SGM6502-天高微 视频矩阵开关
- 格式:pdf
- 大小:583.54 KB
- 文档页数:12
4K UHD 1×4视频分配器文档版本: V1.0.0 文档编号:NS110000696用户手册西安诺瓦星云科技股份有限公司版权所有©2019 西安诺瓦电子科技有限公司。
保留一切权利。
非经本公司书面许可,任何单位和个人不得擅自摘抄、复制本文档内容的部分或全部,并不得以任何形式传播。
商标声明是诺瓦科技的注册商标。
声明欢迎您选用西安诺瓦电子科技有限公司(以下简称诺瓦科技)的产品,如果本文档为您了解和使用产品带来帮助和便利,我们深感欣慰。
我们在编写文档时力求精确可靠,随时可能对内容进行修改或变更,恕不另行通知。
如果您在使用中遇到任何问题,或者有好的建议,请按照文档提供的联系方式联系我们。
对您在使用中遇到的问题,我们会尽力给予支持,对您提出的建议,我们衷心感谢并会尽快评估采纳。
西安诺瓦星云科技股份有限公司用户手册更新记录更新记录西安诺瓦星云科技股份有限用户手册目录目录更新记录 .............................................................................................................................. i i1 简介 (4)2 特性 (5)3 外观 (6)4 尺寸 (8)5 应用场景 (9)6 菜单操作 (10)6.1 操作说明 (10)6.2 主界面 (10)6.3 主菜单 (10)7 产品规格 (13)8 常见问题处理 (14)西安诺瓦星云科技股份有限公司1 简介4K UHD 1×4是诺瓦科技开发的一款高性能、高稳定性、高清晰的4K视频分配器。
单台设备支持高达4096×2160@60Hz分辨率输入和输出,支持1路HDMI2.0输入,4路HDMI2.0实时输出,输入与输出分辨率一致。
操作方便,即插即用,适用于HDMI接口设备,兼容多种机顶盒、DVD、播放盒等。
专业矩阵切换系统
矩阵系统
矩阵切换器是专门为音视频信号的切换而设计的高性能智能矩阵开关设备,用于将各路音视频输入信号同步或异步切换到音视频输出通道中的任一通道上.
主要应用于广播电视工程、多媒体会议厅、大屏幕显示工程、电视教学、指挥控制中心等场合。
本产品带有断电现场保护、LCD液晶显示、音视频同步或分离切换等功能,并具备RS232通讯接口,可以方便与个人电脑、遥控系统或各种远端控制设备(如快思聪、AMX、GEFFEN等控制系统)配合使用。
VGA矩阵系统技术参数
VGA矩阵与控制系统的连接(以VGA0404为例)
安全操作指南
为确保设备可靠使用及人员的安全,在安装、使用和维护时,请遵守以下事项:
在设备安装时,应确保电源线中的地线接地良好,请勿使用两芯插头。
确保设备的输入电源为100V-240V 50/60Hz的交流电。
请勿将设备置于过冷或过热的地方。
保持工作环境的良好通风,以便于设备在工作时所发的热量及时排出,以免温度过高而损坏设备。
在潮湿结露环境或长时间不使用时,应关闭设备总电源。
在下列操作之前一定要将设备的交流电源线从交流供电插座拔下:
A.取下或重装设备的任何部件。
B.断开或重接设备的任何电器插头或其它连接。
设备内有交流高压部件,非专业人士未经许可,请勿擅自拆解设备,以免发生触电危险。
更不要私自维修,以免加重设备的损坏程度。
不要将任何腐蚀性化学品或液体洒在设备上或其附近。
开关矩阵的使用说明书一、产品介绍开关矩阵是一种基于电子开关技术的装置,它能够实现多个输入信号与多个输出信号之间的灵活连接。
本产品具有高度可扩展性和通用性,适用于各种需要信号交叉连接的应用场景,如通信系统、测试设备以及各类实验室实验等。
二、产品特点1. 高速性能:开关矩阵采用先进的电子开关技术,能够在微秒级别内完成信号切换,确保信号的实时传输和快速响应。
2. 大容量:开关矩阵支持大规模的信号连接,具有较高的输入和输出通道数量,能够满足复杂系统中的大规模信号交叉需求。
3. 灵活可编程:开关矩阵具有灵活的编程接口,可以通过软件进行配置和控制,实现各种信号路径的切换和连接。
4. 低插损:开关矩阵在信号切换过程中,插损低,保持信号的高质量传输,可靠性高。
三、使用步骤1. 连接电源:将开关矩阵的电源线连接到稳定的电源输出,确保电源供应稳定可靠。
2. 连接信号源和信号目标:将输入信号源和输出信号目标设备用信号线连接到开关矩阵的输入端口和输出端口上。
3. 设定信号路径:通过软件或控制面板,根据需求设定所需的信号路径和连接关系。
4. 控制信号切换:通过控制界面选择或命令指令,实现信号的切换和连接操作。
四、注意事项1. 请在使用前阅读本使用说明书,并按照说明正确设置和操作开关矩阵,以确保正常使用和最佳性能。
2. 使用过程中,请注意避免过高的输入信号功率,以免损坏开关矩阵或其他设备。
3. 请定期检查开关矩阵的连接状态,确保接触良好,以免信号丢失或产生插损。
4. 请勿随意拆卸、更换或修理开关矩阵的内部零部件,如有需求,请联系专业技术人员进行处理。
5. 请避免开关矩阵接触水、潮湿环境或高温环境,以免影响正常使用和寿命。
五、维护保养1. 定期清洁:请使用清洁软布擦拭开关矩阵的外壳,并避免使用酸碱性强的清洁剂。
2. 避免冲击:请避免开关矩阵受到剧烈的震动、摔落等物理冲击,以免损坏内部连接或零部件。
3. 定期检测:请定期进行开关矩阵的功能测试和性能检测,确保正常工作状态,如有问题请及时联系售后服务人员。
天璇M620手持式红外热像仪用户手册V1.0.3烟台艾睿光电科技有限公司公司简介艾睿光电专注于红外成像技术和产品的研发制造,具有完全自主知识产权,致力于为全球客户提供专业的、有竞争力的红外热成像产品和行业解决方案。
主要产品包括红外焦平面探测器芯片、热成像机芯模组和应用终端产品。
公司研发人员占比48%,已获授权及受理知识产权项目共787件:国内专利及专利申请629件(包括集成电路芯片、MEMS传感器设计和制造、MatrixⅢ图像算法和智能精准测温算法等);国外专利及专利申请18件;软件著作权101件;集成电路布图设计39件。
(数据统计时间截止至2021年8月)公司产品广泛应用于医疗防疫、工业测温、安防消防、户外观察、自动驾驶、物联网、人工智能、机器视觉等领域。
目录1.责任声明 (1)1.1责任声明 (1)1.2版权 (1)1.3质量保证 (1)2.安全信息 (2)3.用户须知 (3)3.1校准 (3)3.2精确度 (3)3.3视频教学 (3)3.4文档更新 (3)3.5适用范围 (3)4.客户服务 (4)4.1常见问题解答 (4)4.2下载 (4)5.热像仪描述 (5)5.1前视图 (5)5.2后视图 (6)5.3连接器与存储卡 (7)6.快速使用指南 (8)7.用户界面 (9)8.操作说明 (10)8.1充电 (10)8.1.1使用电源适配器充电 (10)8.1.2使用电脑充电 (10)8.1.3使用充电底座充电 (10)8.2开机和关机 (10)8.3调焦 (10)8.4拍摄 (11)8.5查看图片或视频 (12)8.6设置测量模式 (13)8.7设置测温参数 (14)8.8更改调色板 (16)8.9设置图像模式 (17)8.9.1图像模式介绍 (17)8.9.2步骤 (19)8.10非均匀性校正 (20)8.10.1非均匀性校正介绍 (20)8.10.2非均匀性校正操作 (20)8.11对比度调整 (20)8.12电子变倍功能 (21)8.13设置 (23)8.13.1测温档位 (24)8.13.2高低温报警 (24)8.13.3云服务 (26)8.13.4WIFI设置 (26)8.13.5拍照设置 (28)8.13.6录像设置 (28)8.13.7智能巡检 (29)8.13.8分析设置 (32)8.13.9双光配准设置 (34)8.13.10自动关机 (35)8.13.11系统设置 (36)9.应用场景介绍 (38)9.1配电柜巡检 (38)9.2储蓄罐液位检测 (38)9.3电路板研发 (39)9.4回转窑耐材缺陷监测 (39)10.结构图纸 (40)12.软件下载及固件更新 (41)12.1软件下载 (41)12.2固件更新 (41)13.清洁热像仪 (42)13.1清洁热像仪的外壳、线缆及其他部件 (42)13.2清洁红外镜头 (43)1.责任声明1.1责任声明由艾睿光电制造的整机产品,从最初购买的交付之日起,在正常存放、合理使用及维修的前提下,都有两年的保修期,配件保修期为三个月。
