACEF.所以CF⊥BD.又BD∩EG=G.所以CF⊥平面BDE.考向四线面角【例4】►(2012·无锡模拟)如图,四棱锥P ABCD的底面是正方形,PD⊥底面ABCD,点E在棱PB上.(1)求证:平面AEC⊥平面PDB;(2)当PD=2AB,且E为PB的中点时,求AE与平面PDB所成的角的大小.[审题视点] (1)转化为证明AC⊥平面PDB;(2)AE与平面PDB所成的角即为AE 与它在平面PDB上的射影所成的角.(1)证明∵四边形ABCD是正方形,∴AC⊥BD.∵PD⊥底面ABCD,∴PD⊥AC.又PD∩BD=D,∴AC⊥平面PDB.又AC⊂平面AEC,∴平面AEC⊥平面PDB.(2)解设AC∩BD=O,连接OE.由(1)知,AC⊥平面PDB于点O,∴∠AEO为AE与平面PDB所成的角.∵点O、E分别为DB、PB的中点,∴OE∥PD,且OE=12PD.又∵PD⊥底面ABCD,∴OE⊥底面ABCD,∴OE⊥AO.在Rt△AOE中,OE=12PD=22AB=AO,∴∠AEO=45°.即AE与平面PDB所成的角为45°.求直线与平面所成的角,一般分为两大步:(1)找直线与平面所成的角,即通过找直线在平面上的射影来完成;(2)计算,要把直线与平面所成的角转化到一个三角形中求解.【训练4】(2012·丽水质检)如图,已知DC⊥平面ABC,EB∥DC,AC=BC=EB=2DC=2,∠ACB=120°,P,Q分别为AE,AB的中点.(1)证明:PQ∥平面ACD;(2)求AD与平面ABE所成角的正弦值.(1)证明因为P,Q分别为AE,AB的中点,所以PQ∥EB.又DC∥EB,因此PQ∥DC,PQ⊄平面ACD,DC⊂平面ACD,从而PQ∥平面ACD.(2)解如图,连接CQ,DP.因为Q为AB的中点,且AC=BC,所以CQ⊥AB.因为DC⊥平面ABC,EB∥DC,所以EB⊥平面ABC.因此CQ⊥EB,又AB∩EB=B,故CQ⊥平面ABE.由(1)有PQ∥DC,又PQ=12EB=DC,所以四边形CQPD为平行四边形,故DP∥CQ,因此DP⊥平面ABE,∠DAP为AD和平面ABE所成的角,在Rt△DP A中,AD=5,DP=1,sin∠DAP=5 5.因此AD和平面ABE所成角的正弦值为5 5.阅卷报告11——证明过程推理不严密而丢分【问题诊断】高考对空间线面关系的考查每年必有一道解答题,难度为中低档题,大多数考生会做而得不到全分,往往因为推理不严密,跳步作答所致. 【防范措施】解题过程要表达准确、格式要符合要求.每步推理要有根有据.计算题要有明确的计算过程,不可跨度太大,以免漏掉得分点.引入数据要明确、要写明已知、设等字样.要养成良好的书写习惯.【示例】►(2011·江苏)如图,在四棱锥P ABCD中,平面P AD⊥平面ABCD,AB=AD,∠BAD=60°,E,F分别是AP,AD的中点.求证:(1)直线EF∥平面PCD;(2)平面BEF⊥平面P AD.错因在运用判定定理时漏掉关键条件致使推理不严谨致误.实录(1)在△P AD中,因为E,F分别为AP、AD的中点,所以EF∥PD,所以EF∥平面PCD.(2)△ABD为正三角形,∴BF⊥AD,又平面P AD⊥平面ABCD∴BF⊥平面P AD,∴平面BEF⊥平面P AD.正解(1)在△P AD中,因为E,F分别为AP,AD的中点,所以EF∥PD.又因为EF⊄平面PCD,PD⊂平面PCD,所以直线EF∥平面PCD.(2)如图,连结BD .因为AB =AD ,∠BAD =60°,所以△ABD 为正三角形.因为F 是AD 的中点,所以BF ⊥AD .因为平面P AD ⊥平面ABCD ,BF ⊂平面ABCD ,平面P AD ∩平面ABCD =AD ,所以BF ⊥平面P AD .又因为BF ⊂平面BEF ,所以平面BEF ⊥平面P AD .【试一试】 如图所示,在四棱锥P ABCD 中,底面ABCD 是边长为a 的正方形,E 、F 分别为PC 、BD 的中点,侧面P AD ⊥底面ABCD ,且P A =PD =22AD .(1)求证:EF ∥平面P AD ;(2)求证:平面P AB ⊥平面PCD .[尝试解答] (1)连接AC ,则F 是AC 的中点,E 为PC 的中点,故在△CP A 中,EF ∥P A ,又∵P A ⊂平面P AD ,EF ⊄平面P AD ,∴EF ∥平面P AD .(2)∵平面P AD ⊥平面ABCD ,平面P AD ∩平面ABCD =AD ,又∵CD ⊥AD ,∴CD ⊥平面P AD ,∴CD ⊥P A .又P A =PD =22AD ,∴△P AD 是等腰直角三角形,且∠APD =π2,即P A ⊥PD .又∵CD ∩PD =D ,∴P A ⊥平面PCD .又∵P A ⊂平面P AB ,∴平面P AB ⊥平面PCD .。
