线偏振光进入波片后
- 格式:ppt
- 大小:924.00 KB
- 文档页数:44
偏振光的产生与应用班学号:张壮壮摘要:本文通过介绍几种产生偏振光的方法和技术及其原理的分析、偏振光的应用,让读者们对偏振光的产生和应用有个初步的了解。
关键词:偏振光、产生、原理、应用、尼科尔棱镜、双折射、布儒斯特定律、折射起偏、二向色性、波片、偏振片、光弹性学、光学活性物质、旋光度。
引言:近些年来,光学的应用范围急剧扩大,其中偏振光,首先在物理学领域,其次在化学与工程学领域中,作为主要的测量手段起到了重要的作用。
长期以来以结构的应力分析为中心的光弹性学一直应用于实际。
生活中偏振光的应用也不胜枚举,如可有效避免交通事故的装有偏振片的汽车车灯和前窗玻璃、液晶显示器、测定糖度的糖度计甚至我们观看的3D电影都和偏振光的应用密切相关。
正文:一、偏振光的产生:1.直线偏振光的产生A.利用晶体的双折射--尼科尔棱镜原理:一束入射光进入各向异性的媒质后,分裂成沿不同方向折射的两束光,称为双折射。
其中一束遵守折射定律,成为寻常光,简称o光,另一束不遵守折射定律,成为非寻常光,简称e光。
o光和e光都是线偏振光。
尼科尔棱镜结构如下图(1),其中AN垂直于AC,AN段为折射率介于方解石的n o和n e的透明加拿大树胶,自然光沿平行于棱边AM方向入射到第一块棱镜端面上,这时入射角为22度,进入棱镜后分为寻常光o光和非常光e光,o光以76度入射到加拿大树胶上,因入射角超过临界角度,所以发生全反射,而e光射到树胶上不发生全反射,从棱镜的另一端射出。
图(1)B.利用反射的布儒斯特定律—玻璃片堆获取线偏振光自然光射到两种媒质的分界面上,要发生反射和折射,反射光和折射光都是部分偏振光,在反射光中,垂直于入射面的光振动比较强,在折射光中,平行于入射面的光振动比较强。
如图(2),当入射角i B满足tani B=n2/n1时,反射光中,平行于入射面的光振动消失,反射光成为振动方向垂直于入射面的线偏振光,而折射光仍为部分偏振光,此即为布儒斯特定律。
1.波动方程,光程、光程差、相位差2.杨氏干涉、薄膜干涉(等倾、等厚) (重点)3.单缝衍射、圆孔衍射(半波带、分辨本领)、光栅4.马吕斯定律、布儒斯特定律、偏振光之间转换1.)](ex p[0kz t i E E --=ω与)](ex p[0kz t i E E +-=ω描述的是 传播的光波。
A .沿正方向B .沿负方向C .分别沿正和负方向D .分别沿负和正方向2.牛奶在自然光照射时呈白色,由此可以肯定牛奶对光的散射主要是A .瑞利散射B .分子散射C .Mie 散射D .拉曼散射3.在白炽光入射的牛顿环中,同级圆环中相应于颜色蓝到红的空间位置是A .由外到里B .由里到外C .不变D .随机变化5. F-P 腔两内腔面距离h 增加时,其自由光谱范围λ∆A .恒定不变B .增加C .下降D .=06.光波的能流密度正比于A . E 或HB .2E 或2HC .2E ,与H 无关D . 2H ,与E 无关7.光在介质中传播时,将分为o 光和e 光的介质属A .单轴晶体B .双轴晶体C .各向同性晶体D .均匀媒质8.两相干光的光强度分别为I 1和I 2,当他们的光强都增加一倍时,干涉条纹的可见度A .增加一倍B . 减小一半C .不变D . 增加1/2 倍9.线偏振光可以看成是振动方向互相垂直的两个偏振光的叠加,这两个偏振光是A .振幅相等,没有固定相位关系B .振幅相等,有固定相位关系C .振幅可以不相等,但相位差等于0度或180度D .振幅可以不相等,但相位差等于90度或270度10.等倾干涉图样中心圆环 。
