Multisim 10-正弦稳态交流电路仿真实验
- 格式:doc
- 大小:186.00 KB
- 文档页数:3
正弦交流电是随时间按照正弦函数规律变化的电压和电流,在现代工农业生产和日常生活中具有广泛的应用。
在正弦激励的动态电路中, 若各电压、电流均为与激励同频率的正弦波, 则称该电路为正弦稳态电路。
无论在理论研究还是实际应用中, 对于正弦稳态电路的分析都是十分重要的。
它是变压器、交流电机以及电子电路的理论基础, 在实际应用中, 许多电气设备的设计、性能指标就是按正弦稳态来考虑的。
因此, 分析和计算正弦稳态电路是工程技术和科学研究中常常会碰到的问题。
一、正弦稳态电路及其分析的重要性 (1)1.1 正弦稳态电路的定义 (1)1.2 分析正弦稳态电路的重要性 (1)2.1相量分析法 (1)2.2 Matlab分析 (1)三、Matlab在正弦稳态电路分析中的应用 (2)3.1 Matlab的概况 (2)3.2 Matlab分析的优势 (2)3.2.1 友好的工作平台和编程环境 (2)3.2.2 简单易用的程序语言 (3)3.2.3 强大的科学计算机数据处理能力 (3)3.2.4 出色的图形处理功能 (3)3.2.5 应用广泛的模块集合工具箱 (4)3.2.6 实用的程序接口和发布平台 (4)3.2.7 应用软件开发 (4)3.3 分析流程 (4)四、正弦稳态电路分析实例 (5)4.1 电路图 (5)4.2采用节点电压法求解 (5)4.3 用Matlab编程计算 (6)4.4电流向量图和波形图绘制 (6)五、结束语 (9)六、参考文献 (10)七、成绩评定 (11)一、正弦稳态电路及其分析的重要性1.1正弦稳态电路的定义线性时不变动态电路在角频率为ω的正弦电压源或电流源激励下,随着时间的增长,当暂态响应消失,只剩下正弦稳态响应,电路中全部电压电流都是角频率为ω的正弦波时,称电路处于正弦稳态。
满足这类条件的动态电路通常称为正弦电流电路或正弦稳态电路。
1.2 分析正弦稳态电路的重要性1.2.1 很多实际电路都工作于正弦稳态。
Multisim模拟电路仿真实验电路仿真是电子工程领域中重要的实验方法,它通过计算机软件模拟电路的工作原理和性能,可以在电路设计阶段进行测试和验证。
其中,Multisim作为常用的电路设计与仿真工具,具有强大的功能和用户友好的界面,被广泛应用于电子工程教学和实践中。
本文将对Multisim模拟电路仿真实验进行探讨和介绍,包括电路仿真的基本原理、Multisim的使用方法以及实验设计与实施等方面。
通过本文的阅读,读者将能够了解到Multisim模拟电路仿真实验的基本概念和操作方法,掌握电路仿真实验的设计和实施技巧。
一、Multisim模拟电路仿真的基本原理Multisim模拟电路仿真实验基于电路分析和计算机仿真技术,通过建立电路模型和参数设置,使用数值计算方法求解电路的节点电压、电流以及功率等相关参数,从而模拟电路的工作情况。
Multisim模拟电路仿真的基本原理包括以下几个方面:1. 电路模型建立:首先,需要根据电路的实际连接和元件参数建立相应的电路模型。
Multisim提供了丰富的元件库和连接方式,可以通过简单的拖拽操作和参数设置来搭建电路模型。
2. 参数设置:在建立电路模型的基础上,需要为每个元件设置合适的参数值。
例如,电阻器的阻值、电容器的容值、电源的电压等。
这些参数值将直接影响到电路的仿真结果。
3. 仿真方法选择:Multisim提供了多种仿真方法,如直流分析、交流分析、暂态分析等。
根据不同的仿真目的和需求,选择适当的仿真方法来进行仿真计算。
4. 仿真结果分析:仿真计算完成后,Multisim会给出电路的仿真结果,包括节点电压、电流、功率等参数。
通过分析这些仿真结果,可以评估电路的性能和工作情况。
二、Multisim的使用方法Multisim作为一款功能强大的电路设计与仿真工具,具有直观的操作界面和丰富的功能模块,使得电路仿真实验变得简单而高效。