黔江站6502使用说明书第一章概述本说明书仅就黔江6502型大站电气集中的使用办法,作一简要说明,供行车人员参考。
电气集中设备包括有以下几个主要部分:一、室内设备1、控制台:是车站值班员办理行车作业和监督现场线路状态的主要设备。
2、组合继电器架:是构成信号与道岔互相联锁的主要设备。
3、电源部分:自动调压器、交流电源屏、直流电源屏。
由它们供给联锁设备、色灯信号机、轨道电路、电动转辙机、控制台上各种表示等电源。
4、人工解锁按钮盘:是设备发生故障,解锁区段用以及在维修中需要解锁区段时应用。
5、黔江站6502控制台如下图所示:二、室外部分:1、色灯信号机:指示列车和调车作业,根据色灯信号的显示进行或停止。
2、电动转辙机:装在道岔上,转换道岔用。
3、轨道电路:检查线路和道岔区段空闲或占用。
三、电气集中设备保证道岔和信号机间的相互联锁,并能保证以下条件:l、信号机在其防护的进路上的有关道岔开通位置不对或敌对信:号机未关闭时不能开放;信号机开放后,该进路上的有关道岔不能扳动,其敌对信号机不能开放。
2、与进站同方向的正线上的出站信:号机未开放时,进站色灯信号机的绿色灯光不能开放。
主体信号机未开放时,预告信号机不能开放。
3、在控制台上,能监督线路及道岔区段是否占用、进路开通方向、复示有关信号机的显示,监督是否挤岔,并于挤岔的同时使防护有关进路的信号机自行关闭。
4、当在道岔转辙连接杆处的尖轨与基本轨间插入厚4毫米,宽90毫米的铁板时,应不能锁闭和开放信号。
第二章色灯信号机类型及显示意义信号是指示列车运行及调车作业的命令,有关行车人员必须按信号指示办事。
信号平面图上色灯信号机的颜色图例:红色——停车;黄色——注意或减低速度;绿色——按规定速度运行;月白色——准许越过该信号机调车;蓝色——禁止越过该信号机调车。
—、进站、进路色灯信号机1、一个绿色灯光:准许列车按规定速度由正线通过车站;2,一个黄色灯光:准许列车进入站内正线停车;3、两个黄色灯光:准许列车进入站内到发线停车;4、一个绿色灯光和—个黄色灯光:准许列车进入站内停车,表示进路信号机在开放状态,出站信号机在关闭状;5、一个红色灯光:不准列车越过该信号机;6、引导信号显示一个红色灯光及一个月白色灯光:准许列车在该信号机前方不停车,以不道过20公里/小时速度进站或通过接车进路,并须准备能随时停车。
F-G3105G智能灯杆网关使用说明书产品版本密级V1.0.3产品名称:F-G310共84页F-G3105G智能灯杆网关使用说明书此说明书适用于下列型号产品:型号产品类别F-G3105G智能灯杆网关F-G310-4G4G智能灯杆网关F-G310-N智能灯杆网关厦门四信通信科技有限公司Add:厦门集美区软件园三期诚毅大街370号A06栋11层客户热线:400-8838-199电话:+86-592-6300320传真:+86-592-591273网址:文档修订记录日期版本说明作者2021-09-28V1.0.0初始版本XRC/YSL 2021-09-29V1.0.1修改软件部分说明WSC 2021-10-29V1.0.2修改DC航空线端定义XRC 2021-11-24V1.0.3新增安装示意图YSL著作权声明本文档所载的所有材料或内容受版权法的保护,所有版权由厦门四信通信科技有限公司拥有,但注明引用其他方的内容除外。
未经四信公司书面许可,任何人不得将本文档上的任何内容以任何方式进行复制、经销、翻印、连接、传送等任何商业目的的使用,但对于非商业目的的、个人使用的下载或打印(条件是不得修改,且须保留该材料中的版权说明或其他所有权的说明)除外。
商标声明Four-Faith 、四信、、、均系厦门四信通信科技有限公司注册商标,未经事先书面许可,任何人不得以任何方式使用四信名称及四信的商标、标记。
目录第一章产品简介 (7)1.1产品概述 (7)1.2产品特点 (8)1.3工作原理框图 (9)1.4产品规格 (9)第二章安装 (12)2.1概述 (12)2.2装箱清单 (12)2.3安装与电缆连接 (13)2.4电源说明 (17)2.5指示灯说明 (17)2.6复位按钮说明 (18)第三章参数配置 (19)3.1配置连接图 (19)3.2登录到配置页面 (19)3.2.1PC机IP地址设置(两种方式) (19)3.2.2登入到配置页面 (20)3.3管理和配置 (22)3.3.1设置 (22)3.3.1.1基本设置 (22)3.3.1.2动态DNS(DDNS) (27)3.3.1.3MAC地址克隆 (28)3.3.1.4高级路由 (28)3.3.1.5VLANs (30)3.3.1.6网络 (30)3.3.2无线 (33)3.3.2.1基本配置 (33)3.3.2.2无线安全 (35)3.3.3服务 (37)3.3.3.1服务 (37)3.3.3.2USB (39)3.3.3.3FTP服务 (40)3.3.4VPN (41)3.3.4.1PPTP (41)3.3.4.2L2TP (42)3.3.4.3OPENVPN (43)3.3.4.4IPSEC (47)3.3.4.5GRE (50)3.3.5安全 (51)3.3.5.1防火墙 (51)3.3.6访问限制 (53)3.3.6.1WAN访问 (53)3.3.6.2URL过滤 (56)3.3.6.3数据流过滤 (56)3.3.7NAT (57)3.3.7.1端口转发 (57)3.3.7.2端口范围转发 (58)3.3.7.3DMZ (59)3.3.8QoS设置 (59)3.3.8.1基本 (59)3.3.8.2分类 (59)3.3.9应用 (60)3.3.10管理 (64)3.3.10.1管理 (64)3.3.10.2保持活动 (66)3.3.10.3命令 (67)3.3.10.4出厂默认 (68)3.3.10.5固件升级 (68)3.3.10.6备份 (68)3.3.11状态 (69)3.3.11.1路由器 (69)3.3.11.2WAN (72)3.3.11.3LAN (74)3.3.11.4无线 (77)3.3.11.5宽带 (79)3.3.11.6系统信息 (80)附录 (83)第一章产品简介1.1产品概述F-G310是一种物联网无线智能灯杆网关,利用公用4G/5G/有线/光纤网络为用户提供无线长距离大数据传输功能。
一、概述TM1628是一种带键盘扫描接口的LED(发光二极管显示器)驱动控制专用IC,内部集成有MCU 数字接口、数据锁存器、LED 驱动、键盘扫描等电路。
