恒定磁场小结
- 格式:ppt
- 大小:1009.00 KB
- 文档页数:18
第五章恒定电流的磁场上一章说明了磁力是运动电荷之间的一种相互作用,这种相互作用是通过磁场进行的。
此外还讲述了磁场对运动电荷(包括电流)的作用。
本章将介绍这种相互作用的另一个侧面,即磁场的源,如运动电荷(包括电流)产生磁场的规律。
先介绍这一规律的宏观基本形式,即描述电流元磁场的毕奥-萨伐尔定律(相当于静电场中的库仑定律),由这一定律原则上可以利用积分运算求出任意电流分布的磁场。
再在毕-萨定律的基础上导出关于恒定磁场的两条基本定理:磁通连续定理和安培环路定理,然后利用这两个定理求出有一定对称性的电流分布的磁场(类似于利用静电场黄栌定理和高斯定律来求有一定对称性的电荷分布的静电场分布)。
本章还介绍变化的电场产生磁场方面的规律。
静止电荷的周围存在着电场,电场的特征是对引入电场的电荷施加作用力。
如果电荷在运动,则在其周围不仅产生电场,而且还会产生磁场。
磁场也是物质的一种形态,它只对运动电荷施加作用,对静止电荷则毫无影响。
因此通过实验分别测定电荷静止时和运动时所受到的力,就可以把磁场从电磁场中区分出来。
由于运动和静止的相对性,本章最后还简单介绍电场和磁场有相对论性联系的内容。
Thankful good luck§1 磁现象及其与电现象的联系磁现象的研究与应用(即磁学)是一门古老而又年轻的学科,说她古老是因为关于磁现象的发现和应用的历史悠久,说她年轻是因为磁的应用目前越来越广泛已形成了许多与磁学有关的边缘学科。
磁现象是一种普遍现象即一切物质都具有磁性。
任何空间都存在磁场,所以我们可以毫不夸张地说磁学犹如一棵根深叶茂的参天大树。
尽管人们对物质磁性的认识已有两千多年,但直至19世纪20年代才出现采用经典电磁理论解释物质磁性的代表――安培分子环流假说,而真正符合实际的物质磁性理论却是在19世纪末发现电子、20世纪初有了正确的原子结构模型和建立了量子力学以后才出现。
因此在经典电磁学范围研究物质的磁性时,我们虽然采用传统的观念即安培分子环流假说和等效磁荷两种观点,但必须强调我们要在原子结构模型和量子力学的基础上建立一个正确的概念即物质的磁性来源于电子的轨道磁矩和自旋磁矩。
第十一章稳恒磁场磁场由运动电荷产生。
磁场与电场性质有对称性,学习中应注意对比.§11-1 基本磁现象磁性,磁力,磁现象;磁极,磁极指向性,N极,S极,同极相斥,异极相吸。
磁极不可分与磁单极。
一、电流的磁效应1819年,丹麦科学家奥斯特发现电流的磁效应;1820年,法国科学家安培发现磁场对电流的作用。
二、物质磁性的电本质磁性来自于运动电荷,磁场是电流的场。
注:1932年,英国物理学家狄拉克预言存在“磁单极”,至今科学家一直在努力寻找其存在的证据。
§11-2 磁场磁感强度一、磁场磁力通过磁场传递,磁场是又一个以场的形式存在的物质。
二、磁感强度磁感强度B 的定义:(1)规定小磁针在磁场中N 极的指向为该点磁感强度B 的方向。
若正电荷沿此方向运动,其所受磁力为零。
(2)正运动电荷沿与磁感强度B 垂直的方向运动时,其所受最大磁力F max 与电荷电量q 和运动速度大小v 的乘积的比值,规定为磁场中某点磁感强度的大小。
即:qvF B max=磁感强度B 是描写磁场性质的基本物理量。
若空间各点B 的大小和方向均相等,则该磁场为均匀磁场....;若空间各点B 的大小和方向均不随时间改变,称该磁场为稳恒磁场....。
