离散数学习题集十五套 答案
- 格式:doc
- 大小:1.48 MB
- 文档页数:78
离散数学试题及答案一、选择题1. 在集合论中,下列哪个选项表示两个集合A和B的并集?A. A ∩ BB. A ∪ BC. A - BD. A × B答案:B2. 命题逻辑中,下列哪个符号表示逻辑非?A. ∧B. ∨C. ¬D. →答案:C3. 在有向图中,如果存在一条从顶点u到顶点v的路径,那么称顶点v为顶点u的:A. 祖先B. 后代C. 邻居D. 连接点答案:B二、填空题1. 一个命题函数P(x)表示为“x是偶数”,那么其否定形式为________。
答案:x是奇数2. 在关系R上,如果对于所有的a和b,如果(a, b)∈R且(b, a)∈R,则称R为________。
答案:自反的三、简答题1. 简述什么是等价关系,并给出其三个基本性质。
答案:等价关系是一种特殊的二元关系,它满足自反性、对称性和传递性。
自反性指每个元素都与自身相关;对称性指如果a与b相关,则b也与a相关;传递性指如果a与b相关,b与c相关,则a与c也相关。
2. 解释什么是图的连通分量,并给出如何判断一个图是否是连通图。
答案:连通分量是指图中最大的连通子图,即图中任意两个顶点之间都存在路径。
判断一个图是否是连通图,可以通过深度优先搜索或广度优先搜索算法遍历整个图,如果所有顶点都被访问,则图是连通的。
四、计算题1. 给定命题公式P:((p → q) ∧ (r → ¬p)) → (q ∨ ¬r),证明P是一个重言式。
答案:通过使用命题逻辑的等价规则和真值表,可以证明P在所有可能的p, q, r的真值组合下都为真,因此P是一个重言式。
2. 给定一个有向图G,顶点集合V(G)={1, 2, 3, 4},边集合E(G)={(1, 2), (2, 3), (3, 4), (4, 1), (2, 4)}。
找出所有强连通分量。
答案:通过Kosaraju算法或Tarjan算法,可以找到图G的强连通分量,结果为{1, 4}和{2, 3}。
《离散数学》试题及答案一、选择题(每题5分,共25分)1. 设集合A={1,2,3,4,5},B={2,4,6,8,10},则A∩B的结果是()A. {1,2,3,4,5}B. {2,4}C. {1,3,5}D. {1,2,3,4,5,6,8,10}答案:B2. 下列关系中,哪个是等价关系?()A. ≤B. ≠C. |D. ≠答案:A3. 设图G有5个顶点,每两个顶点之间都有一条边相连,则图G的边数是()A. 5B. 10C. 15D. 20答案:C4. 下列哪一个图是欧拉图?()A. 无向图B. 有向图C. 树D. 环答案:D5. 下列哪一个命题是正确的?()A. 若p→q为真,则p为真B. 若p∧q为假,则p为假C. 若p∨q为真,则q为真D. 若p→q为假,则p为假答案:B二、填空题(每题5分,共25分)1. 设集合A={a,b,c,d},B={c,d,e},则A-B=________。
答案:{a,b}2. 设p是命题“今天是晴天”,q是命题“我去公园玩”,则命题“如果今天不是晴天,那么我不去公园玩”可以表示为________。
答案:¬p→¬q3. 设图G有n个顶点,e条边,则图G的度数之和为________。
答案:2e4. 一个连通图至少有________个顶点。
答案:25. 设图G的邻接矩阵为A,则A的转置矩阵表示________。
答案:图G的转置图三、判断题(每题5分,共25分)1. 离散数学是研究离散结构的数学分支。
()答案:正确2. 两个集合的笛卡尔积是这两个集合的直积。
()答案:正确3. 有向图中,顶点u和顶点v之间的长度为2的路径是指路径上有3条边。
()答案:错误4. 树是一种无向图。
()答案:正确5. 哈夫曼编码是一种贪心算法。
()答案:正确四、应用题(每题25分,共50分)1. 设集合A={1,2,3,4,5},B={2,4,6,8,10},C={3,6,9,12,15},求A∪(B∩C)。