以下是Multisim的使用方法的基本流程:1. 新建电路文件:启动Multisim软件,点击“新建”按钮创建一个新的电路文件。
multisim使用及电路仿真实验报告范文模板及概述1. 引言1.1 概述引言部分将介绍本篇文章的主题和背景。
在这里,我们将引入Multisim的使用以及电路仿真实验报告。
Multisim是一种强大的电子电路设计和仿真软件,广泛应用于电子工程领域。
通过使用Multisim,可以实现对电路进行仿真、分析和验证,从而提高电路设计的效率和准确性。
1.2 文章结构本文将分为四个主要部分:引言、Multisim使用、电路仿真实验报告以及结论。
在“引言”部分中,我们将介绍文章整体结构,并简要概述Multisim的使用与电路仿真实验报告两个主题。
在“Multisim使用”部分中,我们将详细探讨Multisim软件的背景、功能与特点以及应用领域。
接着,在“电路仿真实验报告”部分中,我们将描述一个具体的电路仿真实验,并包括实验背景、目的、步骤与结果分析等内容。
最后,在“结论”部分中,我们将总结回顾实验内容,并分享个人的实验心得与体会,同时对Multisim软件的使用进行评价与展望。
1.3 目的本篇文章旨在介绍Multisim的使用以及电路仿真实验报告,并探讨其在电子工程领域中的应用。
通过对Multisim软件的详细介绍和电路仿真实验报告的呈现,读者将能够了解Multisim的基本特点、功能以及实际应用场景。
同时,本文旨在激发读者对于电路设计和仿真的兴趣,并提供一些实践经验与建议。
希望本文能够为读者提供有关Multisim使用和电路仿真实验报告方面的基础知识和参考价值,促进他们在这一领域的学习和研究。
2. Multisim使用2.1 简介Multisim是一款功能强大的电路仿真软件,由National Instruments(国家仪器)开发。
它为用户提供了一个全面的电路设计和分析工具,能够模拟各种电子元件和电路的行为。
使用Multisim可以轻松地创建、编辑和测试各种复杂的电路。
2.2 功能与特点Multisim具有许多强大的功能和特点,使其成为研究者、工程师和学生选择使用的首选工具之一。
基于Multisim 10的正弦波振荡电路仿真
吴凌燕
【期刊名称】《国外电子测量技术》
【年(卷),期】2011(30)7
【摘要】以文氏电桥正弦波振荡电路仿真为例,分析了基本及稳幅文氏电桥正弦波发生器的特点,并采用Multisim 10软件对文氏电桥正弦波发生器进行了仿真,仿真结果与理论分析结果一致。
软件仿真在课堂教学、电路设计、及实验教学中的应用,使得课堂教学信息量饱满,设计、实验变得轻松,使教学的效果得到提升,在教学领域具有重要的推广、应用价值。
【总页数】3页(P75-76)
【关键词】电路仿真软件;文氏电;正弦波振荡电路
【作者】吴凌燕
【作者单位】海军航空工程学院青岛分院
【正文语种】中文
【中图分类】TP399
【相关文献】
1.基于Multisim的正弦波振荡电路仿真 [J], 刘旭
2.基于Multisim的正弦波振荡电路仿真 [J], 刘旭
3.基于Multisim的RC正弦波振荡电路仿真分析 [J], 李咏红;
4.基于Multisim10的RC正弦波振荡电路仿真设计 [J], 赵国树;周黎英;翟力欣
5.基于Multisim 10的RC桥式正弦波振荡电路仿真分析 [J], 马敬敏
因版权原因,仅展示原文概要,查看原文内容请购买。