磁感强度B 的单位:特斯拉(T)。
§11-3 毕奥-萨伐尔定律 一、毕-萨定律电流元: l Id电流在空间的磁场可看成是组成电流的所有电流元l Id 在空间产生元磁感强度的矢量和。
式中μ0:真空磁导率, μ0=4π×10-7NA 2 dB 的大小: 20sin 4rIdl dB θπμ=d B 的方向: d B 总是垂直于Id l 与r 组成的平面,并服从右手定则.一段有限长电流的磁场: ⎰⎰⨯==l l r r l Id B d B 304πμ二、应用1。
一段载流直导线的磁场 )cos (cos 42100θθπμ-=r IB 说明:(1)导线“无限长":002r I B πμ=(2)半“无限长”: 00004221r I r IB πμπμ==2.圆电流轴线上的磁场 磁偶极矩232220)(2x R R IB +=μ讨论:(1)圆心处的磁场:x = 0 RIB 20μ=;(2)半圆圆心处的磁场: RIR I B 422100μμ==(3)远场:x >>R ,引进新概念 磁偶极矩0n IS m =则: m xB 3012πμ=3.载流螺线管轴线上的磁场)cos (cos 2120ββμ-=nIB讨论:(1)“无限长”螺线管:nI B 0μ=(2)半“无限长”螺线管:nI B 021μ=例:求圆心处的B .§11-4 磁通量 磁场的高斯定理 一、磁感线作法类似电场线。
第六章 稳恒磁场思考题6-1 为什么不能把磁场作用于运动电荷的力的方向,定义为磁感强度的方向?答:对于给定的电流分布来说,它所激发的磁场分布是一定的,场中任一点的B 有确定的方向和确定的大小,与该点有无运动电荷通过无关。
而运动电荷在给定的磁场中某点 P 所受的磁力F ,无论就大小或方向而言,都与运动电荷有关。
当电荷以速度v 沿不同方向通过P 点时,v 的大小一般不等,方向一般说也要改变。
可见,如果用v 的方向来定义B 的方向,则B 的方向不确定,所以我们不能把作用于运动电荷的磁力方向定义为磁感应强度B 的方向。
6-2 从毕奥-萨伐尔定律能导出无限长直电流的磁场公式aIB πμ2=。
当考察点无限接近导线(0→a )时,则∞→B ,这是没有物理意义的,如何解释?答:毕奥-萨伐尔定律是关于部分电流(电流元)产生部分电场(dB )的公式,在考察点无限接近导线(0→a )时,电流元的假设不再成立了,所以也不能应用由毕奥-萨伐尔定律推导得到的无限长直电流的磁场公式aIB πμ2=。
6-3 试比较点电荷的电场强度公式与毕奥-萨伐尔定律的类似与差别。
根据这两个公式加上场叠加原理就能解决任意的静电场和磁场的空间分布。
从这里,你能否体会到物理学中解决某些问题的基本思想与方法?答:库仑场强公式0204dqr dE rπε=,毕奥一萨伐定律0024Idl r dB r μπ⨯= 类似之处:(1)都是元场源产生场的公式。
一个是电荷元(或点电荷)的场强公式,一个是电流元的磁感应强度的公式。
(2)dE 和dB 大小都是与场源到场点的距离平方成反比。
(3)都是计算E 和B 的基本公式,与场强叠加原理联合使用,原则上可以求解任意分布的电荷的静电场与任意形状的稳恒电流的磁场。
不同之处: (1)库仑场强公式是直接从实验总结出来的。
毕奥一萨伐尔定律是从概括闭合电流磁场的实验数据间接得到的。
(2)电荷元的电场强度dE 的方向与r 方向一致或相反,而电流元的磁感应强度dB 的方向既不是Idl 方向,也不是r 的方向,而是垂直于dl 与r 组成的平面,由右手螺旋法则确定。