第5课时平面的基本性质课堂小练2.根据所给图形,用符号语言填空:(1)A ____平面ABC ,A ____平面BCD ; (2)BD ____平面ABD ,BD ____平面ABC ;(3)平面ABC 平面ACD =____,平面____ 平面____BC =.3.若A α∈,B α∈,P AB ∈,则用符号表示点P 与平面α的关系为____.4.若l αβ= ,P α∈,P β∈,则P ____l .5.已知直线12l l ‖,在直线1l 上取3个点,在直线2l 上取2个点,则由这5个点能确定____个平面.6.给定下列命题:①如果平面α与平面β相交,那么它们只有有限个公共点;②梯形的4个顶点在同一个平面内;③3条互相平行的直线必共面;④有3个公共点的两个平面重合;⑤空间内有4个点,且任意3点都不共线,则这4个点最多可以确定4个平面.其中正确命题的序号是____.7.如图,已知EF αβ= ,A α∈,B β∈,C β∈,BC 与EF 相交,在图中画出平面ABC分别与α,β的交线,并指出来.8.已知直线l 与三条相互平行的直线,,a b c 都相交.求证:这四条直线共面.9.如图.在正方体1111ABCD A BC D -中,M 是AB 的中点.作出过三点1D ,1B ,M 的平面与底面ABCD 的交线.第5课时平面的基本性质课堂小练1.M AB ∈,N AB ∉,P ∈平面AC ,Q ∉平面AC ,a b E = ,l ⊂平面α,m ⊄平面α2.(1)∈,∉ (2)⊂,⊄ (3)AC ,ABC ,BCD3.P α∈4.∈5.16.②⑤7.连接CB ,并延长与EF 交于点D ,连接AD ,则平面ABC 与α,β的交线分别为AD ,BC巩固拓展8.提示:先由直线,a b 确定一个平面α,证直线l ⊂面α;同理可证直线,,b c l 共面于平面β.由直线,b l 确定一个平面知α与β重合 9.如图,取AD 中点N ,连接MN 即得。
立体几何题型总结
一.空间几何体的三视图和直观图
1.(2014辽宁,7,5分)某几何体三视图如图所示,则该 几何体的体积为( )
A.8-2π
B.8-π
C.82
π
-
D.84
π
-
2.(2014湖南,7,5分)一块石材表示的几何体的三视图如 图所示,将该石材切削、打磨,加工成球,则能得到的最 大球的半径等于( )
A.1
B.2
C.3
D.4
3.(2014课标Ⅰ,12,5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为( )
A.62
B.6
C.42
D.4
二.多面体与球
4.(福建卷15是 .
5.四面体S ABC -的三组对棱分别相等,且依次为,该球的体积是 __
6.(2012新课标理科)已知三棱锥S ABC -的所有顶点都在球O 的球面上,ABC ∆ 是边长为1的正三角形,SC 为球O 的直径,且2SC =;则此棱锥的体积为( )
A.6
B.
C. 3
D.2
C D
7、[2014·全国卷] 正四棱锥的顶点都在同一球面上.若该棱锥的高为4,底面边长为2,则该球的表面积为( )
A.81π4 B .16π C .9π D.27π4
三.解答题类型:
类型一:规则几何体(柱,锥)
1.[2014·湖南卷] 如图1-6所示,四棱柱ABCD -A 1B 1C 1D 1的所有棱长都相等,AC ∩BD =O ,A 1C 1∩B 1D 1=O 1,四边形ACC 1A 1和四边形BDD 1B 1均为矩形. (1)证明:O 1O ⊥底面ABCD ;
(2)若∠CBA =60°,求二面角C 1OB 1D 的余弦值.