西藏大学《M ultisim 仿真》课程设计报告信息工程指导教师课程成绩完成日期2014年7月9日工学院学生姓名RLC正弦交流电路电量的Multisim 仿真测试本文基于探索RLC正弦交流电路电量波形的Multisim 仿真的目的,运用MultisimIO软件对RLC正弦交流电路的特性进行了仿真实验分析,给出了Multisim 仿真实验方案,仿真了电路中总电压、电流及各元件电压的相位关系,虚拟仿真实验结果与理论分析计算结果相一致,结论是仿真实验可直观形象地描述电路的工作特性.1 RLC正弦交流电路的电量分析RLC正弦交流电路,由电阻R、电感L、电容C元件串联构成,如图1所示.其中,选取电阻R = 10 Q、电感L = 1 mH电容C = 10卩F.对电路分析、研究时,涉及总电压u、电阻两端电压uR电感两端电压uL、电容两端电压uC电流i等电量,分析的内容一般有各个电量的大小及相位关系.输入电压u的频率f = 50 Hz、幅值10 V、初相位© = 0。
时,电路中有关电量的参数分析如下.电路的复阻抗为电路中的电流相量为^ = ().0314 <SX, \£电流i的最大值为电流i的初相位为/ =().0314 \£ 二隠 199。
电阻两端电压相量为f 伽4"-" 3MI9<r V电阻两端电压uR 的最大值为= {). 314 丫电阻两端电压uR 勺初相位为电容两端电压uC 的初相位为2 RLC 正弦交流电路电量的 Multisim 仿真原理应用MultisimIO 〔2 — 8〕的实践中发现,MultisimIO 中的虚拟双 踪示波器具有测试电路中任意两点电压波形的功能, 并不要求必须对 地测试,由此可用于测试 RLC 正弦交流电路中各电量的波形, 而波形 形式的测试研究是一种直观、方便的实验研究方法.在MultisimIO 中 构建的 RLC 正弦交流仿真电路如图(5)(7)电感两端电压相量为门加二兀 1]二9 笳96 f 17& 199。
正弦交流电路仿真实验
一、实验目的
1、帮助理解正弦交流电三要素;
2、帮助理解阻容感元件在正弦交流电路中的特性;
3、提高示波器的操作能力。
二、工作任务及要求
任务一:用示波器观察正弦交流电三要素
1、用Multisim搭建如图仿真电路,用示波器观察交流信号源参数。
2、按下表设置交流电源的参数,仿真,记录示波器参数及显示的波形。
Phase:0 Deg 波形:
Voltage :10V Frequency:1KHZ Phase:90 Deg 最大值:Um=垂直灵敏度 5V /Div ×格数 2.8 = 14 V
周期:T=水平灵敏度 500us /Div×格数 2 = 1 ms 波形:
Voltage :10V Frequency:10kHZ 最大值:Um=垂直灵敏度 5V /Div ×格数 2.8 = 14 V 周期:T=水平灵敏度 50us /Div×格数 2 = 0.1 ms
任务二:仿真验证阻容感元件在正弦交流电路中的特性
仿真电路仿真结果
波形:
根据波形:电压与电流相位关系是同相。
Multisim仿真实验:三相交流电路姓名:马骁班级:电气1341 学号:17一、实验目的1. 学习用电设备三相供电线路的正确联接方法。
了解不正确连接对负载工作的影响,了解三相四线制供电线路中中线的作用。
2.验证三相对称负Y接和△接时,线电压与相电压、线电流和相电流之间的关系。
3.掌握三相不对称负载Y接和△接时,各线电压、相电压、线电流、相电流的变化情况。
二、实验原理1.三相交流电路主要是由三相电源、三相负载与三线输电线路三部分组成。
对称三相电源是由3个同频率、等幅值、初相依次滞后120度的正弦电压源链接成星(Y)形或三角(△)形组成的电源。
3个阻抗连接成Y形(或△形)就构成星形(或三角形)负载,只有当3个阻抗相等时,才构成对称三相负载。
将三相电源与三相负载连接可形成三相四线制或三相三线制的三线电路。
2. 负载应作星形联接时,三相负载的额定电压等于电源的相电压。
这种联接方式的特点是三相负载的末端连在一起,而始端分别接到电源的三根相线上。
负载应作三角形联接时,三相负载的额定电压等于电源的线电压。
这种联接方式的特点是三相负载的始端和末端依次联接,然后将三个联接点分别接至电源的三根相线上。