带电粒子在匀强磁场中的运动(知识小结)一.带电粒子在磁场中的运动(1)带电粒子在磁场中运动时,若速度方向与磁感线平行,则粒子不受磁场力,做匀速直线运动;即 ① 为静止状态。
② 则粒子做匀速直线运动。
(2)若速度方向与磁感线垂直,带电粒子在匀强磁场中做匀速圆周运动,洛伦兹力起向心力作用。
(3)若速度方向与磁感线成任意角度,则带电粒子在与磁感线平行的方向上做匀速直线运动,在与磁感线垂直的方向上做匀速圆周运动,它们的合运动是螺线运动。
二、带电粒子在匀强磁场中的圆周运动1.运动分析:洛伦兹力提供向心力,使带电粒子在匀强磁场中做匀速圆周运动.(4)运动时间: (Θ 用弧度作单位 )1.只有垂直于磁感应强度方向进入匀强磁场的带电粒子,才能在磁场中做匀速圆周运动.2.带电粒子做匀速圆周运动的半径与带电粒子进入磁场时速率的大小有关,而周期与速率、半径都无关.三、带电粒子在有界匀强磁场中的匀速圆周运动(往往有临界和极值问题)(一)边界举例:1、直线边界(进出磁场有对称性)规律:如从同一直线边界射入的粒子,再从这一边射出时,速度与边界的夹角相等。
速度与边界的夹角等于圆弧所对圆心角的一半,并且如果把两个速度移到共点时,关于直线轴对称。
2、平行边界(往往有临界和极值问题)(在平行有界磁场里运动,轨迹与边界相切时,粒子恰好不射出边界)3、矩形边界磁场区域为正方形,从a 点沿ab 方向垂直射入匀强磁场:若从c 点射出,则圆心在d 处若从d 点射出,则圆心在ad 连线中点处4.圆形边界(从平面几何的角度看,是粒子轨迹圆与磁场边界圆的两圆相交问题。
)特殊情形:在圆形磁场内,沿径向射入时,必沿径向射出一般情形:磁场圆心O 和运动轨迹圆心O ′都在入射点和出射点连线AB 的中垂线上。
或者说两圆心连线OO ′与两个交点的连线AB 垂直。
(二)求解步骤:(1)定圆心、(2)连半径、(3)画轨迹、(4)作三角形.(5)据半径公式求半径,2.其特征方程为:F 洛=F 向. 3.三个基本公式: (1)向心力公式:qvB =m v 2R ; (2)半径公式:R =mv qB ; (3)周期和频率公式:T =2πm qB =1f ; 222m t qB m qB T θππθπθ==⨯=⨯v L =t再解三角形求其它量;或据三角形求半径,再据半径公式求其它量(6)求时间1、确定圆心的常用方法:(1)已知入射方向和出射方向(两点两方向)时,可以作通过入射点和出射点作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心,如图3-6-6甲所示,P 为入射点,M 为出射点,O 为轨道圆心.(2)已知入射方向和出射点的位置时(两点一方向),可以通过入射点作入射方向的垂线,连接入射点和出射点,作其中垂线,这两条垂线的交点就是圆弧轨道的圆心,如图3-6-6乙所示,P 为入射点,M 为出射点,O 为轨道圆心.(3)两条弦的中垂线(三点):如图3-6-7所示,带电粒子在匀强磁场中分别经过O 、A 、B 三点时,其圆心O ′在OA 、OB 的中垂线的交点上.(4)已知入射点、入射方向和圆周的一条切线:如图3-6-8所示,过入射点A 做v 垂线AO ,延长v 线与切线CD 交于C 点,做∠ACD 的角平分线交AO 于O 点,O 点即为圆心,求解临界问题常用到此法.(5)已知入射点,入射速度方向和半径大小2.求半径的常用方法 :由于已知条件的不同,求半径有两种方法:一是:利用向心力公式求半径;二是:利用平面几何知识求半径。
