铁电材料测试.
- 格式:ppt
- 大小:5.64 MB
- 文档页数:59
铁电材料的制备及其铁电性能研究铁电材料是指具有铁电性质的材料,铁电性质是指在外加电场下,材料会发生极性翻转,即正负极性相互转换。
这种性质使铁电材料广泛应用于存储器、传感器、激光器、换能器、电容器等领域。
本文将介绍铁电材料的制备方法及其铁电性能研究。
一、铁电材料的制备方法1.溶胶-凝胶法溶胶-凝胶法是一种低温热处理制备铁电材料的方法。
首先,将合适比例的金属盐溶解在水和有机物的混合液中,然后使之脱水凝固,得到凝胶。
接着,将凝胶热处理干燥,形成透明的玻璃状材料。
该方法制备的铁电材料具有良好的机械性能和化学稳定性。
2.物理气相沉积法物理气相沉积法是一种高温热处理制备铁电材料的方法。
在该方法中,通过激光或者热蒸发等方式将材料原子或分子蒸发,沉积在基底上,形成薄膜结构。
该方法具有工艺简单、生产效率高等优点,可以制备出高质量的铁电薄膜材料。
3.气相沉积法气相沉积法是一种制备铁电材料薄膜的方法,通过气体反应沉积铁电薄膜。
该方法可以制备出大面积、高质量、低成本的铁电薄膜。
在该方法中,可以通过改变反应条件来控制铁电薄膜的性能,如薄膜的微观结构和组分等。
二、铁电材料的铁电性能研究研究铁电材料的铁电性能是了解材料电性能的一种重要手段。
以下是常用的铁电性能研究方法。
1.压电测试压电测试是通过在机械应力下测量铁电材料的电感生成能力来研究铁电性质。
在该测试中,将电极夹在铁电材料两端,给材料施加机械压力后,测量材料中电极间电势差的变化,进而计算出电感。
2.电容测试电容测试是一种测量铁电材料铁电性能的方法。
在该测试中,先将材料置于电场中,并在电场强度不断增大的过程中测量材料的电容变化,进而计算出材料的介电常数与电容变化量之间的关系。
通过电容测试可以了解材料的介电常数、铁电极化强度和耐电压强度等参数。
3.极化测试极化测试是一种研究材料极化行为的方法。
该测试中,通过在外场的作用下,测量材料中电极间电势差,进而计算出铁电极化强度的大小。
铁电薄膜的电滞回线测量一、实验内容及目的1)测量铁电薄膜样品的电滞回线及得到铁电薄膜材料的饱和极化±Ps、剩余极化±Pr、矫顽场±Ec等参数。
2)了解什么是铁电体,什么是电滞回线及其测量原理和方法。
3)了解铁薄膜材料的功能和应用前景。
二、实验原理铁电体的极化随外电场的变化而变化,但电场较强时,极化与电场之间呈非线性关系。
在电场作用下新畴成核长,畴壁移动,导致极化转向,在电场很弱时,极化线性地依赖于电场见图,此时可逆的畴壁移动成为不可逆的,极化随电场的增加比线性段快。
当电场达到相应于B点值时,晶体成为单畴,极化趋于饱和。
电场进一步增强时,由于感应极化的增加,总极化仍然有所增大(BC)段。
如果趋于饱和后电场减小,极化将循 CBD段曲线减小,以致当电场达到零时,晶体仍保留在宏观极化状态,线段OD表示的极化称为剩余极化Pr。
将线段CB外推到与极化轴相交于E,则线段OE 为饱和自发极化Ps。
如果电场反向,极化将随之降低并改变方向,直到电场等于某一值时,极化又将趋于饱和。
这一过程如曲线DFG所示,OF所代表的电场是使极化等于零的电场,称为矫顽场 Ec。
电场在正负饱和度之间循环一周时,极化与电场的关系如曲线CBDFGHC所示此曲线称为电滞回线。
图1 铁电体的电滞回线三、实验仪器四、实验步骤1、样品的安装样品盒中,连接样品的一对电极,其中的一个电极为平台,样品置放其上,另一电极为探针,将样品压在样品台上。
将铁电样品平稳放置在样品加上。
2、测量1)安装好样品后,关闭样品盒,接通样品盒电源(样品台上的红色指示灯亮)。