3.电流、电压的“线量”与“相量”关系:负载对称星形联接时,线量与相量的关系为:(1)UL=Up (2)IL=Ip负载对称三角形联接时,线量与相量的关系为:(1)UL=Up (2)IL=Ip4、星形联接时中性线的作用三相四线制负载对称时中性线上无电流,不对称时中性线上有电流。
中性线的作用是能将三相电源及负载变成三个独立回路,保证在负载不对称时仍能获得对称的相电压。
如果中性线断开,这时线电压仍然对称,但每相负载原先所承受的对称相电压被破坏,各相负载承受的相电压高低不一,有的可能会造成欠压,有的可能会过载。
四、实验内容与结果分析1.制作星形三相四线制电路2.三相四线制星形(Y)负载的三相电路仿真实验搭建如图(1)所示的三相四线制星形(Y)对称负载的三相仿真电路图。
详解Multisim10仿真实验步骤详解Multisim 10仿真实验步骤一、实验目的熟悉并掌握Multisim10对单片机的仿真过程。
加深对单片机硬件以及软件理论知识的理解。
二、实验原理1、Multisim10美国国家仪器公司下属的ElectroNIcs Workbench Group在今年年初发布了Multisim 10。
新版的Multisim10,加入了MCU模块功能,可以和8051等单片机进行编程联调,该软件元件丰富,界面直观,虚拟仪器的逼真度达到了让人相当高的程度,是电子设计、电路调试、虚拟实验必备良件。
工程师们可以使用Multisim 10交互式地搭建电路原理图,并对电路行为进行仿真。
Multisim提炼了SPICE仿真的复杂内容,这样工程师无需懂得深入的SPICE技术就可以很快地进行捕获、仿真和分析新的设计,这也使其更适合电子学教育。
通过Multisim和虚拟仪器技术,PCB设计工程师和电子学教育工作者可以完成从理论到原理图捕获与仿真再到原型设计和测试这样一个完整的综合设计流程。
下面将简单介绍一下Multisim10刚加进来的MCU模块的使用方法。
双击桌面上的multisim10图标,由于软件比较大,需要等待一定的时间才能进入以下界面(图一):图一Multisim10界面和Office工具界面相似,包括标题栏、下拉菜单、快捷工具、项目窗口、状态栏等组成。
标题栏用于显示应用程序名和当前的文件名。
下拉菜单提供各种选项。
快捷工具分为:文件工具按钮,器件工具按钮,调试工具按钮,这些按钮在下拉菜单中都有,并经常用到,现在放在工具栏里是为了方便使用。
项目窗口中的电路窗口是用来搭建电路的,Design Toolbox工具栏是用来显示全部工程文件和当前打开的文件。
状态栏用于显示程序的错误和警告,如果有错误和警告那还还需要重新修改程序。
直到没有错误为止才能正常加载程序。
在电路窗口的空白处点击鼠标右键,将出现如下菜单(图二):图二菜单包括:放置元件(place component)、连接原理图(place schematic)、放置图形(place graphic)、标注(place comment)等,这里我们最常用到的只有第一个放置元件:点击菜单中第一个选项或者按“CTRL+W”会出现以下元器件选择对话框(图三):图三在Group中选择我们需要的器件的类别,在Family中选择我们需要的器件,点击“OK”即可。
西藏大学《Multisim 仿真》课程设计报告学院工学院 专 业 信息工程 班 级 学 号 学生姓名 指导教师 课程成绩 完成日期 2014年7月9日RLC 正弦交流电路电量的Multisim 仿真测试本文基于探索RLC 正弦交流电路电量波形的Multisim 仿真的目的,运用Multisim10软件对RLC 正弦交流电路的特性进行了仿真实验分析,给出了Multisim 仿真实验方案,仿真了电路中总电压、电流及各元件电压的相位关系,虚拟仿真实验结果与理论分析计算结果相一致,结论是仿真实验可直观形象地描述电路的工作特性.1 RLC 正弦交流电路的电量分析RLC 正弦交流电路,由电阻R、电感L、电容C 元件串联构成,如图1 所示.其中,选取电阻R = 10 Ω、电感L = 1 mH、电容C = 10 μF.