习题参考解答习题1.11、(3)P:银行利率降低Q:股价没有上升P∧Q(5)P:他今天乘火车去了北京Q:他随旅行团去了九寨沟PQ(7)P:不识庐山真面目Q:身在此山中Q→P,或~P→~Q(9)P:一个整数能被6整除Q:一个整数能被3整除R:一个整数能被2整除T:一个整数的各位数字之和能被3整除P→Q∧R ,Q→T2、(1)T (2)F (3)F (4)T (5)F(6)T (7)F (8)悖论习题 1.31(3))()()()()()(R P Q P R P Q P R Q P R Q P →∨→⇔∨⌝∨∨⌝⇔∨∨⌝⇔∨→(4)()()()(())()(()())(())()()()()P Q Q R R P P R Q R P P R R P Q R P P R P R Q R Q P ∧∨∧∨∧=∨∧∨∧=∨∨∧∧∨∧=∨∧∨∧∨∧∨=右2、不, 不, 能习题 1.41(3) (())~((~))(~)()~(~(~))(~~)(~)P R Q P P R Q P P R T P R P R Q Q P R Q P R Q →∧→=∨∧∨=∨∧=∨=∨∨∧=∨∨∧∨∨、主合取范式)()()()()()()()()()()()()()())(())(()()(())()())(()((Q P R P Q R P Q R R Q P R Q P R Q P Q P R Q P R P Q R P Q R R Q P R Q P R Q P R Q P Q Q P R P P Q R R R Q Q P P R Q R P P Q R P P Q R P ∧∧∨∧⌝∧∨⌝∧⌝∧∨∧⌝∧⌝∨⌝∧∧⌝∨⌝∧⌝∧⌝=∧∧∨⌝∧∧∨∧⌝∧∨⌝∧⌝∧∨∧⌝∧⌝∨∧⌝∧⌝∨⌝∧∧⌝∨⌝∧⌝∧⌝=∨⌝∧∧∨∨⌝∧⌝∧∨∨⌝∧∨⌝∧⌝=∧∨⌝∧∨⌝=∨⌝∧∨⌝=→∧→ ————主析取范式(2) ()()(~)(~)(~(~))(~(~))(~~)(~)(~~)P Q P R P Q P R P Q R R P R Q Q P Q R P Q R P R Q →∧→=∨∧∨=∨∨∧∧∨∨∧=∨∨∧∨∨∧∨∨ 2、()~()(~)(~)(~~)(~)(~~)P Q R P Q R P Q P R P Q R P Q R P R Q →∧=∨∧=∨∧∧=∨∨∧∨∨∧∨∨∴等价3、解:根据给定的条件有下述命题公式:(A →(C ∇D ))∧~(B ∧C )∧~(C ∧D )⇔(~A ∨(C ∧~D )∨(~C ∧D ))∧(~B ∨~C )∧(~C ∨~D )⇔((~A ∧~B )∨(C ∧~D ∧~B )∨(~C ∧D ∧~B )∨(~A ∧~C )∨(C ∧~D ∧~C )∨(~C ∧D ∧~C ))∧(~C ∨~D )⇔((~A ∧~B )∨(C ∧~D ∧~B )∨(~C ∧D ∧~B )∨(~A ∧~C )∨(~C ∧D ∧~C )) ∧(~C ∨~D )⇔(~A ∧~B ∧~C )∨(C ∧~D ∧~B ∧~C )∨(~C ∧D ∧~B ∧~C )∨ (~A ∧~C ∧~C )∨(~C ∧D ∧~C ∧~C )∨(~A ∧~B ∧~D )∨(C ∧~D ∧~B ∧~D )∨(~C ∧D ∧~B ∧~D )∨(~A ∧~C ∧~D )∨ (~C ∧D ∧~C ∧~D )(由题意和矛盾律)⇔(~C ∧D ∧~B )∨(~A ∧~C )∨(~C ∧D )∨(C ∧~D ∧~B )⇔(~C ∧D ∧~B ∧A )∨ (~C ∧D ∧~B ∧~A )∨ (~A ∧~C ∧B )∨ (~A ∧~C ∧~B )∨ (~C ∧D ∧A )∨ (~C ∧D ∧~A )∨(C ∧~D ∧~B ∧A )∨(C ∧~D ∧~B ∧~A )⇔(~C ∧D ∧~B ∧A )∨ (~A ∧~C ∧B ∧D )∨ (~A ∧~C ∧B ∧~D )∨(~A ∧~C ∧~B ∧D )∨ (~A ∧~C ∧~B ∧~D )∨(~C ∧D ∧A ∧B )∨ (~C ∧D ∧A ∧~B )∨ (~C ∧D ∧~A ∧B )∨ (~C ∧D ∧~A ∧~B )∨(C ∧~D ∧~B ∧A )∨(C ∧~D ∧~B ∧~A ) ⇔(~C ∧D ∧~B ∧A )∨ (~A ∧~C ∧B ∧D )∨ (~C ∧D ∧A ∧~B )∨ (~C ∧D ∧~A ∧B ) ∨(C ∧~D ∧~B ∧A )⇔(~C ∧D ∧~B ∧A )∨ (~A ∧~C ∧B ∧D )∨(C ∧~D ∧~B ∧A ) 三种方案:A 和D 、 B 和D 、 A 和C习题 1.51、 (1)需证()(())P Q P P Q →→→∧为永真式()(())~(~)(~())~~(~)(()(~))~(~)(~)()P Q P P Q P Q P P Q P P P Q P Q TP Q P Q T P Q P P Q →→→∧=∨∨∨∧∨=∨∨∧∨=∨∨∨=∴→⇒→∧(3)需证S R P P →∧⌝∧为永真式SR P P T S F S R F S R P P ⇒∧⌝∧∴⇔→⇔→∧⇔→∧⌝∧3A B A B ⇒∴→ 、为永真式。