2)点击程序界面上的“显示”按钮,在仪器面板上,从小到大调节极化电压旋钮,同时注意观察测量得到的曲线。
3)若极化电压调到200V还没有得到电滞回线,需将电压调回最小,再点击程序界面中的“电压提升”,继续调节极化电压,得到较满意的电滞回线。
3、记录数据得到满意的曲线后,直接点击程序界面中的“记录”按钮,记录完一个周期后自动关闭样品电源并停止测量。
铁电测试原理
铁电测试是一种用于测量铁电材料性质的测试方法。
铁电材料具有自发电偶极矩,并且能够在外加电场作用下产生电介质极化。
铁电测试主要通过测量材料的极化行为来评估其铁电性能。
铁电测试的基本原理是利用外加电场对铁电材料产生的极化效应进行检测。
在测试中,首先将待测试的铁电样品放置在测试装置中,并施加一个恒定电场。
然后,通过测量样品中的极化电荷或极化电流来评估铁电材料的性能。
常用的铁电测试方法包括极化-电压(P-V)测试和迭代抗收叠(PUND)测试。
在P-V测试中,通过改变施加在材料上的电
场大小,并测量相应的极化电荷或电流来建立极化-电压曲线。
这个曲线反映了材料的极化-电场关系,并可用于确定铁电材
料的极化特性。
PUND测试是一种动态测量方法,它通过施加一系列周期性电场脉冲来测量材料的极化响应。
在测试过程中,每个脉冲都会产生一个极化响应,而材料的极化水平则是通过不同脉冲之间的极化响应差异来确定的。
PUND测试可以提供更详细的铁电材料性能信息,如退极化电场、饱和极化和铁电畴切换等。
通过铁电测试,可以评估铁电材料的极化特性、响应时间、电介质的稳定性以及疲劳行为等。
这些测试结果对于理解铁电材料的性能、优化材料制备工艺和应用于电子器件中具有重要意义。
实验 铁电电介质陶瓷材料介电常数-温度特性曲线的测定一、目的要求1.掌握铁电电介质陶瓷材料介电常数-温度特性的测试原理和方法;2.通过实验,深刻理解铁电电介质陶瓷材料的居里温度的概念、相变扩散的概念、以及铁电陶瓷材料改性研究的意义;3.掌握电桥法测定电介质材料低频介电性能的常用仪器、参数设定、以及影响测试精度的因素。
二、基本原理铁电电介质陶瓷材料是制备“2类瓷介固定电容器”、各种压电陶瓷器件等的主要材料。
以“2类瓷介固定电容器”为例,其基本参数之一,即为电容量温度特性,根据国家标准的规定,2类瓷介固定电容器的进一步分类也是依据电容量温度特性而进行的,而该参数设计的主要依据是所选用的电介质的介电常数温度特性。
铁电电介质陶瓷材料一般具有一个以上的相变温度点,其中的铁电相和顺电相之间的转变温度被称为是居里温度,介质的介电常数随着温度的变化曲线(ε-T 曲线)显示,随着温度的升高,在相变温度附近,介电常数会急剧增大,至相变温度处,介电常数值达到最大值;如果所对应的相变温度是居里温度,那么随着温度的继续增加,介电常数随温度的升高将按照居里-外斯(Curie-Weiss )定律的规律而减小。
居里-外斯定律为:CC T T εε∞=+− (1) (1)式中:C 为居里常数;T C 为铁电居里温度(对于扩散相变效应很小的铁电体,该温度通常比实际的ε-T 曲线的峰值温度小10º左右);ε∞表示理论上当测量频率足够大时所测定的只源自快极化贡献的介电常数。
铁电电介质陶瓷材料的ε-T 曲线的另一个特点是,与单晶铁电体相比,在居里峰两侧一定高度所覆盖的温度区间比较宽,该温度区间称为居里温区,即对于铁电陶瓷来说,其介电常数ε具有按居里区展开的现象,该现象被称为相变扩散。
通过对材料的显微组织结构的调整和控制,可以改变介质的居里温度,同时可以控制材料的相变扩散效应,从而达到调整和控制介质的居里温度和在一定温度区间内的介电常数-温度变化率的目的。
铁电陶瓷材料电滞回线的准静态测试方法
铁电陶瓷材料是一种特殊的材料,具有独特的电学性质。