对电路分析、研究时,涉及总电压u、电阻两端电压uR、电感两端电压uL、电容两端电压uC、电流i 等电量,分析的内容一般有各个电量的大小及相位关系.输入电压u 的频率f = 50 Hz、幅值10 V、初相位φ = 0°时,电路中有关电量的参数分析如下.电路的复阻抗为电路中的电流相量为电流i 的最大值为电流i 的初相位为电阻两端电压相量为电阻两端电压uR的最大值为电阻两端电压uR的初相位为电感两端电压相量为电感两端电压uL的最大值为电感两端电压uL的初相位为电容两端电压相量为电容两端电压uC的最大值为电容两端电压uC的初相位为2 RLC 正弦交流电路电量的Multisim 仿真原理应用Multisim10〔2 - 8〕的实践中发现,Multisim10 中的虚拟双踪示波器具有测试电路中任意两点电压波形的功能,并不要求必须对地测试,由此可用于测试RLC 正弦交流电路中各电量的波形,而波形形式的测试研究是一种直观、方便的实验研究方法.在Multisim10 中构建的RLC 正弦交流仿真电路如图1 所示,电阻、电感及电容从Multisim 的基本元件库中找出,交流电压源从电源信号源库中找出,电压表、电流表从指示元件库中找出,双踪示波器从虚拟仪器栏中找出.其中,交流电压源产生正弦交流电压,选择其频率f = 50 Hz、幅值10 V; 电阻R1 = 1 mΩ为阻值较小的电流检测电阻,其两端电压的波形与电路中电流的波形相同; 双踪示波器XSC1 用于观测总电压u、电阻两端电压uR的波形,双踪示波器XSC2 用于观测电感两端电压uL、电容两端电压uC的波形,双踪示波器XSC3 用于观测电流i 的波形.电流表U1 设置为交流档,用于测试电路中电流的有效值; 电压表U2、U3、U4、U5 设置为交流档,分别用于测试总电压、电阻两端电压、电感两端电压、电容两端电压的有效值.双踪示波器XSC1、XSC2、XSC3,三个面板的Timebase 区中的Scale、X position 设置一致,当接通仿真开关时三个示波器同时开始工作,从而实现各电量波形的同步显示.3 RLC 正弦交流电路电量的Multisim 仿真结果及分析图1 中各电流表、电压表显示了有关各个电量的有效值.图2 所示为Multisim 仿真时示波器显示的波形,由上至下依次为总电压u、电阻两端电压uR、电感两端电压uL、电容两端电压uC、电流i 的波形.由图1 中的电流表U1 可确定出电流i 的最大值为Im = 0. 022 × 1. 414 = 0. 3311 A ( 14) 由图2 中的电流波形可确定出电流i 的初相位为式( 14 - 15) 与式( 3 - 4) 的理论值基本一致.由图1 中的电流表U3 可确定出电阻两端电压uR的最大值为URm = 0. 022 × 1. 414 = 0. 3311 V (16) 由图2 中的电阻两端电压波形可确定出电阻两端电压uR的初相位为式( 16 - 17) 与式( 6 - 7) 的理论值基本一致.由图1 中的电流表U4 可确定出电感两端电压uL的最大值为ULm = 6. 982 × 1. 414 = 9. 873 mA (18) 由图2 中的电感两端电压波形可确定出电感两端电压uL的初相位为式( 18 - 19) 与式( 9 - 10) 的理论值基本一致.由图1 中的电流表U5 可确定出电容两端电压uC的最大值为UCm = 7. 075 × 1. 414 = 10 V ( 20) 由图2 中的电容两端电压波形可确定出电容两端电压uC的初相位为式( 20 - 21) 与式( 12 - 13) 的理论值基本一致.4 结语运用Multisim10 软件仿真对RLC 正弦交流电路电量的Multisim 仿真测试,可以直观地观测电路中各元件两端电压、电流的相位关系,测量正弦电压、正弦电流有效值.应用Multisim10 的实践中发现,双踪示波器具有测试电路中任意两点电压波形的功能,并不要求必须对地测试,因此在仿真测试电路中直接进行测试电路中各元件两端电压的波形的测量,可减小测量误差.仿真结果表明,虚拟实验仿真与理论分析和计算的结果一致,所述方法具有实际应用意义.。