本产品质量可靠、稳定性好、抗干扰能力强。
主要适用于家电设备(智能热水器、微波炉、洗衣机、空调、电磁炉)、机顶盒、电子称、智能电表等数码管或LED显示设备。
二、特性说明•采用CMOS工艺•多种显示模式(10 段×7 位~ 13段×4 位)••••••••三、四、管脚功能定义:五、指令说明:指令用来设置显示模式和LED驱动器的状态。
在STB如果在指令或数据传输时STB被置为高电平,串行通讯被初始化,并且正在传送的指令或数据无效(之前传送7位10(3)显示控制命令设置:该指令用来设置显示的开关以及显示亮度调节。
共有8级辉度可供选择进行调节。
略,六、 显示寄存器地址:该寄存器存储通过串行接口接收从外部器件传送到TM1628的数据,最多有效地址从00H-0DH 共14字节单元,分别与芯片SEG 和GRID 管脚对应,具体分配如图(2):写, (图(7)图7给出共阴极数码管的连接示意图,如果让该数码管显示“0”,只需要向00H (GRID1)地址中从低位开2、驱动共阳极数码管:、该芯片最大支持的键扫矩阵为10×2bit,如下所示:图(3)键扫数据储存地址如下所示,先发读按键命令后,开始读取5字节的按键数据BYTE1—BYTE5,读数据从低位开始输出,其中B7和B6位为无效位固定输出为0。
芯片K和KS引脚对应的按键按下时,相对应的字节内的BIT位为1。
▲注意:1、TM1628最多可以读5个字节,不允许多读。
按下时,九、(1需要27位10.....图(10)如图(10)可知,芯片内部按键扫描原理如下:芯片从SEG1/KS1开始逐渐扫描到SEG10/KS10结束,并且SEG1/KS1-SEG8/KS8在一个周期内完成,SEG9/KS9-SEG10/KS10在下一个周期内完成。
SV-6502紧急求助报警柱
用途:
安装在学校、广场、道路人流密集和案件高发区域,当发生紧急情况或需要咨询求助时按下呼叫按钮立即可与监控中心值班人员通话,值班人员也可通过前置摄像头了解现场情况并广播喊话
功能特点:
L全金属外壳,户外防风雨,坚固耐用,造型独特醒目,易于识别;
2 .单键呼叫,可通过软件指定呼叫目标,双向对∙讲广播喊话
3 .终端内置扬声㈱和话筒眯头,免提通话和接收广播
4 .带声光警示灯,可由监控中心控制其闪烁,可内置720P摄像头
5 .内置60W数字功放模块,可外接音柱或号角(8欧定阻)
6 .有以太网口的地方即可接入,跨网段和跨路由
7 .公共广播功能,可定时打铃、分组、全局播放背景音乐
8 .传输距离无限延伸,有网络的地方就可以实现时讲,构筑更广阔范围的信息通讯系统。
9 .采用数字音频处理技术,回音抑制,可实现高清晰的视频语音
10 .保密通话,专用音频编码格式,带加密处理,防止窃听。
本说明书由天津曙光敬业科技有限公司翻译This manual has been translated by Tianjin Aurora UA V Technology Co.,Ltd.尊敬的用户,欢迎购买我们的数字开关。
此产品是世界上第一个多功能开关系统,由PowerBox Systems GmbH研发、生产。
它专门使用轻巧的锂电池,在接收机电源供应的开关安全性上有很大改善。
此产品外壳坚固并带有一个自锁电子开关、一个高性能线性IC控制稳压电路和一个电压监测器。
此电压监测器使用一个两芯锂电池和一个五芯镍镉/镍氢电池组,分四个阶段进行监测。
重要的构造特点:坚固的塑料外壳(材质为30%的玻璃纤维)、两根连接导线、一根横截面为0.34mm2的硅导线直接焊接在焊接板上(如在同一直线上),焊接板封装在专用的胶层中以防振、SMT安装电路板、编程控制的线路转换程序以及两个散热片(其中一个焊接在电路板上)。
我们建议将数字开关用于以下类型的模型:-带有五个标准尺寸舵机的中小型模型飞机-F3A模型(非常适用于此模型)-带有八个或八个以上舵机的滑翔机,依据舵机尺寸、模型尺寸和飞行类型(热飞行或特技飞行)-电力驱动或光驱动的直升机,转子直径为1.30m,最多带有五个舵机-电力驱动或光驱动的RC模型汽车-模型船-汽油机点火系统的电压为四芯镍镉电池的电压(DA或其它)操作:数字开关由一个按钮控制,操作起来非常简便。
此按钮也用来设置想要安装的电池的开关。
在一般情况下,此按钮负责将开关信号传输给电子开关;按钮本身与实际的电流转换没有关系。
将一个两芯锂电池或一个五芯镍镉/镍氢电池与电池导线连接。
此导线装有一个极化通用接头。
注意,应将电池极性连接正确。
注意:将电池极性接反会损坏开关中的集成稳压器IC。
连接好电池后,LED指示灯会亮起来并显示电池的电压:绿色表示电压正常,橙色表示半放电,红色表示电量不足。
当自锁电子开关连接到电源时,其默认状态为“ON”。
SGM65028-Input, 6-Output Video Switch Matrix with Output Drivers, Input Clamp, and Bias CircuitryGENERAL DESCRIPTIONThe SGM6502 provides eight inputs that can be routed toany of six outputs. Each input can be routed to one or more outputs, but only one input may be routed to any output.Each input supports an integrated clamp option to set the output sync tip level of video with sync to ~600mV. Alternatively, the input may be internally biased to center output signals without sync (Chroma, Pb, Pr) at ~1.3V.All outputs are designed to drive a 150Ω DC-coupled load. Each output can be programmed to provide either 0dB or 6dB of signal gain.Input-to-output routing and input bias mode functions are controlled via an I 2C-compatible digital interface.The SGM6502 is available in Green TSSOP24 package. It operates over an ambient temperature range of -40℃ to +85℃.FEATURES• 8 x 6 Crosspoint Switch Matrix• One - to - One or One - to - Many Input - to - Output Switching• I 2C - Compatible Digital Interface, Standard Mode • Supports SD, PS, and HD Video • Input Clamp and Bias Circuitry • Doubly Terminated 75Ω Cable Drivers • Programmable 0dB or 6dB Gain • AC- or DC-Coupled Inputs • AC- or DC-Coupled Outputs • Single Supply: 3.1V to 5.5V • Green TSSOP24 PackageAPPLICATIONSVideo Distribution TV and HDTV SetsCable and Satellite Set-Top Boxes A / V SwitchersPersonal Video Recorders (PVR) Security and SurveillanceAutomotive (In-Cabin Entertainment)8-Input, 6-Output Video Switch Matrix withSGM6502 Output Drivers, Input Clamp, and Bias Circuitry PIN CONFIGURATION (Top View )IN1GND IN2OUT3V CC OUT1OUT2GND IN3OUT4ADDR1OUT6IN4OUT5V CC GND TSSOP24ADDR0IN5IN8SCLIN7IN6SDA GNDPIN DESCRIPTIONPIN NAMEDESCRIPTION1 IN1 Input, channel 12GNDMust be tied to ground3 IN2 Input, channel 24 V CC Positive power supply5 IN3 Input, channel 3 6GNDMust be tied to ground7 IN4 Input, channel 4 8 ADDR1 Selects I 2C address 9 IN5 Input, channel 5 10 ADDR0 Selects I 2C address 11 IN6 Input, channel 6 12 SCL Serial clock for I 2C port 13 IN7 Input, channel 714 SDA Serial data for I 2C port 15 IN8 Input, channel 8 16GNDMust be tied to ground17 OUT6 Output, channel 6 18 OUT5 Output, channel 5 19 OUT4 Output, channel 4 20 V CC Positive power supply 21 OUT3 Output, channel 3 22 OUT2 Output, channel 2 23 OUT1 Output, channel 1 24GNDMust be tied to groundSGM6502 Output Drivers, Input Clamp, and Bias Circuitry ELECTRICAL CHARACTERISTICS(T A = 25℃, V CC = 5V, V IN = 1V PP, input bias mode, one - to - one routing, 6dB gain, all inputs AC-coupled with 0.1µF, unused inputs AC-terminated through 75Ω to GND, all outputs AC-coupled with 220µF into 150Ω, referenced to 400kHz unless otherwise noted.)SGM6502 Output Drivers, Input Clamp, and Bias CircuitryDIGITAL INTERFACEThe I 2C - compatible interface is used to program output enables, input-to-output routing, and input bias configuration. The I 2C address of the SGM6502 is 0x06 (0000 0110) with the ability to offset based upon the values of the ADDR0 and ADDR1 inputs. Offset addresses are defined below:ADDR1 ADDR0 Binary Hex 0 0 0000 0110 0x06 0 1 0100 0110 0x46 1 0 1000 0110 0x86 1 1 1100 0110 0xC6 Data and address data of eight bits each are written to the SGM6502 I 2C address register to access control functions.For efficiency, a single data register is shared between two outputs for input selection. More than one output can select the same input channel for one - to - many routing.The clamp / bias control bits are written to their own internal address since they should remain the same regardless of signal routing. They are set based on the input signal that is connected to the SGM6502. All undefined addresses may be written without effect.Output Control Register Contents and DefaultsControl NameWidthTypeDefaultBit(s)DescriptionIn-A 4 bits Write 0 3:0Input selected to drive this output:0000 = OFF(1), 0001 = IN1, 0010 = IN2, 1000 = IN8 In-B 4 bits Write 0 7:4Input selected to drive this output:0000 = OFF(1), 0001 = IN1, 0010 = IN2, 1000 = IN8Note:1. When the OFF input selection is used, the output amplifier is powered down and enters a high-impedance state.Output Control Register MAPName Address Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 OUT1,2 0x00 B3-Out2 B2-Out2 B1-Out2B0-Out2B3-Out1B2-Out1 B1-Out1 B0-Out1OUT3,4 