(区分迈克尔孙和牛顿环)A .级次最高,色散最弱B .级次最高,色散最强C .级次最低 色散最弱D .级次最低,色散最强11.在单缝夫琅和费衍射实验中,波长为λ的单色光垂直入射在宽度为λ4=a 的单缝上,对应于衍射角为30º的方向,单缝处波阵面可分成的半波带数目为A .2 个B .4 个C .6 个D .8 个14.闪耀光栅中,使刻槽面与光栅面成角,目的是使A.干涉零级与衍射零级在空间分开B.干涉零级与衍射零级在空间重合。
(完整)反射光的偏振特性编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)反射光的偏振特性)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)反射光的偏振特性的全部内容。
反射光的偏振特性—布儒斯特角的测量1808年马吕斯(1775-1812)发现了光的偏振现象。
通过深入研究,证明了光波是横波,使人们进一步认识了光的本质。
随着科学技术的发展,偏振光技术在各个领域都得到了广泛应用,特别是在光学计量、实验应力分析、晶体性质研究和激光等方面更为突出.在我们日常生活和工作中,太阳光、照明用光一般多为自然光。
而自然光经过一些材料的反射和透射后可能变成部分偏振光.自然光经过一些特殊材料,如偏振片或双折射晶体材料制作的棱镜后,就会变成线偏振光.线偏振光经过波片后就可能成为椭圆偏振光。
【目的与要求】1.用最小偏向角法测量棱镜材料的折射率。
2.测量通过起偏器、1/4波片后的光的偏振特性,了解线偏振光、圆偏振光和椭圆偏振光的特点.3。
通过观察从棱镜材料表面反射回来的光的偏振特性,了解反射光的偏振特性,测量出布儒斯特角。
4.用测量值验证布儒斯特角公式的正确性。
【实验原理】一、棱镜材料的折射率的测量当一束光斜入射于棱镜表面时,其光路如图1所示。
n 为材料的折射率.同理出射角γ/ 为sinγ/= sini//n (–1)根据几何关系可以证明入射光与出射光之间的夹角为:δ=i+γ/-A,而且δ有一个极小值δmin ,可以证明:当光束偏转角为δmin时,有i=γ/γ= i/,此时δ=2i-A 即i=(δ+A)/2而A=γ+i/=2γγ=A/2由(–1)式可得:n=sin[(A+δmin)/2]/sin(A/2)(–2)因此,只要我们测量出δmin,用(–2)就可得到材料相对于该测量光的折射率n。
偏振光现象的观察和分析引言:光的偏振现象有法国工程师马吕斯首先发现。
对光偏振现象的研究清楚地显示了光的横波性,加深了人们对光传播规律的认识。
近年来光的偏振特性在光调制器、光开关、光学计量、应力分析、光信息处理、光通信、激光、光电子器件中都有广泛应用。
本实验利用偏振片和1/4波片观察光的偏振现象,并分析和研究各种偏振光。
从而了解1/4波片和1/2波片的作用及应用,加深对光偏振性质的认识。
实验原理1、 偏振光的种类。
光可按光适量的不同振动状态分为五类:(1)线偏振光 (2)自然光 (3)部分偏振光(4)园偏振光 (5)椭圆偏振光使自然光变成偏振光的装置称为起偏器,用来检验偏振光的装置称为检偏器。
2、 线偏振光的产生。
(1)反射和折射产生偏振自然光以 i B =arc tan n 的入射角从空气入射至折射率为n 的介质表面上时,反射光为线偏振光。
以 i B 入射到一叠平行玻璃堆上的自然光,透射出来后也为线偏振光。
(2)偏振片。
利用某些晶体的二向色性可使通过他的自然光变成线偏振光。
(3)双折射产生偏振。
自然光入射到双折射晶体后,出射的o 光和e 光都为线偏振光。
