第6章 D3开发入门-数据可视化原理及应用-樊银亭-清华大学出版社
- 格式:ppt
- 大小:360.50 KB
- 文档页数:39
数据分析可视化教程第一章:数据分析介绍数据分析是一种通过对收集到的数据进行处理、分析和解释,以获取有价值信息的过程。
在当前大数据时代,数据分析变得愈加重要。
本章将介绍数据分析的基本概念、目标和应用领域,并阐述它对决策制定和推动业务发展的重要性。
第二章:数据预处理数据预处理是数据分析的前置工作,它的目标是清洗、转换、集成和规范化原始数据,以便于后续分析。
本章将详细介绍数据预处理的一些基本技术,如数据清洗、处理缺失值和异常值、数据集成和数据规范化。
第三章:数据可视化基础数据可视化是将数据通过图形化、图像化方式展示,以便于人们更好地理解和识别模式。
本章将介绍数据可视化的基本原理和常见的可视化工具,如条形图、饼图、折线图和散点图,并讲解如何选择合适的可视化方式来展示不同类型的数据。
第四章:统计分析方法统计分析是常用的数据分析方法之一,它通过对数据的总体情况进行描述、分析和推断,以获取对问题的深入理解。
本章将介绍一些常见的统计分析方法,如描述统计分析、假设检验、方差分析和回归分析,并详细阐述它们的原理和应用场景。
第五章:机器学习基础机器学习是数据分析的一种重要技术,它通过构建数学模型来自动化分析和预测。
本章将介绍机器学习的基本原理和常见的算法,如监督学习、无监督学习和深度学习,并阐述它们在数据分析中的应用。
第六章:数据可视化工具数据可视化工具是帮助人们更加高效地进行数据分析和可视化的重要辅助工具。
本章将介绍一些常用的数据可视化工具,如Tableau、Power BI和Python的Matplotlib库,以及它们的使用方法和特点。
第七章:案例分析本章将结合一个实际案例,展示如何运用前面章节介绍的数据分析和可视化技术来解决实际问题。
通过对案例的分析,读者可以更好地理解数据分析的全过程和应用场景。
结语数据分析可视化是一门重要的技术,可以帮助人们从数据中发现规律、做出决策,并推动业务的发展。
本教程从数据分析的基础概念、方法到具体实践都进行了详细阐述,希望能对读者在数据分析领域的学习和应用有所帮助。
数据可视化应用技术教程第1章数据可视化基础 (3)1.1 数据可视化概述 (3)1.2 可视化设计原则 (3)1.2.1 准确性 (4)1.2.2 清晰性 (4)1.2.3 一致性 (4)1.2.4 美观性 (4)1.2.5 交互性 (4)1.3 常用数据可视化工具介绍 (4)1.3.1 Tableau (4)1.3.2 Power BI (4)1.3.3 QlikView (4)1.3.4 ECharts (5)1.3.5 D(3)js (5)第2章数据预处理 (5)2.1 数据清洗 (5)2.2 数据整合 (5)2.3 数据变换 (5)第3章 matplotlib库的使用 (5)3.1 matplotlib安装与配置 (6)3.2 基本绘图功能 (6)3.3 高级绘图技巧 (6)第4章 seaborn库的使用 (6)4.1 seaborn安装与简介 (6)4.1.1 安装seaborn (6)4.1.2 seaborn简介 (7)4.2 seaborn基本绘图函数 (7)4.2.1 relplot() (7)4.2.2 catplot() (7)4.2.3 displot() (7)4.2.4 jointplot() (7)4.2.5 pairplot() (7)4.3 seaborn高级绘图应用 (7)4.3.1 高级回归图 (7)4.3.2 多子图布局 (7)4.3.3 面向主题的可视化 (8)第5章基本图表绘制 (8)5.1 折线图与散点图 (8)5.1.1 折线图的绘制 (8)5.1.2 散点图的绘制 (8)5.2 柱状图与饼图 (8)5.2.2 饼图的绘制 (9)5.3 直方图与箱线图 (9)5.3.1 直方图的绘制 (9)5.3.2 箱线图的绘制 (9)第6章高级图表绘制 (10)6.1 热力图与等高线图 (10)6.1.1 热力图概述 (10)6.1.2 热力图绘制方法 (10)6.1.3 等高线图概述 (10)6.1.4 等高线图绘制方法 (10)6.2 3D图表与地图可视化 (10)6.2.1 3D图表概述 (10)6.2.2 3D图表绘制方法 (10)6.2.3 地图可视化概述 (10)6.2.4 地图可视化绘制方法 (10)6.3 图表组合与交互式可视化 (11)6.3.1 图表组合概述 (11)6.3.2 图表组合方法 (11)6.3.3 交互式可视化概述 (11)6.3.4 交互式可视化实现方法 (11)第7章数据可视化进阶技巧 (11)7.1 颜色与样式设置 (11)7.1.1 颜色选择与搭配 (11)7.1.2 样式设置 (11)7.2 图表布局与注释 (11)7.2.1 图表布局 (11)7.2.2 注释与标签 (12)7.3 动态图表与交互式图表 (12)7.3.1 动态图表 (12)7.3.2 交互式图表 (12)第8章数据可视化在商业分析中的应用 (12)8.1 市场趋势分析 (12)8.1.1 时间序列分析 (12)8.1.2 行业对比分析 (12)8.1.3 市场预测分析 (13)8.2 客户细分与画像 (13)8.2.1 客户细分 (13)8.2.2 客户画像 (13)8.2.3 客户价值分析 (13)8.3 数据可视化报告制作 (13)8.3.1 报告结构设计 (13)8.3.2 数据可视化图表选择 (13)8.3.3 设计与布局 (13)第9章数据可视化在科研领域的应用 (13)9.1 数据可视化在生物信息学中的应用 (14)9.1.1 基因组数据可视化 (14)9.1.2 蛋白质结构可视化 (14)9.1.3 代谢组数据可视化 (14)9.2 数据可视化在地理信息系统中的应用 (14)9.2.1 地图制作 (14)9.2.2 空间分析 (14)9.2.3 资源管理 (14)9.3 数据可视化在人工智能领域的应用 (15)9.3.1 训练数据可视化 (15)9.3.2 模型评估与优化 (15)9.3.3 深度学习网络结构可视化 (15)第10章数据可视化案例分析与实战 (15)10.1 数据可视化案例解析 (15)10.1.1 公开数据可视化案例 (15)10.1.2 金融行业数据可视化案例 (15)10.1.3 电商行业数据可视化案例 (15)10.1.4 健康医疗数据可视化案例 (15)10.2 数据可视化实战项目 (16)10.2.1 数据预处理 (16)10.2.2 选择合适的可视化工具 (16)10.2.3 设计可视化图表 (16)10.2.4 实战项目:城市交通拥堵分析 (16)10.3 数据可视化优化与评估 (16)10.3.1 优化可视化设计 (16)10.3.2 评估可视化效果 (16)10.3.3 用户反馈与持续优化 (16)第1章数据可视化基础1.1 数据可视化概述数据可视化作为一种将数据以视觉形式表现出来的技术手段,旨在帮助用户更直观、高效地理解和分析数据。
数据可视化课程大纲一、引言1.1 课程背景1.2 课程目标二、基础知识介绍2.1 数据可视化概述- 数据可视化的定义- 数据可视化的重要性和应用领域2.2 数据可视化的原理- 视觉感知原理- 数据分类与属性- 数据可视化工具介绍三、数据预处理技术3.1 数据清洗与整合- 数据缺失值处理- 数据异常值处理- 数据重复值处理3.2 数据转换与规范化- 数据类型转换- 数据标准化与归一化- 数据离散化与连续化四、可视化图表设计与应用4.1 基本图表设计原则- 数据类型与图表选择- 视觉编码与映射- 图表的布局与美观4.2 常用可视化图表- 条形图、折线图、散点图 - 饼图、雷达图、箱线图 - 地图、热力图、网络图五、交互式可视化与可视分析5.1 可视化交互技术- 缩放、平移与旋转- 高级交互功能设计- 应用案例介绍5.2 可视分析与可视化工具- 数据探索与发现- 可视化故事讲解- 可视化报告与展示六、数据可视化的实践应用6.1 现实世界的数据可视化案例分析 - 商业分析与数据报表- 社交媒体分析与舆情监测- 医疗与生命科学数据可视化6.2 数据可视化项目实训- 实践项目的设计与开发- 数据分析与可视化实现- 最佳实践与案例分享七、课程评估与总结7.1 期中考试7.2 课程作业与实验报告7.3 课程总结与展望八、参考资料- 数据可视化教材- 学术论文及研究报告- 数据可视化工具手册备注:以上为数据可视化课程大纲的简要框架,具体内容和章节可根据课程设置和教学需求进行调整。