稳恒磁场小结1、磁感应强度 B 描写磁场大小和方向的物理量2、磁通量mΦ:穿过某一曲面的磁力线根数。
定义:θφcos ⋅⋅=⋅=⎰⎰⎰⎰S B S B d d ss m单位:韦伯, Wb nˆ NIS S NI P m == 3、磁矩m :描写线圈性质的物理量。
定义:单位:安培·米2方向:与电流满足右手定则。
一、基本概念n I二、磁感应强度B的计算20ˆ4rr l d I B d ⨯=πμ1)载流直导线的磁场aI B πμ20=)cos (cos 4210θθπμ-=aI B 无限长直导线的磁场1 利用毕萨定律求B PlId rθB1θIa P2θ二、磁感应强度B的计算20ˆ4rr l d I B d ⨯=πμ2)圆电流轴线上的磁场232220)(2x R R I B +=μ在圆弧电流圆心处:πθμ220R I B =在圆电流圆心处:RI B 20μ=1利用毕萨定律求B IB⊗θI⊗B l I d ROPxBiLI 1I 2I 3∑-=12I I Ii应用:分析磁场对称性;选定适当的安培环路。
各电流的正、负:I 与L呈右手螺旋时为正值;反之为负值。
⎰∑=⋅LIl d B 0μ2 利用安培环路定理计算磁场 B⎰∑=⋅LI l d B 0μ 1)、密绕长直螺线管内部nIB 0μ=rIN B πμ20=2) 螺绕环内部3)圆柱载流导体内部r < R 区域圆柱载流导体外一点r > R 区域r R IB 202πμ=rI B πμ20=4)圆柱面载流导体内部r < R 区域圆柱载流导体外一点r > R 区域I B μ0==B20 ˆ4rr v q B ⨯= πμ3 运动电荷的磁场Pqv+rθ大小 20 sin 4rv q B θπμ=三、两个重要定理1、磁场中的高斯定理0=⋅=Φ⎰⎰S m S d B2、磁场中的环路定理⎰∑=⋅LIl d B 0μ(1)磁场是“无源场”。
稳恒磁场小结稳恒磁场是指磁场的大小和方向都不随时间而变化的磁场。
在物理学中,磁场的产生是由电荷运动而引起的,因此稳恒磁场可以通过电流来产生。
在这篇文章中,我们将讨论稳恒磁场的性质、产生、应用及相关实验等内容。
稳恒磁场可以被表示为磁感应强度B,B的方向与磁力线相同。
磁力线是从磁北极流向磁南极的。
磁北极与磁南极的定义与地球上的地理北极和地理南极不同。
在磁力线中,磁感应强度越强,磁力线越密集。
在稳恒磁场中,磁场与电流有一个简单的关系。
电流与磁场的方向关系可以由安培定则来确定。
安培定则的核心思想是:当一条电流元素通过一点时,该电流元素造成的磁场再该点的贡献方向与电流元素方向的右手定则相同。
该定则可以通过实验验证。
另外,稳恒磁场还有一个重要的特性:在稳恒磁场中,不会存在单独的磁极。
总有一个磁极与之相对应。
这一特性被称为“磁偶极子”的性质。
稳恒磁场可以通过电流来产生。
当电荷经过导线时,它会产生磁场。
当电流在圆环上流动时,会产生一个垂直于圆环平面的磁场。
在物理学实验中,通常使用初始磁场为零的可调电阻来产生电流。
通常使用Hall电效应来测量电阻中电流的强度。
在Hall电效应中,将电阻放在强磁场中,当电流通过电阻时,电阻中的电子会受到洛伦兹力的影响,使得电阻中的电子发生偏转,最终在一个方向上聚积起来。
这个方向与电流方向垂直,并形成Hall电压。