2.(2013北京卷文17)如图,四棱锥ABCD P -中,AB ∥CD ,AD AB ⊥,AB CD 2=,平面PAD ⊥底面ABCD ,AD PA ⊥,E 和F 分别是CD 和PC 中点。
求证: (1)⊥PA 底面ABCD ; (2)BE ∥平面PAD ; (3)平面⊥BEF 平面PCD
B C
图6
'A
O 类型二:规则几何体非规则放置:
3. [2014·新课标全国卷Ⅰ] 如图,三棱柱ABC -A 1B 1C 1中,侧面BB 1C 1C 为菱形,AB ⊥B 1C .
(1)证明:AC =AB 1;
类型三:翻折问题:
4.(2013广东卷理18)如图5,在等腰直角三角形ABC 中,∠A 90=︒,6BC
=,D ,E 分别是AC ,AB 上的点,CD BE ==O 为BC 的中点.将△ADE
沿DE 折起,得到如图6所示的四棱椎'A BCDE -,其中'A O =
(1)证明:'A O ⊥平面BCDE ;
(2)求二面角'A CD B --平面角的余弦值.
5.[2014·福建卷] 在平面四边形ABCD中,AB=BD=CD=1,AB⊥BD,CD⊥BD.将△ABD 沿BD折起,使得平面ABD⊥平面BCD,如图所示.
(1)求证:AB⊥CD;
(2)若M为AD中点,求直线AD与平面MBC所成角的正弦值.
6 3.
类型三:三视图类型:
6.[2014·陕西卷] 四面体ABCD及其三视图如图1-4所示,过棱AB的中点E作平行于AD,BC的平面分别交四面体的棱BD,DC,CA于点F,G,H.
(1)证明:四边形EFGH是矩形;
(2)求直线AB与平面EFGH夹角θ的正弦值.10 5
类型四:不规则几何体:
7、[2014·广东卷] 如图1-4,四边形ABCD为正方形,PD⊥平面ABCD,∠DPC=30°,
AF⊥PC于点F,FE∥CD,交PD于点E.
(1)证明:CF⊥平面ADF;
(2)D -AF -E的余弦值.
8、如图,平面ABEF⊥平面ABCD,四边形ABEF与ABCD都是直角梯形,
90, BAD FAB BC ∠=∠=//
=1
2
AD,BE//
=
1
2
AF,,G H分别为,
FA FD的中点
(Ⅰ)证明:四边形BCHG是平行四边形;
(Ⅱ),,,
C D F E四点是否共面?为什么?
补上节:面面角(二面角)的求法 1、定义法(或垂面法)求二面角
12
D 是ABC ∆所在平面外一点,连接a AB CD BD AD 2,,,=,a CD BD AD BC AC =====,则二面角B CD A --的余弦值是_________________. 2、三垂线法求二面角
13如图所示,平面⊥ABC 平面ABD CB CA ACB ABD ∆==∠,,90,0是正三角形,则二面角A BD C --的平面角的正切值为___________________.
3、射影法求二面角
14已知棱长为a 的正方体1111D C B A ABCD -中,M 是棱1CC 的中点,N 是BC 的中点,求截面1ANMD 和底面ABCD 所成的角的余弦值_______
练习:
1.(2014福建,2,5分)某空间几何体的正视图是三角形,则该几何体不可能是( ) A.圆柱 B.圆锥 C.四面体 D.三棱柱
2.(2014江西,5,5分)一几何体的直观图如右图,下列给出的四个俯视图中正确的是(
)
D
C
B
A
N
M
D1 C1
B1
A1
D C B
A
A
B
C
D
3(浙江卷)如图,已知球面上四点A 、B 、C 、D ,DA ⊥平面ABC ,AB ⊥BC ,
DA=AB=BC=3,则球的体积等于
4.(2010辽宁文数)已知,,,S A B C 是球O 表面上的点,SA ABC ⊥平面,AB BC ⊥,1SA AB ==
,BC =O 的表面积等于
A.4π
B.3π
C.2π
D.π
5.矩形ABCD 中,AB=3,BC=3,沿AC 将矩形ABCD 折成一个直二面角B-AC-D,则四面体 ABCD 的外接球的体积是___________.
6、[2014·浙江卷]在四棱锥A -BCDE 中,平面ABC ⊥平面BCDE ,∠CDE =∠BED =90°,AB =CD =2,DE =BE =1,AC = 2.
(1)证明:DE ⊥平面ACD ;
(2)求二面角B - AD - E 的大小.(π
6
)。