其中最重要的性质之一就是电滞回线。
电滞回线是指在外加电场作用下,铁电陶瓷材料的极化强度随电场强度的变化曲线。
这种曲线具有明显的非线性特征,是铁电陶瓷材料的重要特征之一。
因此,准确测量铁电陶瓷材料的电滞回线是非常重要的。
常用的铁电陶瓷材料电滞回线测试方法有两种:动态测试和准静态测试。
动态测试是指在高频交变电场下测量电滞回线,其优点是测试速度快,但缺点是测试结果受到外界干扰较大,精度较低。
准静态测试是指在直流电场下测量电滞回线,其优点是测试结果精度高,但测试速度较慢。
下面我们来介绍一种准静态测试方法。
首先,需要准备一台电源和一台数字万用表。
将电源连接到铁电陶瓷材料的两端,设置电压值,并记录下电压值和电流值。
然后,逐步增加电压值,每隔一段时间记录下电压值和电流值。
当电压值达到一定值时,开始逐步减小电压值,同样每隔一段时间记录下电压值和电流值。
最后,将记录下的电压值和电流值绘制成电滞回线图。
需要注意的是,在测试过程中,应尽量避免外界干扰,如电磁波干扰、温度变化等。
此外,测试时应注意安全,避免电压过高造成危险。
准确测量铁电陶瓷材料的电滞回线是非常重要的。
准静态测试方法是一种精度较高的测试方法,可以得到准确的电滞回线图。
但测试速度较慢,需要注意安全和避免外界干扰。
PZT铁电材料机电性能测试研究研究背景PZT作为一种性能优异的铁电材料,具有良好的介电、铁电、压电、热释电等效应,早已应用于非挥发性动态随机存储器的制作,在电子材料中具有重要地位。
近年来,随着微机电系统的迅速发展,PZT铁电薄膜因为具有高压电常数和高机电耦合系数等优点而受到了大家的普遍重视,被广泛应用于微型传感器与微型驱动器,如:微镜、微压电悬臂梁、微马达、微加速度计等的制作,已成为微机电系统中应用最为广泛的传感和驱动材料之一。
然而必须注意的是,将PZT薄膜应用于不同场合,对薄膜压电、介电、铁电以及其它性能有着不同要求。
例如对于高频和超高频器件,要求薄膜介电常数和高频损耗小;滤波器要求薄膜谐振频率稳定性好,机械品质因数高;而微型驱动器则要求薄膜的压电性能优异。
因此,性能表征对于系统地研究PZT薄膜的制备技术及其在实际应用中的行为是至关重要的,也是基于PZT铁电薄膜的微器件研究中必须解决的关键问题之一。
系统总体框架PZT铁电薄膜测试系统从功能上主要分为薄膜压电性能测试、介电性能测试、铁电性能测试以及温度特性测试等几部分,硬件测试电路通过控制软件与计算机实现测试指令与数据的传输与通信,如下图所示。
从硬件设计上划分,整个系统主要分为薄膜电学性能测试控制箱、薄膜压电性能测试信号拾取与反馈控制箱、薄膜压电性能测试驱动信号控制箱以及薄膜压电性能测试机械装置等几部分。
压电性能测试PZT铁电薄膜作为微机电系统中重要的传感与驱动材料,其压电性能优劣将直接影响到微器件的传感灵敏度与驱动能力,是薄膜制备技术研究中最为关注的问题之一。
由于PZT薄膜在外电场作用下产生约为自身厚度0.1%的微小形变,因此对检测系统的分辨率提出了很高要求。
将具有自驱动、自检测功能的压电微悬臂梁用于PZT薄膜微小形变检测,可以极大地简化系统设计、提高系统稳定性,并具有高达0.1nm的纵向位移检测分辨率,满足系统要求。
而这些优势的产生主要来源于压电微悬臂梁特殊的工作原理。
