压力容器典型事故案例调查与剖析

  • 格式:docx
  • 大小:98.10 KB
  • 文档页数:13

下载文档原格式

  / 22
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

压力容器典型事故案例调查与剖析

摘要:提出了压力容器的概念及分类,分析压力容器破环的主要形式、破环的原因和特征。对压力容器典型事故案例进行了分析。提出了压力容器安全的目的和意义与实现措施。

关键词:压力容器,事故,调研

Investigation and analysis of the typical pressure vessel accident Abstract:Put forward the concept and classification of pressure vessels, analyze the main form and the causes of the breaking, then analyze the typical pressure vessel accident, put forward the purpose and the significance of the pressure vessels safety and the measures.

Key words:pressure vessels,accident,research

正文:

一.压力容器安全基础知识概述

1.压力容器的定义及特点

压力容器是一种承压设备。承压设备是指涉及生命安全、危险性大的锅炉、压力器(含气瓶)、压力管道等承压类特种设备和安全附件。压力容器是承接带有一定压力的流体的密闭设备,是工业生产中必不可少的一类机械设备。压力容器广泛应用于国民经济的各个部门。由于压力容器极宽广的操作范围,包括压力、温度、介质、周围坏境等,使其在设计、制造、使用和管理等方面与其他一般机械设备不同,尤其在安全性能方面更为苛刻和严格。因此,压力容器表现以下与一般机械设备不同的特点:

(1)容器应用的广泛性。各种形式和规格的压力容器广泛用于石油、天然气、化工、石油化工、能源、制药、食品、航天和交通运输等部门,在民用和农业部门也屡见不鲜。

(2)操作条件的复杂性,甚至进于苛刻。操作的复杂性使压力容器从设计、制造、安全到使用、检验、改造、维护都不同于一般的机械设备,成为一类特殊的承压设备。

(3)对安全的高要求。

2.压力容器的分类

压力容器的型式很多,按不同的需求可以进行不同的分类。但是从压力容器的使用管理和安全监察角度出发,按照“荣归”将压力容器区分为几个类别具体方法如下:

(1)按压力容器技术特性分类

根据容器承受的压力(p)分为低压、中压、高压、超高压四类。具体划分如下:

①低压容器p<1.57MPa(16kgf/cm2)

②中压容器:1.57MPa(16kgf/cm2)≤p<9.81MPa(100kgf/cm2)

③高压容器:9.81MPa(100kg/cm2)≤p<98.1MPa(1000kgf/cm2)

④超高压容器:p≥98.1MPa(1000kgf/cm2)

(2)按容器在生产中的作用分类:

①反应压力容器(代号R):用于完成介质的物理、化学反应。

②换热压力容器(代号E):用于完成介质的热量交换。

③分离压力容器(代号S):用于完成介质的流体压力平衡缓冲和气体净化分离。

④储存压力容器(代号C,其中球罐代号B):用于储存、盛装气体、液体、液化气体等介质。在一种压力容器中,如同时具备两个以上的工艺作用原理时,应按工艺过程中的主要作用来划分品种。

(3)按安装方式分类:

①固定式压力容器:有固定安装和使用地点,工艺条件和操作人员也较固定的压力容器。

②移动式压力容器:使用时不仅承受内压或外压载荷,搬运过程中还会受到由于内部介质晃动引起的冲击力,以及运输过程带来的外部撞击和振动载荷,因而在结构、使用和安全方面均有其特殊的要求。

③上面所述的几种分类方法仅仅考虑了压力容器的某个设计参数或使用状况,还不能综合反映压力容器的危险程度。

(4)依据受监察容器的压力高低、介质的危害程度以及生产过程中的重要作用,又将容器分为三类

Ⅰ类容器

①非易燃或无毒介质的低压容器

②易燃或有毒介质的低压分离容器和换热容器

Ⅱ类容器

①高、超高压容器

②剧毒介质的低压容器

③易燃或有毒介质的低压反应容器和贮运容器

④内径小于lm的低压废热锅炉

Ⅲ类容器:

①高压、超高压容器

②剧毒介质且PV≥196L·MPa(2000L·kgf/cm2)的低压容器或剧毒介质的中压容器

③(3)易燃或有毒介质且PV≥490L·MPa(5000L·kgf/cm2)的中压反应容器,或

PV≥4900L·MPa(50000L·kgf/cm2)的中压贮运容器

(④中压废热锅炉或内径大于1m的低压废热锅炉。

3.压力容器破坏的主要形式、原因及特征

压力容器及其承压部件在使用过程中,尺寸、形状或材料性能发生改变而完全失去或不能良好的实现原定的功能或继续使用中失去可靠性和安全性,因而需要立即停用进行维修或更换,成为压力容器的破坏形式。压力容器的失效从安全角度分类,通常情况下可分为以下几种形式:韧性破裂、脆性破裂、疲劳破裂、应力腐蚀破裂、蠕变破裂、泄漏。

(1)韧性破裂

压力容器的韧性破裂往往是受到超过正常工作内压的作用,在其器壁截面上产生的总体薄膜拉伸使材料发生明显塑形变形,如压力升高,一旦应力超过材料的强度极限时,容器就会发生破裂。具有以下特征:容器发生显著的塑形变形,主要表现在容器的周长明显的拉长或面积明显的增大、中间部分有鼓胀,且壁厚面型减薄。

(2)脆性破裂

容器不发生或未发生充分塑性变形下就破坏的破裂型式称为脆性破裂。造成脆性破裂的原因主要有两方面原因:一是容器的材料原因,即容器本身的韧性差;二是容器本身在制造或使用中存在超标的缺陷。脆性破裂在发生断裂前外观没有明显的征兆和塑性变形,断裂时器壁内的应力比较低,且破坏的容器常断裂成碎块飞出。

(3)疲劳破裂

疲劳破裂是指在交变载荷(机械载荷或热载荷)下运行,经历长期作用后,在某些局部的应力集中部位发生了破裂或泄漏。造成疲劳破裂的主要原因是高应力低循环疲劳,指材料所受的交变载荷次数在102—105,而相应的应力水平较高,接近或超过材料的屈服极限。有一下特征:常发生在结构局部应力较高或存在材料(包括焊缝及其热影响区)缺陷处;疲劳破裂的断口形貌与脆性端口不同,断口也有三个区,但由于裂纹萌生萌生部分占断口尺寸很小,实际观察叫明显的是裂纹扩展区和最终断裂两个区。

(4)应力腐蚀破裂

应力腐蚀破裂起源于环境对容器材料的腐蚀,即材料与周围环境介质产生化学或电化学作用,使材料厚度减薄或本身性能发生变化,从而最总导致容器破裂。腐蚀破裂是一种延迟性破坏,一旦萌生腐蚀裂纹,裂纹扩展的速度比纯腐蚀快的多,因此应力腐蚀破裂宏观形态具有脆性破裂的特征。(5)蠕变破裂

在高温下工作的压力容器,操作温度超过一定极限,材料就在应力的作用下发生缓慢的塑性变形。蠕变破裂有明显的塑性变形和蠕变小裂纹,断口无金属光泽,呈粗糙颗粒状,表面有高温氧化层和腐蚀物。