暨南大学本科实验报告专用纸
课程名称 电路分析CAI 成绩评定 实验项目名称 正弦稳态交流电路仿真实验 指导教师 实验项目编号0806109705实验项目类型 验证型 实验地点 计算机中心C305 学生姓 学号 学院 电气信息学院 专业实验时间 2013 年5月28日
一、 实验目的
1.分析和验证欧姆定律的相量形式和相量法。
2.分析和验证基尔霍夫定律的相量形式和相量法。
二、实验环境定律
1.联想微机,windows XP ,Microsoft office ,
2.电路仿真设计工具Multisim10 三、实验原理
1在线性电路中,当电路的激励源是正弦电流(或电压)时,电路的响应也是同频的正弦向量,称为正弦稳态电路。
正弦稳态电路中的KCL 和KVL 适用于所有的瞬时值和向量形式。
2.基尔霍夫电流定律(KCL )的向量模式为:具有相同频率的正弦电流电路中的任一结点,流出该结点的全部支路电流向量的代数和等于零。
3. 基尔霍夫电压定律(KVL )的向量模式为:具有相同频率的正弦电流电路中的
任一回路,沿该回路全部的支路电压向量的代数和等于零。
四、实验内容与步骤
1. 欧姆定律相量形式仿真
①在Multisim 10中,搭建如图(1)所示正弦稳态交流实 验电路图。
打开仿真开关,用示波器经行仿真测量,分别测 量电阻R 、电感L 、电容C 两端的电压幅值,并用电流表测 出电路电流,记录数据于下表
②改变电路参数进行测试。
电路元件R 、L 和C 参数不变, 使电源电压有效值不变使其频率分别为f =25Hz 和f =1kHz 参照①仿真测试方法,对分别对参数改变后的电路进行相同 内容的仿真测试。
③将三次测试结果数据整理记录,总结分析比较电路电源频 率参数变化后对电路特性影响,研究、分析和验证欧姆定律 相量形式和相量法。
暨南大学本科实验报告专用纸(附页)
)所示仿真电路图。
=
,使电源电压参数不变,参照①
在Multisim 10 中建立如图(3所示仿真电路图.
打开仿真开关,用并接在各元件两端的电流
表经行仿真测量,分别测出电阻R支路、
电感L支路‘电容C支路中的电流值,及
电源支路中流过的电流I,记录数据于下表。
②改变电路参数进行测试。
电路元件R=
300Ω、L=50mH和C=3300pF,使电源电
压参数不变,参照①仿真测试方法,对参数
改变后的电路进行相同内容的仿真测试。
③将两次测试结果数据整理记录,总结分析
比较电路参数变化后对电路特性影响,研究
、分析和验证基尔霍夫电流定律相量形式和
相量法。
暨南大学本科实验报告专用纸(附页)
( 五)实验结果分析
1.理论值计算
实验一:
由欧姆定律的向量模式可知:
2.跟据上述实验数据可知:在正弦交流电路中欧姆定律、KVL和KCL的向量形式是成立的。
即在正弦交流电路中有:流入某节点的电流向量的代数和为零,任一回路,沿该回路全部的支路电压向量的代数和等于零。
另外U=IZ。
3.误差分析:a.实验1中测量个电流元件的电压时,在示波器的信号图中拉动T1的线时,不准,造成读数误差大。
b.理论值计算过程中数据精确度取的过小。
4.由以上数据也可的出:正弦交流电路中,回路中全部电压有效值的代数和并不一定零。
流入某一节点的电流的有效值的代数和也不一定为零。
5.实验时,电路中的电压表和电流表注意要用AC形式,否则测量出的数据是错误的。
6.读取数据时,要等数据稳定时才开始读。
六、实验总结
1、对实验的分析不懂得理解,而且在本实验当中遇到了不少的问题,最后与同学讨论才得到解决,可知多交流对学知识有很大作用。
2、感觉mulitisim学到的东西不是很多,投入的时间与收入并没有成正比。
3、以后在正弦交流电路中,要先把各元件改为向量形式,然后才用欧姆定律、KCL、KVL、网孔法....分析电路。