0x01 B3-Out4 B2-Out4 B1-Out4B0-Out4B3-Out3B2-Out3 B1-Out3 B0-Out3OUT5,6 0x02 B3-Out6 B2-Out6 B1-Out6B0-Out6B3-Out5B2-Out5 B1-Out5 B0-Out5Clamp Control Register Contents and DefaultsControl NameWidth Type Default Bit(s) DescriptionClmp1 bit Write 0 7:0 Clamp / Bias selection: 1 = Clamp, 0 = BiasClamp Control Register MapName Address Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 CLAMP 0x03 Clmp8 Clmp7 Clmp6 Clmp5 Clmp4 Clmp3 Clmp2 Clmp1Gain Control Register Contents and DefaultsControl NameWidth Type Default Bit(s) DescriptionGain1 bitWrite7:0Output Gain selection: 0 = 6dB, 1 = 0dBGain Control Register MapName Address Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 GAIN 0x04 Unused Unused Gain6 Gain5 Gain4 Gain3 Gain2 Gain1SGM6502 Output Drivers, Input Clamp, and Bias CircuitryI 2C BUS CHARACTERISTICS(T A = 25℃, V CC = 5V, unless otherwise noted.)PARAMETER SYMBOLCONDITIONS MIN TYP MAX UNITSDigital Input Low V IL SDA, SCL, ADDR 0 1.5 V Digital Input High V IH SDA, SCL, ADDR 3.0 V CC V Clock Frequency f SCL SCL 100 kHz Input Rise Time tr 1.5V to 3V 1000nsInput Fall Time tf 1.5V to 3V300nsClock Low Period t LOW 4.7 µs Clock High Period t HIGH 4.0 µs Data Set-up Time t SU, DAT 300 ns Data Hold Timet HD, DAT 0 ns Set-up Time from Clock High to Stop t SU, STO 4.0 µs Start Set-up Time following a Stop t BUF 4.7 µs Start Hold Timet HD, STA 4.0 µs Start Set-up Time following Clock Low to Hight SU, STA4.7 µsFigure 3. I 2C Bus TimingSGM6502 Output Drivers, Input Clamp, and Bias CircuitryI 2C INTERFACEOperation The I 2C-compatible interface conforms to the I 2C specification for Standard Mode. Individual addresses may be written, but there is no read capability. The interface consists of two lines: a serial data line (SDA) and a serial clock line (SCL). Both lines must be connected to a positive supply through an external resistor. Data transfer may be initiated only when the bus is not busy.Bit TransferOne data bit is transferred during each clock pulse. The data on the SDA line must remain stable during the HIGH period of the clock pulse. Changes in the data line during this time are interpreted as control signals.Figure 4. Bit TransferSTART and STOP conditionsBoth data and clock lines remain HIGH when the bus is not busy. A HIGH - to - LOW transition of the data line, while the clock is HIGH, is defined as start condition (S).A LOW - to - HIGH transition of the data line, while the clock is HIGH, is defined as stop condition (P).START conditionSTOP conditionFigure 5. START and STOP conditionsAcknowledgeThe number of data bytes transferred between the start and stop conditions from transmitter to receiver is unlimited. Each byte of eight bits is followed by an acknowledge bit. The acknowledge bit is a HIGH level signal put on the bus by the transmitter while the master generates an extra acknowledge-related clock pulse. The slave receiver addressed must generate an acknowledge after the reception of each byte. A master receiver must generate an acknowledge after the reception of each byte clocked out of the slave transmitter.The device that acknowledges must pull down the SDA line during the acknowledge clock