1 x(t ) 2
X ( )e
d
傅里叶变换对
x(t ) X ( )
傅里叶逆变换 傅里叶(正)变换
(二)、瞬态信号的频谱分析
1.物理概念
当周期信号的 T 时, 0 2 T 0
周期信号
离散频谱
非周期信号
连续频谱
傅里叶级数
傅里叶变换
1 1 Cn (an jbn ) 2 T 当 T Cn 0
问题提出:
能否用正弦信号描述方波信号? 简谐信号 解决办法: 复杂周期信号
利用数学工具傅里叶级数。
(一)傅里叶级数
一个周期为T的周期函数x(t),如果满 足狄里赫利条件,则此函数x(t)可以展开为 傅里叶级数 。
狄里赫利条件: 1) 在一个周期内,处处连续或只存在有限个间断点; 2) 在一个周期内,极值点的个数是有限的; 3) 在一个周期内,函数是绝对可积。
T 2 0
4 T2 0 sin n 0tdt T
4 1 cos n 0t T n 0 0
T 2
( 0 2 T )
0 2 n (1) 1 4 n n
2 cos n 1 n
,n 2, (偶数) 4, , n 1,3, (奇数)
n
频谱图
幅值频谱图
相位频谱图
2.周期信号的频谱实例 例2 做出例1中周期方波的频谱图 解: 该方波的傅里叶级数式:
4 1 1 f (t ) sin 0 t sin 3 0 t sin 5 0 t 3 5
4 An an bn bn n b arctg ( )