异方差和自相关
- 格式:pptx
- 大小:804.47 KB
- 文档页数:46
自相关和异方差处理顺序引言自相关和异方差是时间序列分析中常见的两种问题,它们影响了模型的准确性和可靠性。
在进行时间序列建模时,需要处理这些问题,以确保模型的有效性。
本文将深入探讨自相关和异方差处理的顺序,并讨论不同处理顺序的影响。
什么是自相关和异方差自相关自相关是指时间序列中当前观测值与之前观测值之间的相关性。
它衡量的是时间序列中各个观测值之间的依赖关系。
自相关可以用自相关函数(ACF)图来表示,通过观察ACF图,可以判断时间序列是否存在自相关。
异方差异方差是指时间序列中方差不稳定的特征。
在时间序列中,方差可能随着时间的推移发生变化,这会导致模型的拟合不准确。
异方差可以用方差函数(VCF)图来表示,通过观察VCF图,可以判断时间序列是否存在异方差。
自相关和异方差处理的重要性自相关和异方差对时间序列建模的准确性和可靠性有重要影响,它们需要被处理以获得可靠的模型结果。
•自相关的存在会导致参数估计不准确,预测结果失真。
如果存在自相关,模型会无法捕捉到序列的真实动态,导致预测结果不准确。
•异方差使得模型的残差不符合正态分布,违背了建模的基本假设。
这会使得模型的显著性检验和置信区间估计不可靠,影响模型的有效性。
因此,为了获得可靠的模型结果,需要对自相关和异方差进行处理。
自相关和异方差处理顺序的影响自相关和异方差的处理顺序会对最终的模型结果产生影响。
不同的处理顺序可能导致不同的模型结构和参数估计。
先处理自相关后处理异方差如果先处理自相关再处理异方差,可能会导致如下影响:1.自相关处理可能会改变时间序列的动态特征。
当我们去除自相关时,可能会削弱序列中的一些重要信息,导致模型无法准确捕捉到序列的动态变化。
2.异方差处理可能会影响自相关的结构。
当我们对残差进行异方差处理时,可能会改变残差序列的结构,从而使得自相关的估计失真。
先处理异方差后处理自相关如果先处理异方差再处理自相关,可能会产生如下影响:1.异方差处理可能改变原始序列的动态特征。
七、 异方差与自相关一、背景我们讨论如果古典假定中的同方差和无自相关假定不能得到满足,会引起什么样的估计问题呢?另一方面,如何发现问题,也就是发现和检验异方差以及自相关的存在性也是一个重要的方面,这个部分就是就这个问题进行讨论。
二、知识要点1、引起异方差的原因及其对参数估计的影响2、异方差的检验(发现异方差)3、异方差问题的解决办法4、引起自相关的原因及其对参数估计的影响5、自相关的检验(发现自相关)6、自相关问题的解决办法 (时间序列部分讲解) 三、要点细纲1、引起异方差的原因及其对参数估计的影响原因:引起异方差的众多原因中,我们讨论两个主要的原因,一是模型的设定偏误,主要指的是遗漏变量的影响。
这样,遗漏的变量就进入了模型的残差项中。
当省略的变量与回归方程中的变量有相关关系的时候,不仅会引起内生性问题,还会引起异方差。
二是截面数据中总体各单位的差异。
后果:异方差对参数估计的影响主要是对参数估计有效性的影响。
在存在异方差的情况下,OLS 方法得到的参数估计仍然是无偏的,但是已经不具备最小方差性质。
一般而言,异方差会引起真实方差的低估,从而夸大参数估计的显著性,即是参数估计的t 统计量偏大,使得本应该被接受的原假设被错误的拒绝。
2、异方差的检验 (1)图示检验法由于异方差通常被认为是由于残差的大小随自变量的大小而变化,因此,可以通过散点图的方式来简单的判断是否存在异方差。
具体的做法是,以回归的残差的平方2i e 为纵坐标,回归式中的某个解释变量i x 为横坐标,画散点图。
如果散点图表现出一定的趋势,则可以判断存在异方差。
(2)Goldfeld-Quandt 检验Goldfeld-Quandt 检验又称为样本分段法、集团法,由Goldfeld 和Quandt 1965年提出。
这种检验的思想是以引起异方差的解释变量的大小为顺序,去掉中间若干个值,从而把整个样本分为两个子样本。
用两个子样本分别进行回归,并计算残差平方和。
异方差自相关稳健标准误异方差自相关稳健标准误(Heteroscedasticity Autocorrelation Robust Standard Errors,简称HAC标准误)是一种用于计量经济学和统计分析中处理异方差和自相关问题的方法。
在统计学中,方差齐性和误差项间的独立性是回归模型的两个重要假设,然而在实际数据分析中,这两个假设常常无法满足。
异方差和自相关问题可能导致参数估计的不准确和显著性检验结果的误导,因此需要使用适当的估计方法来解决这些问题。
HAC标准误通过在计算标准误时考虑样本中的异方差和自相关结构,从而得到更为准确的参数估计和显著性检验结果。
HAC标准误的计算方法通常分为两个步骤:需要估计异方差和自相关的结构;然后,在计算标准误时将这些结构考虑进去。