离散数学习题答案习题一1. 判断下列句子是否为命题?若是命题说明是真命题还是假命题。
(1)3是正数吗?(2)x+1=0。
(3)请穿上外衣。
(4)2+1=0。
(5)任一个实数的平方都是正实数。
(6)不存在最大素数。
(7)明天我去看电影。
(8)9+5≤12。
(9)实践出真知。
(10)如果我掌握了英语、法语,那么学习其他欧洲语言就容易多了。
解:(1)、(2)、(3)不是命题。
(4)、(8)是假命题。
(5)、(6)、(9)、(10)是真命题。
(7)是命题,只是现在无法确定真值。
2. 设P表示命题“天下雪”,Q表示命题“我将去书店”,R表示命题“我有时间”,以符号形式写出下列命题。
(1)如果天不下雪并且我有时间,那么我将去书店。
(2)我将去书店,仅当我有时间。
(3)天不下雪。
(4)天下雪,我将不去书店。
解:(1)(┐P∧R)→Q。
(2)Q→R。
(3)┐P。
(4)P→┐Q。
3. 将下列命题符号化。
(1)王皓球打得好,歌也唱得好。
(2)我一边看书,一边听音乐。
(3)老张和老李都是球迷。
(4)只要努力学习,成绩会好的。
(5)只有休息好,才能工作好。
(6)如果a和b是偶数,那么a+b也是偶数。
(7)我们不能既游泳又跑步。
(8)我反悔,仅当太阳从西边出来。
(9)如果f(x)在点x0处可导,则f(x)在点x0处可微。
反之亦然。
(10)如果张老师和李老师都不讲这门课,那么王老师就讲这门课。
(11)四边形ABCD是平行四边形,当且仅当ABCD的对边平行。
(12)或者你没有给我写信,或者信在途中丢失了。
解:(1)P:王皓球打得好,Q:王皓歌唱得好。
原命题可符号化:P∧Q。
(2)P:我看书,Q:我听音乐。
原命题可符号化:P∧Q。
(3)P:老张是球迷,Q:老李是球迷。
原命题可符号化:P∧Q。
(4)P:努力学习,Q:成绩会好。
原命题可符号化:P→Q。
(5)P:休息好,Q:工作好。
原命题可符号化:Q→P。
(6)P:a是偶数,Q:b是偶数,R:a+b是偶数。
精品文档离散数学习题答案习题一及答案:( P14-15 )14、将下列命题符号化:( 5)李辛与李末是兄弟解:设 p:李辛与李末是兄弟,则命题符号化的结果是p( 6)王强与刘威都学过法语解:设 p:王强学过法语; q:刘威学过法语;则命题符号化的结果是p q ( 9)只有天下大雨,他才乘班车上班解:设 p:天下大雨; q:他乘班车上班;则命题符号化的结果是q p( 11)下雪路滑,他迟到了解:设 p:下雪; q:路滑; r :他迟到了;则命题符号化的结果是( p q)r15、设 p: 2+3=5.q:大熊猫产在中国 .r:太阳从西方升起 .求下列复合命题的真值:( 4)(p q r )(( p q)r )解: p=1, q=1,r=0 ,(p q r )(110)1,((p q)r )((11)0)(00)1(p q r )(( p q)r ) 1 1119、用真值表判断下列公式的类型:( 2)( p p)q解:列出公式的真值表,如下所示:p q p qp) ( p p)q( p001111011010100101110001由真值表可以看出公式有 3 个成真赋值,故公式是非重言式的可满足式。
20、求下列公式的成真赋值:精品文档( 4)( p q)q解:因为该公式是一个蕴含式,所以首先分析它的成假赋值,成假赋值的条件是:( p q)1p0q0q0所以公式的成真赋值有: 01,10, 11。
习题二及答案:( P38)5、求下列公式的主析取范式,并求成真赋值:( 2)(p q) (q r )解:原式( p q) q r q r( p p) q r( p q r ) ( p q r )m3m7,此即公式的主析取范式,所以成真赋值为011, 111。
6、求下列公式的主合取范式,并求成假赋值:( 2)( p q) ( p r )解:原式( pp r ) ( p q r )( p q r )M 4,此即公式的主合取范式,所以成假赋值为 100。