pulse so the SDA line is stable LOW during the HIGH period of the acknowledge-related clock pulse (set-up and hold times must be taken into consideration). A master receiver must signal an end of data to the transmitter by not generating an acknowledge on the last byte clocked out of the slave. In this event, the transmitter must leave the data line HIGH to enable the master to generate a stop condition.SGM6502Output Drivers, Input Clamp, and Bias CircuitrySTART conditionSCL FROM MASTERDATA OUTPUT DATA OUTPUT BY RECEIVERclock pulse forFigure 6. Acknowledgement on the I 2C BusI 2C Bus ProtocolBefore any data is transmitted on the I 2C bus, the device which is to respond is addressed first. The addressing is always carried out with the first byte transmitted after the start procedure. The I 2C bus configuration for a data write to the SGM6502 is shown in Figure 7.191991SCL(CONTINUED)SDA(CONTINUED)START BY MASTER FRAME2ADDRESS POINTER REGISTER BYTESTOP BY MASTERFigure 7. Write Register Address to Pointer Register; Write Data to Selected Register3.3V OperationThe SGM6502 operates from a single 3.3V supply. With V CC = 3.3V, the digital input low (V IL ) is 0V to 1V and the digital input high (V IH ) is 1.8V to 2.9V.SGM6502 Output Drivers, Input Clamp, and Bias CircuitryAPPLICATION NOTESInput Clamp / Bias CircuitryThe SGM6502 can accommodate AC- or DC-coupled inputs. Internal clamping and bias circuitry are provided to support AC-coupled inputs. These are selectable through the CLMP bits via the I 2C-compatible interface. For DC-coupled inputs, the device should be programmed to use the 'bias' input configuration. In this configuration, the input is internally biased to 650mV through a 100k Ω resistor. Distortion is optimized with the output levels set between 250mV above ground and 500mV below the power supply.With AC-coupled inputs, the SGM6502 uses a simple clamp rather than a full DC-restore circuit. For video signals with and without sync; (Y, CV, R, G, B), the lowest voltage at the output pins is clamped to approximately 600mV above ground.If symmetric AC-coupled input signals are used (Chroma, Pb, Pr, Cb, Cr), the bias circuit can be used to center them within the input common range. The average DC value at the output is approximately 1.3V.Figure 8 shows the clamp mode input circuit and the internally controlled voltage at the input pin for AC-coupled inputs.Figure 8. Clamp Mode Input CircuitFigure 9 shows the bias mode input circuit and the internally controlled voltage at the input pin forAC-coupled inputs.Output ConfigurationThe SGM6502 outputs may be AC or DC-coupled. DC-coupled loads can drive a 150Ω load. AC-coupled outputs are capable of driving a single, doubly terminated video load of 150Ω. An external transistor is needed to drive DC low-impedance loads. DC-coupled outputs should be connected as indicated in Figure 10.Figure 10. DC-Coupled Load ConnectionFigure 11. AC-Coupled Load ConnectionWhen an output channel is not connected to an input, theinput to that particular channel’s amplifier is forced to approximately 150mV. The output amplifier is still active unless specifically disabled by