关于异方差的估计方法,最常用的是广义最小二乘法(GLS)和加权最小二乘法(WLS);关于自相关的估计方法,一般采用自相关的样本估计和自相关稳健的标准误。
得到异方差和自相关的估计后,可以通过计算异方差和自相关稳健的方差协方差矩阵,从而计算出HAC标准误。
HAC标准误可以通过多种方法进行计算,常用的方法有肯伯根-普·怀特(Newey-West)方法、Rogers方法和克伦贝克-均特(Kerning-Andrews)方法等。
肯伯根-普·怀特方法是最常用的方法之一,该方法通过对滞后自相关的样本估计进行加权,得到了一种异方差和自相关稳健的标准误估计。
Rogers方法是另一种常用的计算HAC标准误的方法,该方法用到了平方残差的自协方差。
克伦贝克-均特方法则是一种非参数方法,该方法通过估计异方差和自相关结构的权重,从而得到HAC标准误。
HAC标准误有许多优点。
HAC标准误可以有效地处理由异方差和自相关引起的参数估计的不准确性和显著性检验结果的误导。
HAC标准误可以在保持统计效率的提供稳健性,即在样本量较小的情况下也能得到准确的标准误估计。
异方差自相关豪斯曼检验异方差性(Heteroscedasticity)是指数据的方差不是常数,而是随着自变量的变化而变化。
当数据呈现异方差性时,固定效应模型可能会产生无偏但不一致的估计,而随机效应模型通常能够更好地处理异方差性。
因此,豪斯曼检验可以帮助确定在存在异方差性时应该选择哪种模型。
同时,时间序列数据中还可能存在自相关性(Autocorrelation),即误差项之间存在相关性。
如果数据中存在自相关性,那么OLS估计量可能不再是最佳线性无偏估计。
通过进行豪斯曼检验,可以确定在存在自相关性时是否需要使用修正的OLS估计方法。
要进行豪斯曼检验,首先需要建立两个模型:一个固定效应模型和一个随机效应模型。
然后通过计算两个模型的估计值的差异来进行检验。
在检验中,我们感兴趣的是这个差异是否由异方差性或自相关性引起的。
具体来说,豪斯曼检验的原假设是两个模型没有系统性的差异。
如果原假设被拒绝,说明两个模型之间存在显著差异,这可能是由于异方差性或自相关性导致的。
为了说明豪斯曼检验的方法和步骤,我们将考虑一个实际的研究示例。
假设我们对一个国家的 GDP 进行研究,我们想分析GDP 与劳动力投入之间的关系。
我们建立了一个固定效应模型和一个随机效应模型,用来估计 GDP 对劳动力投入的影响。
在固定效应模型中,我们假设不同国家之间的劳动力投入是不同的,即随着时间的推移,劳动力投入在各国之间也可能存在差异。
而在随机效应模型中,我们假设劳动力投入在各国之间是同质的,即不同的劳动力投入只是由于随机误差所致。
接下来,我们用豪斯曼检验来检验这两个模型之间的差异。
我们首先估计这两个模型,并计算它们之间的差异。
接着,我们对这些差异进行统计检验,以确定差异是否显著。
如果实证结果表明固定效应模型比随机效应模型更好,那么我们可以得出结论,数据中存在异方差性和自相关性。
在这种情况下,我们可能需要对模型进行修正,以更准确地描述数据。
总的来说,豪斯曼检验是一种在经济学和其他社会科学研究中经常使用的方法,用于检验两个模型之间的差异。
eviews异方差、自相关检验与解决办法一、异方差检验:1.相关图检验法LS Y C X 对模型进行参数估计GENR E=RESID 求出残差序列GENR E2=E^2 求出残差的平方序列SORT X 对解释变量X排序SCAT X E2 画出残差平方与解释变量X的相关图2.戈德菲尔德——匡特检验已知样本容量n=26,去掉中间6个样本点(即约n/4),形成两个样本容量均为10的子样本。
SORT X 将样本数据关于X排序SMPL 1 10 确定子样本1LS Y C X 求出子样本1的回归平方和RSS1SMPL 17 26 确定子样本2LS Y C X 求出子样本2的回归平方和RSS2计算F统计量并做出判断。
解决办法3.加权最小二乘法LS Y C X 最小二乘法估计,得到残差序列GRNR E1=ABS(RESID) 生成残差绝对值序列LS(W=1/E1) Y C X 以E1为权数进行加权最小二成估计二、自相关1.图示法检验LS Y C X 最小二乘法估计,得到残差序列GENR E=RESID 生成残差序列SCAT E(-1) E et—et-1的散点图PLOT E 还可绘制et的趋势图2.广义差分法LS Y C X AR(1) AR(2)首先,你要对广义差分法熟悉,不是了解,如果你是外行,我奉劝你还是用eviews来做就行了,其实我想老师要你用spss无非是想看你是否掌握广义差分,好了,废话不多说了。
接着,使用spss16来解决自相关。