离散考试题与答案一、选择题1. 下列哪个不是离散数学的基本概念?A. 集合B. 二进制C. 图论D. 函数答案:C2. 设A = {1, 2, 3, 4},B = {3, 4, 5, 6},则A ∩ B = ?A. {1, 2}B. {3, 4}C. {5, 6}D. {3, 4, 5, 6}答案:B3. 在一个完全图中,有多少条边?A. nB. n(n-1)/2C. n(n+1)/2D. 2n答案:B4. 若f(x) = x^2 + 3x,则f(-2)的值为?A. -4B. -2C. 0D. 2答案:C5. 若A = {a, b, c},B = {b, c, d},则A - B = ?A. {a, b, c}B. {b, c, d}C. {a, d}D. {}答案:A二、填空题1. 设f(x) = x^2 + 5,求f(-3)的值。
答案:162. 设A = {1, 2, 3},B = {3, 4, 5},则A ∪ B = ?答案:{1, 2, 3, 4, 5}3. 在一个有向图中,若存在一条从顶点A到顶点B的路径,并且从B到A也存在一条路径,则该图称为_____图。
答案:强连通图4. 二进制数11111111转换为十进制的结果为______。
答案:2555. 若给定集合A = {1, 2, 3, 4},则集合A的所有子集的个数为______。
答案:16三、简答题1. 解释集合的并、交和差的运算。
答案:集合的并运算指的是将两个集合中的所有元素合并成一个新的集合,新集合中的元素包括原来两个集合中的所有元素,但不重复。
集合的交运算指的是求出两个集合中共有的元素,构成一个新的集合。
集合的差运算指的是在一个集合中去除另一个集合中的元素,得到一个新的集合。
2. 什么是图论?答案:图论是研究图及其在各个领域中的应用问题的一门学科。
图由若干个顶点及连接这些顶点的边构成,图论主要研究图的性质、结构和算法问题。
3. 什么是函数?答案:函数是一种将每个输入值唯一对应到输出值的关系。
1、设A ={1,{2},4,5},B ={2,{5}},则A - B ={1,{2},4,5},A ⊕B ={1,{2},4,5,2,{5}}.2、n K 是n 阶无向完全图,则n K 有 n*(n-1)/2 条边.3、一棵树有2个6度点、3个4度点、3个2度点,其它的都是1度,则T 中有___18___片树叶.4、图G 如右图所示,点割集有{d}、{a}边割集_{(a,d)}、 {(f,e) (f,d)}.波兰符号法表达式=**+*+÷211242311.设个体域{}1,2D =,与公式()xA x ∃等价的命题公式是()()12A A ∨5、计算命题公式()q p r →→⌝的主析取范式、成真赋值、成假赋值。
()()02346q p rp q rm m m m m ⇔⌝⌝∨∨⌝⇔⌝∧∨⌝⇔∨∨∨∨成真赋值:000, 010,011,100, 110成假赋值:001, 101,111. 6计算命题公式()()p q r q ∨→⌝→的主析取范式、成真赋值、成假赋值。
()()()0123467p q r q p q q rm m m m m m m ⇔⌝∨∨∨⇔⌝∧⌝∨∨⇔∨∨∨∨∨∨成真赋值:000, 001 ,010,011,101, 110, 111成假赋值:100 7. 画出下图G 的最小生成树,并计算其权值。
图不惟一(略),权为19即是正确答案 W(T)=19图不惟一(略),权为13即为正确答案W(T)=138. 点着色学生会下设6个委员会, 第一委员会={张, 李, 王}, 第二委员会={李, 赵, 刘}, 第三委员会={张, 刘, 王}, 第四委员会={赵,刘, 孙}, 第五委员会={张, 王}, 第六委员会={李, 刘, 王}. 每个月每个委员会都要开一次会, 为了确保每个人都能参加他所在的委员会会议, 这6个会议至少要安排在几个不同时间段?解:(点着色问题)至少要安排在4个不同的时间段第1时段:一,四第2时段:二,五第3时段:三第4时段:六9、计算机系期末安排6门选修课程的考试,课程编号为1到6。
离散数学试题与答案试卷一一、填空20% (每小题2分)1.设}7|{)},5()(|{<∈=<∈=+xExxBxNxxA且且(N:自然数集,E+正偶数)则=⋃BA{0,1,2,3,4,6} 。
2.A,B,C表示三个集合,文图中阴影部分的集合表达式为ACB-⊕)(。
3.设P,Q 的真值为0,R,S的真值为1,则)()))(((SRPRQP⌝∨→⌝∧→∨⌝的真值= 1 。
4.公式PRSRP⌝∨∧∨∧)()(的主合取范式为)()(RSPRSP∨⌝∨⌝∧∨∨⌝。
5.若解释I的论域D仅包含一个元素,则)()(xxPxxP∀→∃在I下真值为1 。
6.设A={1,2,3,4},A上关系图为则R2 = {<>,<a,c>,<a,d>,<b,d>,<c,d> 。