the I 2C interface. Voltage output levels depend on the programmed gain for that channel.Driving Capacitive LoadsWhen driving capacitive loads, use a 10Ω-series resistance to buffer the output, as indicated in Figure 12.Figure 12. Driving Capacitive LoadsSGM6502 Output Drivers, Input Clamp, and Bias CircuitryCrosstalkCrosstalk is an important consideration when using the SGM6502. Input and output crosstalk represent the two major coupling modes that may be present in a typical application. Input crosstalk is crosstalk in the input pins and switches when the interfering signal drives an open switch. It is dominated by inductive coupling in the package lead frame between adjacent leads. It decreases rapidly as the interfering signal moves further away from the pin adjacent to the input signal selected. Output crosstalk is coupling from one driven output to another active output. It decreases with increasing load impedance as it is caused mainly by ground and power coupling between output amplifiers. If a signal is driving an open switch, its crosstalk is mainly input crosstalk. If it is driving a load through an active output, its crosstalk is mainly output crosstalk.Input and output crosstalk measurements are performed with the test configuration shown in Figure 13.IN2 -IN1 = 1V PP OUT1 to OUTxOUT1OUT6Figure 13. Test Configuration for CrosstalkFor input crosstalk, the switch is open and all inputs are in bias mode. Channel 1 input is driven with a 1Vpp signal, while all other inputs are AC terminated with 75Ω. All outputs are enabled and crosstalk is measured from IN1 to any output.For output crosstalk, the switch is closed. Crosstalk from OUT1 to any output is measured.Crosstalk from multiple sources into a given channel is measured with the setup shown in Figure 14. Input In1 is driven with a 1Vpp pulse source and connected to outputs Out1 to Out5. Input In6 is driven with a secondary, asynchronous gray field video signal and is connected to Out6. All other inputs are AC terminated with 75Ω. Crosstalk effects on the gray field are measured and calculated with respect to a standard 1Vpp output measured at the load.If not all inputs and outputs are needed, avoid using adjacent channels to reduce crosstalk.IN6IN8OUT1OUT6Figure 14. Test Configuration for Multi-ChannelCrosstalkSGM6502 Output Drivers, Input Clamp, and Bias CircuitryLayout ConsiderationGeneral layout and supply bypassing play a major role in high-frequency performance and thermal characteristics. Following this layout configuration provides optimum performance and thermal characteristics for the device. For the best results, follow the steps and recommended routing rules listed below.Recommended Routing/Layout RulesDo not run analog and digital signals in parallel.Use separate analog and digital power planes to supply power.Traces should run on top of the ground plane at all times.No trace should run over ground/power splits. Avoid routing at 90-degree angles.Minimize clock and video data trace length differences. Include 10µF and 0.1µF ceramic power supply bypass capacitors.Place the 0.1µF capacitor within 0.1 inches of the device power pin.Place