由于稳恒磁场的特性,它在许多领域中都有应用。
在现代物理学中,稳恒磁场用于粒子加速器中的磁铁,可以帮助加速器中的粒子定向行进。
磁共振成像是另一个使用稳恒磁场的重要技术。
在磁共振成像中,磁场中的氢原子核可以被用于诊断人体内部的病变。
磁场中的氢原子核的性质是由磁场强度的大小和方向所决定的,因此磁共振成像需要一个非常稳定的磁场。
在物理学中,稳恒磁场还可以用来研究磁性材料和磁性现象。
通过使用稳恒磁场,可以测量磁材料的磁场和演示磁现象。
此外,稳恒磁场还可以用来研究交变磁场的行为,在许多相对论简化模型中,也常使用稳恒磁场。
亥姆霍兹线圈实验小结
亥姆霍兹线圈实验是一种常用的物理实验,用于研究磁场的产生和性质。
该实验主要通过利用两个平行的线圈,以特定的位置和方向相对放置,产生稳定均匀的磁场。
在实验中,我们首先测量了两个线圈的半径和匝数,确定了实验使用的具体参数。
然后,我们按照一定的距离和方向,将两个线圈放置在垂直于地面的支架上。
接下来,我们使用电流表测量了通过线圈的电流。
通过调节电流的大小,我们能够控制磁场的强度。
我们还使用磁感应计测量了磁场的强度,并记录了不同位置的磁场数值。
在实验过程中,我们发现当两个线圈的半径和匝数相同时,线圈间的磁场强度是最强的,可以达到最大值。
而当两个线圈的距离增大时,磁场的强度逐渐减小。
此外,我们还发现磁场的方向是由两个线圈共同决定的,当两个线圈的电流方向一致时,磁场方向也一致;当两个线圈的电流方向相反时,磁场方向相反。
通过这个实验,我们进一步了解了磁场的产生和性质。
我们发现,亥姆霍兹线圈能够产生稳定均匀的磁场,并且磁场的强度和距离有关,磁场的方向和电流方向有关。
我们还验证了安培定律,即通过线圈产生的磁场强度与电流成正比。
总的来说,亥姆霍兹线圈实验是一种简单而有效的方法,用于研究磁场的产生和性质。
通过这个实验,我们能够更深入地理解磁场的本质,对于学习电磁学和进行相关研究具有重要的意
义。
同时,通过实际操作和测量,我们也提高了实验技能和数据处理能力。
作业11.1、11.211.4、11.8、11.9、11.15、11.1787磁介质90顺磁质B B >(铝、氧、锰等)弱磁质B B >>铁磁质(铁、钴、镍等)强磁性物质B B <抗磁质(铜、铋、氢等)弱磁质抗磁质顺磁质SI SI B L宏观上构成沿介质表面的等效环形电流, 称为表面束缚电流或磁化电流。
B AI 0I cbad.l113五、磁场对载流导线和运动电荷的作用(1)磁场对载流导线的作用力—安培力微分形式积分形式B l I F ⨯=d d Bl I F l⨯=⎰d 其中,是载流导线上的电流元,是所在处的磁感应强度。
l Id l I d B(2)均匀磁场对平面载流线圈的作用合力=∑F 磁力矩B p M m ⨯=式中,是载流线圈的磁矩,,其中N 是线圈匝数,I 是线圈中的电流,S 是线圈的面积,且S 的方向与电流环绕方向满足右螺旋法则。
m p S NI p m=114(3)磁力的功⎰=m1m2m d ΦΦΦI A mm1m2)(ΦI ΦΦI ∆=-=磁力的功等于电流强度I 乘以通过回路磁通量的增量∆Φm 。
(4)磁场对运动电荷的作用Bq F⨯=v 洛仑兹力:116六、磁介质(1)磁介质的分类抗磁质1<r μ顺磁质1>r μ铁磁质1>>r μ(2)磁介质的磁化在外磁场中固有磁矩沿外磁场的取向或感应磁矩的产生使磁介质的表面(或内部)出现束缚电流。