7.设A={a,b,c,d},其上偏序关系R的哈斯图为则R= {<>,<a,c>,<a,d>,<b,d>,<c,d>}IA。
8.图的补图为9.设A={a,b,c,d} ,A上二元运算如下:* a b c dabcda b c db c d ac d a bd a b c那么代数系统<A,*>的幺元是 a ,有逆元的元素为a , b , c ,d,它们的逆元分别为 a , d , c , d 。
10.下图所示的偏序集中,是格的为 c 。
二、选择20% (每小题2分)1、下列是真命题的有(CD)A.}}{{}{aa⊆;B.}}{,{}}{{ΦΦ∈Φ;C.}},{{ΦΦ∈Φ;D.}}{{}{Φ∈Φ。
2、下列集合中相等的有(BC )A.{4,3}Φ⋃;B.{Φ,3,4};C.{4,Φ,3,3};D.{3,4}。
3、设A={1,2,3},则A上的二元关系有( C )个。
A.23 ;B.32 ;C.332⨯;D.223⨯。
4、设R,S是集合A上的关系,则下列说法正确的是(A )A.若R,S 是自反的,则SR 是自反的;A BCB .若R ,S 是反自反的, 则S R 是反自反的;C .若R ,S 是对称的, 则S R 是对称的;D .若R ,S 是传递的, 则S R 是传递的。
《离散数学》题库与答案一、选择或填空(数理逻辑部分)1、下列哪些公式为永真蕴含式( )(1)⌝Q=>Q→P (2)⌝Q=>P→Q (3)P=>P→Q (4)⌝P∧(P∨Q)=>⌝P答:在第三章里面有公式(1)是附加律,(4)可以由第二章的蕴含等值式求出(注意与吸收律区别)2、下列公式中哪些是永真式( )(1)(┐P∧Q)→(Q→⌝R) (2)P→(Q→Q) (3)(P∧Q)→P (4)P→(P∨Q)答:(2),(3),(4)可用蕴含等值式证明3、设有下列公式,请问哪几个是永真蕴涵式( )(1)P=>P∧Q (2) P∧Q=>P (3) P∧Q=>P∨Q(4)P∧(P→Q)=>Q (5) ⌝(P→Q)=>P (6) ⌝P∧(P∨Q)=>⌝P答:(2)是第三章的化简律,(3)类似附加律,(4)是假言推理,(3),(5),(6)都可以用蕴含等值式来证明出是永真蕴含式4、公式x((A(x)B(y,x))z C(y,z))D(x)中,自由变元是( ),约束变元是( )。
答:x,y, x,z(考察定义在公式x A和x A中,称x为指导变元,A为量词的辖域。
在x A和x A的辖域中,x的所有出现都称为约束出现,即称x 为约束变元,A中不是约束出现的其他变项则称为自由变元。
于是A(x)、B(y,x)和z C(y,z)中y为自由变元,x和z为约束变元,在D(x)中x 为自由变元)5、判断下列语句是不是命题。
若是,给出命题的真值。
( )(1)北京是中华人民共和国的首都。
(2) 陕西师大是一座工厂。
(3) 你喜欢唱歌吗 (4) 若7+8>18,则三角形有4条边。
(5) 前进! (6) 给我一杯水吧!答:(1)是,T (2)是,F (3)不是(4)是,T (5)不是(6)不是(命题必须满足是陈述句,不能是疑问句或者祈使句。
)6、命题“存在一些人是大学生”的否定是( ),而命题“所有的人都是要死的”的否定是( )。
《离散数学》练习题和参考答案《离散数学》练习题和参考答案一、选择或填空(数理逻辑部分)1、下列哪些公式为永真蕴含式?( )(1)⌝Q=>Q→P (2)⌝Q=>P→Q (3)P=>P→Q (4)⌝P∧(P∨Q)=>⌝P 答:(1),(4)2、下列公式中哪些是永真式?( )(1)(┐P∧Q)→(Q→⌝R) (2)P→(Q→Q) (3)(P∧Q)→P (4)P→(P∨Q) 答:(2),(3),(4)3、设有下列公式,请问哪几个是永真蕴涵式?( ) (1)P=>P∧Q (2) P∧Q=>P (3) P∧Q=>P∨Q(4)P∧(P→Q)=>Q (5) ⌝(P→Q)=>P (6) ⌝P∧(P∨Q)=>⌝P 答:(2),(3),(4),(5),(6)4、公式∀x((A(x)→B(y,x))∧∃z C(y,z))→D(x)中,自由变元是( ),约束变元是( )。
答:x,y, x,z5、判断下列语句是不是命题。
若是,给出命题的真值。
( )北京是中华人民共和国的首都。
(2) 陕西师大是一座工厂。
(3) 你喜欢唱歌吗? (4) 若7+8>18,则三角形有4条边。
(5) 前进! (6) 给我一杯水吧!答:(1)是,T (2)是,F (3)不是(4)是,T (5)不是(6)不是6、命题“存在一些人是大学生”的否定是( ),而命题“所有的人都是要死的”的否定是( )。