详细的课程安排和具体授课内容将在课程开始前发布给学生。
祝您学业有成,顺利完成任务!。
课程教学大纲编号:南京理工大学泰州科技学院课程教学大纲课程名称:数据可视化技术课程学分: 4.0执笔人:万鹏审订人:许桂秋修(制)订日期:2017年11月8日一、课程的性质、地位与任务数据可视化是实现数据价值的重要工具,数据可视化可以将抽象的数字积累转变成为图形、表单等,让普通人可以快速理解数据所代表的情况或趋势。
该课程是理论与实践紧密结合的一门核心专业课程,是大数据项目处理流程中最后的一个环节。
通过该课程学习,从一些基础的可视化方法开始,逐渐延伸到可视化技术,其目标是培养学生掌握数据可视化的技术,能够独立完成数据可视化处理工作。
二、课程的教学目标与基本要求课程设置知识要求:、时变数据可视化方法、关系数据可视化方法、高维数据可视化方法、文本数据可视化方法、复杂数据可视化方法、数据可视化评测。
课程设置能力要求:具备office软件基本操作能力、python编程能力。
课程达成目标:通过该课程学习,使学生更深刻的理解大数据项目的处理流程,掌握数据可视化的方法三、课程内容(各章节主要知识点见课程实施计划,重点Δ,难点★)1 数据数据可视化概述1.1 什么是数据可视化1.2 数据可视化发展历史1.3 数据可视化发面面临的问题1.4 本章小结2 数据可视化基础2.1 视觉感知2.1.1 视觉感知定义2.1.2 视觉感知处理过程2.1.3 颜色理论2.1.4 视觉编码2.2 数据准备2.2.1 数据预处理2.2.2 数据组织与管理2.2.3 数据分析挖掘2.3 数据可视化基本框架2.4 数据可视化基本原则2.5 数据可视化基本图表2.6 数据可视化工具2.7 本章小结3 时间数据可视化3.1 什么是时间数据3.2 连续型数据处理3.3 离散型数据处理3.4 本章小结4比例数据可视化4.1 什么是比例数据4.2 整体与部分4.3 时空比例4.4 本章小结5关系数据可视化5.1 什么是关系数据5.2 数据关联性5.3 数据分布性5.4 本章小结6 文本数据可视化6.1 什么是文本数据6.2 文本信息分析6.3 文本信息可视化6.4 本章小结7 复杂数据可视化7.1 高维多元数据可视化7.2 非结构化数据可视化7.3 数据不准确性可视化7.4 本章小结8 数据可视化中的交互8.1 交互原则8.2 交互分类8.3 交互技术8.4 本章小结9数据可视化评测9.1评测原则9.2 评测因子9.3 评测方法9.4 本章小结10 数据可视化在各领域中的应用10.1 科学领域10.2 网络领域10.3 商业领域10.4 本章小结注:实践教学类型一般分为演示性、验证性、综合性、设计性、研究创新性6种。
《数据可视化技术》课程教学大纲一、课程基本信息课程编号:12230课程名称:数据可视化技术英文名称:Data Visualization Technology课程类型:专业课课程要求:必修学时/学分:40/2.5(讲课学时:30 实验学时:10)先修课程:Python语言程序设计、面向对象程序设计(Java)、Python数据分析与应用后续课程:数据分析与挖掘实践、大数据项目综合实践适用专业:数据科学与大数据技术二、课程描述数据可视化是大数据分析与处理中的重要一环。
课程旨在引导学生掌握数据可视化的基本方法、工具和开发框架,能够设计可视化系统,使数据易被理解和发现。
课程主要讲授视觉感知与视觉通道、数据获取和预处理方法、数据可视化流程,以及常用的可视化开发工具。
通过课程学习,使学生能够了解可视化的应用领域,了解数据可视化的基本原理、技术和流程,以及特定问题的可视化方法,掌握主流的可视化开发工具D3.js,并能够应用其对数据分析和挖掘结果进行可视化展示,为今后大数据领域的可视化系统的设计和开发打下坚实的理论和技术基础。
三、课程教学目标1.了解数据可视化的基本概念、方法和技术,并能够运用到复杂的数据分析工程问题中,解决大数据分析结果的可视化展示问题。