3、 波晶片4、 线偏振光通过各种波片后偏振态的改变。
在光波的波面中取一直角坐标系,将电矢量E 分解为两个分量E X 和E y ,他们频率相同都为ω,设E y 相对E X 的相位差为∆φ,即有E X =A x cos ωt (2)E y =A y cos(ωt +∆φ) (3)由(2)、(3)两式得,对于一般情况,两垂直振动的合成为: e 轴O 轴 θ 光轴图 1E x2 A x2+ E y2A y2−2 E x2 E y2A x2A y2cos∆φ=sin2∆φ(4)注意对于线偏振光通过波片的情况∆φ取决于o光和e光入射时的相位差和由波晶片引起的相位差δ之和;而 E X为线偏振光振幅E在o轴的分量, E y为e轴的分量。
从上面垂直振动合成的一般情况出发可以得出以下结论:(1)线偏振光的振动方向与波片的光轴夹角为θ或π/2,或者通过1/2波片仍为线偏振光。
实 验 报 告学生: 学 号: 指导教师: 实验地点: 实验时间: 一、实验室名称:偏振光实验室 二、实验项目名称:偏振光实验 三、实验学时: 四、实验原理:光波的振动方向与光波的传播方向垂直。
自然光的振动在垂直与其传播方向的平面,取所有可能的方向;某一方向振动占优势的光叫部分偏振光;只在某一个固定方向振动的光线叫线偏振光或平面偏振光。
将非偏振光(如自然光)变成线偏振光的方法称为起偏,用以起偏的装置或元件叫起偏器。
(一)线偏振光的产生1.非金属表面的反射和折射光线斜射向非金属的光滑平面(如水、木头、玻璃等)时,反射光和折射光都会产生偏振现象,偏振的程度取决于光的入射角及反射物质的性质。
当入射角是某一数值而反射光为线偏振光时,该入射角叫起偏角。
起偏角的数值α与反射物质的折射率n 的关系是:n=αtan (1)称为布如斯特定律,如图1所示。
根据此式,可以简单地利用玻璃起偏,也可以用于测定物质的折射率。
从空气入射到介质,一般起偏角在53度到58度之间。
非金属表面发射的线偏振光的振动方向总是垂直于入射面的;透射光是部分偏振光;使用多层玻璃组合成的玻璃堆,能得到很好的透射线偏振光,振动方向平行于入射面的。
图 1 图 22.偏振片分子型号的偏振片是利用聚乙烯醇塑胶膜制成,它具有梳状长链形结构的分子,这些分子平行地排列在同一方向上。
这种胶膜只允许垂直于分子排列方向的光振动通过,因而产生线偏振光,如图2所示。
分子型偏振片的有效起偏围几乎可达到180度,用它可得到较宽的偏振光束,是常用的起偏元件。
图 3鉴别光的偏振状态叫检偏,用作检偏的仪器叫或元件叫检偏器。
偏振片也可作检偏器使用。
自然光、部分偏振光和线偏振光通过偏振片时,在垂直光线传播方向的平面旋转偏振片时,可观察到不同的现象,如图3所示,图中(α)表示旋转P ,光强不变,为自然光;(b )表示旋转P ,无全暗位置,但光强变化,为部分偏振光;(c )表示旋转P ,可找到全暗位置,为线偏振光。
偏振光的研究班级:物理实验班21学号:2120909006姓名:黄忠政光的偏振现象是波动光学的一种重要现象,它的发现证实了光是横波,即光的振动垂直于它的传播方向。
光的偏振性质在光学计量、光弹技术、薄膜技术等领域有着重要的应用。
一.实验目的:1.了解产生和检验偏振光的原理和方法;2.了解各种偏振片和波片的作用。
二.实验装置;计算机,格兰陵镜,1/2、1/4波片,调节支架,光电接系统,激光器。
三.实验原理:1.偏振光的概念和基本规律(1)偏振光的种类光波是一种电磁波,根据电磁学理论,光波的矢量E、磁矢量H和光的传播方向三者相互垂直,所以光是横波。
通常人们用电矢量E代表光的振动方向,而电矢量E和光的传播方向所构成的平面称为光波的振动面。