答:所有人都不是大学生,有些人不会死7、设P:我生病,Q:我去学校,则下列命题可符号化为( )。
(1) 只有在生病时,我才不去学校 (2) 若我生病,则我不去学校(3) 当且仅当我生病时,我才不去学校(4) 若我不生病,则我一定去学校答:(1)P↔(4)QP→⌝P⌝⌝(2)QQ→P⌝→(3)Q8、设个体域为整数集,则下列公式的意义是( )。
(1) ∀x∃y(x+y=0) (2) ∃y∀x(x+y=0)答:(1)对任一整数x存在整数 y满足x+y=0(2)存在整数y 对任一整数x满足x+y=09、设全体域D是正整数集合,确定下列命题的真值:(1) ∀x∃y (xy=y) ( ) (2) ∃x∀y(x+y=y) ( ) (3) ∃x∀y(x+y=x) ( ) (4) ∀x∃y(y=2x) ( )答:(1) F (2) F (3)F (4)T10、设谓词P(x):x是奇数,Q(x):x是偶数,谓词公式∃x(P(x)∨Q(x))在哪个个体域中为真?( )(1) 自然数(2) 实数 (3) 复数(4) (1)--(3)均成立答:(1)11、命题“2是偶数或-3是负数”的否定是()。
《离散数学》试题及标准答案解析⼀、填空题1设集合A,B,其中A={1,2,3}, B= {1,2}, 则A - B=____________________; ρ(A) - ρ(B)= __________________________ .2. 设有限集合A, |A| = n, 则 |ρ(A×A)| = __________________________.3.设集合A = {a, b}, B = {1, 2}, 则从A到B的所有映射是__________________________ _____________, 其中双射的是__________________________.4. 已知命题公式G=?(P→Q)∧R,则G的主析取范式是_________________________________________________________________________________________.6设A、B为两个集合, A= {1,2,4}, B = {3,4}, 则从A?B=_________________________; A?B=_________________________;A-B= _____________________ .7. 设R是集合A上的等价关系,则R所具有的关系的三个特性是______________________, ________________________, _______________________________.8. 设命题公式G=?(P→(Q∧R)),则使公式G为真的解释有__________________________,_____________________________, __________________________.9. 设集合A={1,2,3,4}, A上的关系R1= {(1,4),(2,3),(3,2)}, R2= {(2,1),(3,2),(4,3)}, 则R1?R2 = ________________________,R2? R1 =____________________________, R12 =________________________.10. 设有限集A, B,|A| = m, |B| = n, 则| |ρ(A?B)| = _____________________________. 11设A,B,R是三个集合,其中R是实数集,A = {x | -1≤x≤1, x∈R}, B = {x | 0≤x < 2, x∈R},则A-B = __________________________ , B-A =__________________________ , A∩B = __________________________ , .13.设集合A={2, 3, 4, 5, 6},R是A上的整除,则R以集合形式(列举法)记为__________________________________________________________________.14. 设⼀阶逻辑公式G = ?xP(x)→?xQ(x),则G的前束范式是__________________________ _____.16. 设谓词的定义域为{a, b},将表达式?xR(x)→?xS(x)中量词消除,写成与之对应的命题公式是__________________________________________________________________________.17. 设集合A={1, 2, 3, 4},A上的⼆元关系R={(1,1),(1,2),(2,3)}, S={(1,3),(2,3),(3,2)}。