(支持毕业能力要求2)2.熟悉数据可视化流程,掌握主流的数据可视化开发工具,能够综合运用数据获取、分析、视觉修饰、交互控制等技术设计可视化系统,满足特定需求,并在设计中培养学生的创新态度和意识。
(支持毕业能力要求5)四、教学内容、安排及与教学目标的对应关系五、其他教学环节(课外教学环节、要求、目标)1.大作业基于D3.js可视化框架,完成一个不同于课内实验的某一类型的可视化系统的设计开发,熟悉可视化开发流程,掌握可视化系统的设计方法,并撰写系统设计报告。
六、教学方法本课程采用课堂教学、课内实验、可视化项目设计与开发大作业等教学手段和形式完成课程教学任务。
基于案例开展课堂教学,通过讲授、提问、讨论、演示等教学方法和手段让学生理解可视化的基本概念和理论。
数据可视化入门教程第一章:数据可视化简介数据可视化是通过使用图表、图形、图像等工具将数据转化为可视化形式的过程。
数据可视化可以帮助我们更好地理解和分析数据,发现其中的规律和趋势,并促进沟通和决策的过程。
本章将介绍数据可视化的基本概念和意义。
1.1 为什么需要数据可视化数据可视化可以将抽象的数据转化为直观可见的形式,提升人们对数据的理解和认知能力。
通过数据可视化,我们可以更容易地发现数据中的模式、趋势和异常,从而提升决策的准确性和效率。
1.2 数据可视化的应用领域数据可视化广泛应用于各个领域,如商业、金融、医疗、科学研究等。
在商业领域,数据可视化可以帮助企业了解市场需求和竞争情况,优化产品和服务。
在科学研究领域,数据可视化可以帮助科学家从庞杂的数据中发现新的规律、关联和趋势。
第二章:数据可视化工具本章将介绍常用的数据可视化工具,包括Excel、Tableau、Python等。
通过掌握这些工具的基本使用方法,可以快速进行数据可视化操作。
2.1 Excel的数据可视化功能Excel是一款常用的办公软件,也是非常好用的数据可视化工具。
通过Excel可以制作各种图表和图形,如折线图、饼图、柱状图等。
本节将介绍Excel的基本操作和常用图表的制作方法。
2.2 Tableau的数据可视化功能Tableau是一款专业的数据可视化工具,提供了丰富的可视化选项和交互式操作功能。
通过Tableau,用户可以通过简单的拖拽操作快速制作各种复杂的数据可视化图表。
本节将介绍Tableau的基本功能和操作方法。
2.3 Python的数据可视化库Python是一种强大的编程语言,在数据可视化领域也有很多优秀的库和工具。
Matplotlib和Seaborn是Python中常用的数据可视化库,通过它们可以实现各种图表的绘制和定制。
本节将介绍Python数据可视化库的基本使用方法和实例。
第三章:数据可视化设计原则数据可视化设计是指在进行数据可视化时,需要考虑一系列设计原则,以确保图表和图形的效果和目的达到最佳状态。
数据可视化基础知识与D3第一章引言数据可视化是将抽象的数据转化为可视化图形的过程,可以帮助人们更好地理解和分析数据。
而D3(Data-Driven Documents)是一个用于创建数据可视化的JavaScript库。
本章将介绍数据可视化的背景和意义,并简要介绍D3的概念与应用。
第二章数据可视化基础概念数据可视化基于人类视觉系统的特点,通过图形化的方式呈现数据,使得人们能够更快速、直观地认识和分析数据。
本章将介绍数据可视化的基本原则、分类以及常见的图表类型,如饼图、柱状图、散点图等。
第三章 D3的入门与环境搭建D3是一款基于数据驱动的JavaScript库,它可以帮助开发者使用HTML、SVG和CSS等技术创建交互式数据可视化。
本章将介绍如何入门D3,包括下载与引入D3库、环境搭建以及最简单的D3绘图实例的实现过程。
第四章 D3数据绑定与选择集数据绑定是D3的核心概念之一,它可以将数据与图形元素进行关联。
选择集则是D3中重要的操作对象,通过选择集可以对特定的图形元素进行操作和绑定数据。
本章将介绍如何使用D3进行数据绑定和选择集的操作,如如何通过数据更新图形、添加和删除元素等操作。
第五章 D3的比例尺与坐标轴在数据可视化中,比例尺和坐标轴是常用的辅助工具,可以将数据映射到合适的图形范围和刻度上。
本章将介绍D3中常用的线性比例尺和坐标轴的创建与使用方法,以及如何进行刻度的设置和调整。