the 10µF capacitor within 0.75 inches of the device power pin.For multilayer boards, use a large ground plane to help dissipate heat.For two-layer boards, use a ground plane that extends beyond the device body by at least 0.5 inches on all sides. Include a metal paddle under the device on the top layer.Minimize all trace lengths to reduce series inductance.Thermal ConsiderationsSince the interior of most systems, such as set-top boxes, TVs, and DVD players, are at +70ºC; consideration must be given to providing an adequate heat sink for the device package for maximum heat dissipation. When designing a system board, determine how much power each device dissipates. Ensure that devices of high power are not placed in the same location, such as directly above (top plane) or below (bottom plane) each other on the PCB.PCB Thermal Layout ConsiderationsUnderstand the system power requirements and environmental conditions.Maximize thermal performance of the PCB. Consider using 70µm of copper for high-power designs.Make the PCB as thin as possible by reducing FR4 thickness.Use vias in power pad to tie adjacent layers together. Remember that baseline temperature is a function of board area, not copper thickness. Modeling techniques can provide a first-order approximation.Power DissipationWorst-case, additional die power due to DC loading can be estimated at Vcc 2/4Rload per output channel. This assumes a constant DC output voltage of V CC /2. For 5V V CC with a dual DC video load, add 25/(4*75) = 83mW, per channel.Applications for the SGM6502 Video Switch MatrixThe increased demand for consumer multimedia systems has created a large challenge for system designers to provide cost-effective solutions to capitalize on the growth potential in graphics display technologies. These applications require cost-effective video switching and filtering solutions to deploy high-quality display technologies rapidly and effectively to the target audience. Areas of specific interest include HDTV, media centers, and automotive infotainment (such as navigation,in-cabin entertainment, and back-up cameras). In all cases, the advantages the integrated video switch matrix provides are high-quality video switching specific to the application, as well as video input clamps and on-chip, low impedance output cable drivers with switchable gain. Generally the largest application for a video switch is for the front-end of an HDTV. This is used to take multiple inputs and route them to their appropriate signal paths (main picture and picture-in-picture, or PiP). These are normally routed into ADCs that are followed by decoders. Technologies for HDTV include LCD, plasma, and CRT, which have similar analog switching circuitry.SGM6502 Output Drivers, Input Clamp, and Bias CircuitryPACKAGE OUTLINE DIMENSIONSTSSOP24Dimensions In Millimeters DimensionsIn InchesSymbolMin Max Min MaxA 1.100 0.043 A1 0.020 0.150 0.001 0.006 A2 0.800 1.000 0.031 0.039 b 0.190 0.300 0.007 0.012 c 0.090 0.200 0.004 0.008 D 7.700 7.900 0.303 0.311 E 4.300 4.500 0.169 0.177 E1 6.250 6.550 0.246 0.258 e 0.650 BSC 0.026 BSC L 0.500 0.700 0.02 0.028 H0.25 TYP0.01 TYPθ 1° 7° 1° 7°。