离散数学试题与答案试卷一3、设A={1,2,3},则A 上的二元关系有( c )个。
A . 23 ;B . 32 ;C . 332⨯; D . 223⨯。
5、设A={1,2,3,4},P (A )(A 的幂集)上规定二元系如下|}||(|)(,|,{t s A p t s t s R =∧∈><=则P (A )/ R=( d )A .A ;B .P(A) ;C .{{{1}},{{1,2}},{{1,2,3}},{{1,2,3,4}}};D .{{Φ},{2},{2,3},{{2,3,4}},{A}}试卷二试题与答案1、 设S={a 1 ,a 2 ,…,a 8},B i 是S 的子集,则由B 31所表达的子集是 6、设 ,+ 为普通加法和乘法,则( a )>+< ,,S 是域。
A .},,3|{Q b a b a x x S ∈+== B .},,2|{Z b a n x x S ∈==C .},12|{Z n n x x S ∈+== D .}0|{≥∧∈=x Z x x S = N 。
1、 设R 是A 上一个二元关系,)},,,(),(|,{R b c R c a A c A b a b a S >∈<>∈<∈∧∈><=且有对于某一个试证明若R 是A 上一个等价关系,则S 也是A 上的一个等价关系。
(9分)一、 证明 46%1、(9分)(1) S 自反的A a ∈∀,由R 自反,),(),(R a a R a a >∈<∧>∈<∴,S a a >∈∴<,(2) S 对称的传递对称定义R Sa b R R b c R c a S R b c R c a S b a Ab a >∈⇒<>∈<∧>∈<⇒>∈<∧>∈<⇒>∈<∈∀,),(),(),(),(,,(3) S 传递的定义传递S Sc a R R c b R b a R c e R e b R bd R d a Sc b S b a Ac b a >∈⇒<>∈<∧>∈<⇒>∈<∧>∈<∧>∈<∧>∈<⇒>∈<∧>∈<∈∀,),(),(),(),(),(),(,,,,由(1)、(2)、(3)得;S 是等价关系。
《失散数学》题库与答案一、选择或填空(数理逻辑部分)1、以下哪些公式为永真包含式?( )(1) Q=>Q→P(2)Q=>P→Q(3)P=>P→Q(4)P (P Q)=> P答:在第三章里面有公式(1)是附带律,(4)能够由第二章的包含等值式求出(注意与汲取律差别)2、以下公式中哪些是永真式? ( )(1)(┐PQ)→(Q→R)(2)P→(Q→Q)(3)(P Q)→P(4)P →(P Q)答:(2),(3),(4)可用包含等值式证明3、设有以下公式,请问哪几个是永真蕴涵式 ?( )(1)P=>P Q(2)P Q=>P(3)P Q=>PQ(4)P (P→Q)=>Q(5)(P→Q)=>P(6)P(P Q)=> P答:(2)是第三章的化简律,(3)近似附带律,(4)是假言推理,(3),(5),(6)都可以用包含等值式来证明出是永真包含式4、公式 x((A(x) B(y,x)) zC(y,z)) D(x)中,自由变元是( ) ,拘束变元是() 。
答:x,y, x,z (观察定义在公式xA和xA中,称x为指导变元,A为量词的辖域。
在xA和xA的辖域中,x的全部出现都称为拘束出现,即称x为拘束变元,A中不是拘束出现的其余变项则称为自由变元。
于是A(x)、B(y,和zC(y,z)中y为自由变元,x和z为拘束变元,在D(x)中x为自由变元)5、判断以下语句能否是命题。
假如,给出命题的真值。
( )(1)北京是中华人民共和国的国都。
(2)陕西师大是一座工厂。
(3)你喜爱唱歌吗?(4)若7+8>18,则三角形有4条边。
(5)行进!(6)给我一杯水吧!1答:(1)是,T (2)是,F (3)不是(4)是,T (5)不是(6)不是(命必足是述句,不可以是疑句或许祈使句。
)6、命题“存在一些人是大学生”的否认是( ) ,而命题“全部的人都是要死的”的否认是( ) 。