普通光源发出的光是由大量原子或分子的自发辐射所产生的,它们所发射的光的电矢量在各个方向振动的几率相同,称为自然光。
电矢量的振动方向始终沿某一确定方向的光,称为线偏振光或平面偏振光。
若电矢量在各个方向都振动,但在某个固定方向占绝对优势,这种光称为部分偏振光,电矢量的末端在垂直于光传播方向的任一平面内做椭圆(或圆)运动的光,称为椭圆(或圆)偏振光。
各种偏振光的电矢量E如图1所示,注意光的传播方向垂直于纸面。
(2)偏振光、波片和偏振光的产生通常的光源都是自然光,研究光的偏振性质,必须采用一些物理方法将自然光变成偏振光,这一转变过程称为起偏,获得线偏振光的器件称为起偏器。
线偏振光可用人造偏振片获得,如:某些有机化合物晶体具有二向色性,用这些材料制成的偏振片,能吸收某一方向振动的光,与此方向垂直振动的光则能通过,从而产生线偏振光;还可以利用光的反射和折射起偏的平行玻璃片堆;利用晶体的双折射特性起偏的尼科尔棱镜等。
椭圆偏振光、圆偏振光可用波片来产生,将双折射晶体割成光轴与表面平行的晶片,就制成波片了。
当波长为λ线偏振光垂直入射到厚度为d波片时,线偏振光在此波片中分成o光和e光,二者的电矢量E分别垂直于和平行于光轴,它们的传播方向相同,但在波片中的传播速度v0、v e却不同。
实验1. 验证马吕斯定律实验原理:某些双折射晶体对于光振动垂直于光轴的线偏振光有强烈吸收,而对于光振动平行于光轴的线偏振光吸收很少(吸收o 光,通过e 光),这种对线偏振光的强烈的选择吸收性质,叫做二向色性。
具有二向色性的晶体叫做偏振片。
偏振片可作为起偏器。
自然光通过偏振片后,变为振动面平行于偏振片光轴(透振方向),强度为自然光一半的线偏振光。
如图1、图2所示:图1中靠近光源的偏振片1P 为起偏器,设经过1P 后线偏振光振幅为0A (图2所示),光强为I 0。
2P 与1P 夹角为θ,因此经2P 后的线偏振光振幅为θcos 0A A =,光强为θθ20220cos cos I A I ==,此式为马吕斯定律。
实验数据及图形:P 1 P 2 线偏光 单色自然光 线偏光 图1 P 1 P 2A 0 A 0cos θ θ 图2从图形中可以看出符合余弦定理,数据正确。
实验2.半波片,1/4波片作用实验原理:偏振光垂直通过波片以后,按其振动方向(或振动面)分解为寻常光(o 光)和非常光(e 光)。
它们具有相同的振动频率和固定的相位差(同波晶片的厚度成正比),若将它们投影到同一方向,就能满足相干条件,实现偏振光的干涉。
分振动面的干涉装置如图3所示,M 和N 是两个偏振片,C 是波片,单色自然光通过M 变成线偏振光,线偏振光在波片C 中分解为o 光和e 光,最后投影在N 上,形成干涉。
考虑特殊情况,当M ⊥N 时,即两个偏振片的透振方向垂直时,出射光强为:)cos 1)(2(sin 420δθ-=⊥I I ;当M ∥N 时,即两个偏振片的透振方向平行时,出射光强为:M N图3 分振动面干涉装置I 0 波片 偏振片 偏振片单色自然光)cos cos sin 2cos sin 21(222220//δθθθθ+-=I I 。
其中θ为波片光轴与M 透振方向的夹角,δ为o 光和e 光的总相位差(同波晶片的厚度成正比)。
偏振测量实验实 验者:杨亿斌(06325107) 合作者:吴聪(06325096)(中山大学物理系,光信息科学与技术06级3班 B19)2009年5月19日一、实验目的1. 了解和掌握光在各向异性介质中的传输和偏振光的基本概念。
2. 验证马吕斯定律。
3. 掌握偏振片、半波片、1/4波片的特性和作用,并通过实验验证。