第六章 D3动画与过渡效果动画和过渡效果可以提升数据可视化的交互性和可视化效果,使用户更好地理解数据的变化。
本章将介绍如何使用D3创建简单的动画和过渡效果,包括图形元素的平移、缩放、渐变以及图表的过渡效果。
第七章 D3与其他数据可视化库的比较除了D3以外,还有许多其他的数据可视化库,如Chart.js、Highcharts等。
本章将介绍D3相对于其他数据可视化库的优势和应用场景,并分析不同库之间的区别和选择方法。
第八章 D3最佳实践与案例分析本章将介绍一些D3的最佳实践和案例分析,探讨如何通过D3实现复杂的数据可视化,如网络图、地图等。
数据可视化分析实践教程第一章介绍数据可视化是一种将数据转化为可视图形形式以便更好地理解和分析数据的方法。
它在各个领域中都有着广泛的应用,包括市场营销、金融、医疗等。
本教程将介绍数据可视化的基本概念、工具和技术,以及如何进行数据可视化分析的实践。
第二章数据准备在进行数据可视化分析之前,我们首先需要准备好数据。
数据的准备包括数据的收集、清洗和整理等过程。
我们可以通过各种方式来收集数据,包括调查问卷、传感器、网络爬虫等。
同时,我们还需要对数据进行清洗,包括处理缺失值、异常值等。
最后,我们将数据整理成适合进行可视化分析的格式。
第三章可视化工具在数据准备完成后,我们需要选择适合的可视化工具来进行数据可视化分析。
常用的可视化工具包括Excel、Tableau、Python等。
Excel是工具简单易用,适合做一些简单的数据可视化。
Tableau是一种强大的可视化工具,提供了丰富的图表库和交互功能。
Python则是一种通用的编程语言,通过一些库如Matplotlib和Seaborn可以进行复杂的数据可视化。
第四章可视化图表在进行数据可视化分析时,我们常常会使用各种图表来展示数据。
常见的可视化图表包括柱状图、折线图、散点图、饼图、雷达图等。
不同的图表适用于不同的数据类型和分析目的。
我们需要根据数据的特点选择最合适的图表来展示数据,并对图表进行美化和优化,以提高图表的可读性和吸引力。
第五章可视化技巧除了选择合适的图表外,还有一些可视化技巧可以进一步提升数据可视化分析的效果。
例如,我们可以通过颜色、线型、标记等方式来区分不同的数据组,以便更好地比较和分析数据。
同时,我们还可以添加标签、标题、图例等元素来增加图表的说明性。
此外,还可以使用动画、交互等技术来增强数据的展示效果和用户的参与感。
第六章可视化案例分析通过前面的学习和实践,我们已经具备了进行数据可视化分析的基本能力。
在本章中,我们将通过一些实际的案例来展示如何应用所学的方法和技巧进行数据可视化分析。
一种数据驱动的流程优化可视分析方法
杨雷;樊银亭;董延昊;滕东兴
【期刊名称】《计算机应用与软件》
【年(卷),期】2014(031)007
【摘要】针对工作流特点,提出一种将工作流性能分析进行图形化和可视化的方法.向工作流运行阶段的实际业务数据提出评估模型,并给出基于三维管道隐喻的工作流可视化方法,将抽象的工作流运行阶段实际业务数据映射到三维可视形态中;继而通过显著的视觉编码手段,将用户感兴趣的指标和参数结合可视形态进行呈现,提高用户观察效率,从而提供一个改进和优化工作流的有力工具.
【总页数】5页(P5-8,35)
【作者】杨雷;樊银亭;董延昊;滕东兴
【作者单位】首都经贸大学密云分校计算机与信息工程系北京101500;中原工学院计算机学院河南郑州450007;中国科学院软件研究所人机交互技术与智能信息处理实验室北京100190;中国科学院软件研究所人机交互技术与智能信息处理实验室北京100190
【正文语种】中文
【中图分类】TP391
【相关文献】
1.一种数据驱动的故障传播分析方法 [J], 周福娜;文成林;冷元宝;陈志国
2.一种基于图的电力数据可视分析方法 [J], 李文芳;程鑫;路强
3.一种基于数据驱动与物理模型融合的含风电系统频率响应分析方法 [J], 温玉琦
4.一种高新技术企业区域发展可视化分析方法 [J], 宋伟
5.尹凌团队提出一种城市区域POI配置可视化与探索
分析方法 [J],
因版权原因,仅展示原文概要,查看原文内容请购买。