A Thesis Submitted in Partial Fulfillment of the Requirementsfor the Degree of Master of EngineeringAutomatic System for Measuring the Electrical Parameters of Ferroelectric MaterialsCandidate :Han ZhenMajor :Microelectronics and Solid State Electronics Supervisor:Professor Zeng YikeHuazhong University of Science and TechnologyWuhan 430074, P.R. ChinaMay, 2008独创性声明本人声明所呈交的学位论文是我个人在导师指导下进行的研究工作及取得的研究成果。
尽我所知,除文中已经标明引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写过的研究成果。
对本文的研究做出贡献的个人和集体,均已在文中以明确方式标明。
本人完全意识到,本声明的法律结果由本人承担。
学位论文作者签名:日期:年月日学位论文版权使用授权书本学位论文作者完全了解学校有关保留、使用学位论文的规定,即:学校有权保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。
本人授权华中科技大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。
保密□,在_____年解密后适用本授权书。
本论文属于不保密□。
(请在以上方框内打“√”)学位论文作者签名:指导教师签名:日期:年月日日期:年月日摘要铁电材料的电性能主要由电滞回线、I-V特性和开关特性等反映出来。
铁电材料在电极化强度与电场强度关系上呈现电滞回线,在电流与电压关系上呈现I-V特性,在电流与时间关系上呈现开关特性。
铁电材料制备与性能表征实验提纲实验目的:制备铁电材料,并进行性能测试。
材料:氧化钛(TiO2)粉末、钛酸四丁酯(TBT)、异丙醇、甲苯、乙醇、铝箔片。
仪器设备:自动定量注液器、恒温培养箱、离心机、扫描电子显微镜(SEM)、X射线衍射仪(XRD)。
实验步骤:1. 安全检查。
2. 准备氧化钛(TiO2)粉末,加入异丙醇,用高速搅拌器超声分散1.5小时,将分散液继续搅拌1小时。
3. 加入TBT预聚液,用自动定量注液器按照一定比例浓度注入分散液中,再用高速搅拌器旋转混合1小时,得到均匀溶胶。
4. 加入甲苯、乙醇,搅拌混合。
5. 将铝箔片严格清洗,放入恒温培养箱中,在160摄氏度下烘烤1小时。
6. 涂覆均匀溶胶于铝箔片上,再在空气中烘烤1小时。
7. 离心分离,用干燥箱干燥。
8. 进行SEM和XRD测试,测量铁电材料的晶体结构和形貌,分析其性能。
实验现象记录:1. 在加入TBT预聚液后,液体黏稠度增加。
2. 在涂覆均匀溶胶于铝箔片上时,需要注意溶液的均匀性和数量。
3. 在离心分离时,需要注意时间和速度的控制,不要将铁电材料分离异常。
4. 在测试时,需要谨慎操作,保证仪器的准确性。
实验问题及解决方案:问题1:加入TBT预聚液后,液体黏稠度增加,如何解决?解决方案:可以在混合液中加入少量甲苯或乙醇溶解。
问题2:涂覆均匀溶胶于铝箔片上时,出现溶液不均匀或溶液不足,如何解决?解决方案:可以按照一定比例,将溶液分别涂抹于多个铝箔片上,避免过多或不足。
问题3:在离心分离时,出现铁电材料分离异常,如何解决?解决方案:可以重新加入适量溶剂,再次混合均匀后进行离心分离。
实验影响因素和实验记录:1. TBT预聚液的比例和浓度会影响溶液的黏稠度和铁电材料的形貌。
2. 涂覆均匀溶胶于铝箔片上的方式和数量会影响铁电材料的均匀度和输出能力。
3. 离心分离的时间和速度会影响铁电材料的形态和质量。
实验规范:1. 进行实验前,需要进行全面的安全检查,确保仪器和材料的安全性。