第一步,输入变量,做线性回归,注意在Liner Regression 中的Statistics中勾上DW,在save中勾Standardized,查看结果,显然肯定是有自相关的(看dw值)。
第二步,做滞后一期的残差,直接COPY数据(别告诉我不会啊),然后将残差和滞后一期的残差做回归,记下它们之间的B指(就是斜率)。
第三步,再做滞后一期的X1和Y1,即自变量和因变量的滞后一期的值,也是直接COPY。
计量经济学作业一、异方差(1)Dependent Variable: YMethod: Least SquaresDate: 09/29/11 Time: 22:09Sample: 1 29Included observations: 29Variable Coefficient Std. Error t-Statistic Prob.C 58.31791 49.04935 1.188964 0.2448X 0.795570 0.018373 43.30193 0.0000R-squared 0.985805 Mean dependent var 2111.931 Adjusted R-squared 0.985279 S.D. dependent var 555.5470 S.E. of regression 67.40436 Akaike info criterion 11.32577 Sum squared resid 122670.4 Schwarz criterion 11.42006 Log likelihood -162.2236 F-statistic 1875.057 Durbin-Watson stat 1.893970 Prob(F-statistic) 0.000000(1)戈徳菲尔德—匡特检验:简单步骤如下:1、先排列2、分成两组1-11,19-29,做回归检验,得残差平方和3、得 F ,查表比较。
Dependent Variable: YMethod: Least SquaresDate: 09/29/11 Time: 19:38Sample: 1 11Included observations: 11Variable Coefficient Std. Error t-Statistic Prob.C 55.84840 60.15527 0.928404 0.3774X 0.802769 0.021586 37.18930 0.0000R-squared 0.993535 Mean dependent var 2203.182 Adjusted R-squared 0.992816 S.D. dependent var 660.2351 S.E. of regression 55.95928 Akaike info criterion 11.05009 Sum squared resid 28182.97 Schwarz criterion 11.12244 Log likelihood -58.77550 F-statistic 1383.044Durbin-Watson stat 1.657950 Prob(F-statistic) 0.000000第一组:Sum squared resid(残差平方和)=28182.97Dependent Variable: YMethod: Least SquaresDate: 09/29/11 Time: 19:39Sample: 19 29Included observations: 11Variable Coefficient Std. Error t-Statistic Prob.C 92.44615 96.01293 0.962851 0.3608X 0.782281 0.035369 22.11798 0.0000R-squared 0.981935 Mean dependent var 2141.455Adjusted R-squared 0.979928 S.D. dependent var 590.5276S.E. of regression 83.66352 Akaike info criterion 11.85445Sum squared resid 62996.26 Schwarz criterion 11.92679Log likelihood -63.19947 F-statistic 489.2051Durbin-Watson stat 1.770865 Prob(F-statistic) 0.000000第二组:Sum squared resid(残差平方和)=62996.26F=62996.26/28182.97=2.23526,给定显著性水平a=0.05查F分布临界值表可得临界值F0.05(11,11)=2.85,所以统计量F< F0.05(11,11),支出模型不存在异方差。