二、实验用具He-Ne 激光器、偏振器(格兰-泰勒棱镜)2块、半波片(632.8nm,石英晶体)1片、1/4波片(632.8nm,石英晶体)1片、光具座1套、电动旋转架3套、光电探测器1套、计算机操作软件等。
三、实验原理1. 偏振光的产生光是电磁波,可用两个相互垂直的振动矢量---电矢量E 和磁矢量H 表征。
习惯上称E 矢量为光矢量,代表光振动。
若光振动局限在垂直于传播方向的平面内,就形成平面偏振光,因其电矢量末端的轨迹成一直线,通称线偏振光;若只是有较多的电矢量取向于某固定方向,称作部分偏振光。
如果一种偏振光的电矢量随时间作有规律的变动,它的末端在垂直于传播方向的平面内的轨迹呈椭圆或圆形,这种偏振光就是椭圆偏振光或圆偏振光。
2. 布儒斯特角当光从折射率为n 1的介质入射到折射率为n 2的介质分界面,例如由空气入射到玻璃,且入射角满足)/arctan(12n n B =θ (1)时,反射光为完全偏振光,振动面垂直于入射面。
这是由于根据反射定律和折射定律由(1)式可得此时反射角和入射角之和为90°,再由菲涅耳公式可知此时反射光的平行分量为0,只有垂直分量。
B θ称为布儒斯特角,(1)式即为布儒斯特定律。
图13. 马吕斯定律如果光源中任一波列(用振动平面E 表示)投射在起偏器P 上,只有相当于它的成分之一的y E (平行于光轴方向的矢量)能够通过,另一成分θcos E E x =则被吸收。
与此类似,若投射在检偏器A 上的线偏振光的振幅为0E ,则透过A 的振幅为θcos 0E ,这里θ是P 与A 偏振方向之间的夹角。
实验07 光的偏振实验光波是特定频率范围内的电磁波。
在自由空间中传播的电磁波是一种横波,光波的偏振特性清楚地显示了光的横波性,是光的电磁理论的一个有力证明。
本实验研究光的一些基本的偏振特性,通过实验深入学习有关光的偏振理论。
【实验目的】1、 理解偏振光的基本概念,偏振光的起偏与检偏方法;2、 学习偏振片与波片的工作原理与使用方法。
【仪器用具】SGP-2A 型偏振光实验系统【实验原理】1、 光波偏振态的描述一般用光波的电矢量(又称光矢量)的振动状态来描述光波的偏振。
按光矢量的振动状态可把光波偏振态大体分成五种:自然光、线偏振光、部分偏振光、圆偏振光和椭圆偏振光。
这里重点讨论偏振光的描述。
一个单色偏振光可分解为两个偏振方向互相垂直的线偏振光的叠加,即⎩⎨⎧+==)cos(cos 21δωωt a E ta E y x (1) 式中δ为x 方向偏振分量相对于y 方向偏振分量的位相延迟量,1a 、2a 分别是两偏振分量的振幅,ω为光波的圆频率。
对于单色光,参数1a 、2a 、δ就完全确定了光波的偏振状态。
以下讨论中,取021>a a 、,πδπ≤<-。
当πδ,0=时,式(1)描述的是一个线偏振光,偏振方向与x 轴的夹角)c o s a rc t a n (12δαa a=称为线偏振光的方位角(如图1所示)。
图 1 线偏振光 图 2 圆偏振光当2/2/ππδ-=,且21a a =时,式(1)描述的是一个圆偏振光,其特点是光矢量为角速度ω旋转,光矢量的端点的轨迹为一圆。
δ的正负决定了光矢量的旋向,2/πδ=时为右旋圆偏振光,2/πδ-=时为左旋圆偏振光(迎着光的方向观察,如图2所示)。
除了上述特殊情况,式(1)表示的是椭圆偏振光(如图3所示)。
偏振的一个重要应用是研究光波通过某个光学系统后偏振状态的变化来了解此系统的一些性质。
2、 偏振片和马吕斯定律偏振片有一个透射轴(即偏振化方向)和一个与之垂直的消光轴,对于理想的偏振片,只有光矢量振动方向与透射轴方向平行的光波分量才能通过偏振片。