可编辑修改精选全文完整版离散数学习题答案习题一:P121.判断下列句子哪些是命题?在是命题的句子中,哪些是简单命题?哪些是真命题?哪些命题的真值现在还不知道?(1)中国有四大发明。
(2)5是无理数。
(3)3是素数或4是素数。
(4)x2+3<5,其中x是任意实数。
(5)你去图书馆吗?(6)2与3都是偶数。
(7)刘红与魏新是同学。
(8)这朵玫瑰花多美丽呀!(9)吸烟请到吸烟室去!(10)圆的面积等于半径的平方乘π。
(11)只有6是偶数,3才能是2的倍数。
(12)8是偶数的充分必要条件是8能被3整除。
(13)2025年元旦下大雪。
1、2、3、6、7、10、11、12、13是命题。
在上面的命题中,1、2、7、10、13是简单命题;1、2、10是真命题;7的真值现在还不知道。
2.将上题中是简单命题的命题符号化。
(1)p:中国有四大发明。
(2)q:5是无理数。
(7)r:刘红与魏新是同学。
(10)s:圆的面积等于半径的平方乘π。
(1)t:2025年元旦下大雪。
3.写出下列各命题的否定式,并将原命题及其否定式都符号化,最后指出各否定式的真值。
“5是有理数”的否定式是“5不是有理数”。
解:原命题可符号化为:p:5是有理数。
其否定式为:非p。
非p的真值为1。
4.将下列命题符号化,并指出真值。
(1)2与5都是素数。
(2)不但π是无理数,而且自然对数的底e也是无理数。
(3)虽然2是最小的素数,但2不是最小的自然数。
(4)3是偶素数。
(5)4既不是素数,也不是偶数。
a:2是素数。
b:5是素数。
c:π是无理数。
d:e是无理数。
f:2是最小的素数。
g:2是最小的自然数。
h:3是偶数。
i:3是素数。
j:4是素数。
k:4是偶数。
解:(1)到(5)的符号化形式分别为a∧b,c∧d,f∧非g,h∧i,非j∧非k。
这五个复合命题的真值分别为1,1,1,0,0。
5.将下列命题符号化,并指出真值。
a:2是偶数。
b:3是偶数。
c:4是偶数。
离散数学试题与答案试卷一一、填空 20% (每小题2分)1.设 }7|{)},5()(|{<∈=<∈=+x E x x B x N x x A 且且(N :自然数集,E + 正偶数) 则 =⋃B A 。
2.A ,B ,C 表示三个集合,文图中阴影部分的集合表达式为 。
3.设P ,Q 的真值为0,R ,S 的真值为1,则)()))(((S R P R Q P ⌝∨→⌝∧→∨⌝的真值= 。
4.公式P R S R P ⌝∨∧∨∧)()(的主合取范式为 。
5.若解释I 的论域D 仅包含一个元素,则 )()(x xP x xP ∀→∃ 在I 下真值为 。
6.设A={1,2,3,4},A 上关系图为则 R 2 = 。
7.设A={a ,b ,c ,d},其上偏序关系R 的哈斯图为则 R= 。
8.图的补图为 。
9.设A={a ,b ,c ,d} ,A 上二元运算如下:那么代数系统<A ,*>的幺元是 ,有逆元的元素为 ,它们的逆元分别为 。
10.下图所示的偏序集中,是格的为 。
二、选择 20% (每小题 2分)1、下列是真命题的有( ) A . }}{{}{a a ⊆;B .}}{,{}}{{ΦΦ∈Φ;C . }},{{ΦΦ∈Φ;D . }}{{}{Φ∈Φ。
2、下列集合中相等的有( )A .{4,3}Φ⋃;B .{Φ,3,4};C .{4,Φ,3,3};D . {3,4}。
3、设A={1,2,3},则A 上的二元关系有( )个。
A . 23 ; B . 32 ; C . 332⨯; D . 223⨯。
4、设R ,S 是集合A 上的关系,则下列说法正确的是() A .若R ,S 是自反的, 则S R 是自反的; B .若R ,S 是反自反的, 则S R 是反自反的; C .若R ,S 是对称的, 则S R 是对称的; D .若R ,S 是传递的, 则S R 是传递的。
5、设A={1,2,3,4},P (A )(A 的幂集)上规定二元系如下|}||(|)(,|,{t s A p t s t s R =∧∈><=则P (A )/ R=( )A.A ;B.P(A) ;C.{{{1}},{{1,2}},{{1,2,3}},{{1,2,3,4}}};D.{{Φ},{2},{2,3},{{2,3,4}},{A}}6、设A={Φ,{1},{1,3},{1,2,3}}则A上包含关系“⊆”的哈斯图为()7、下列函数是双射的为()A.f : I→E , f (x) = 2x ;B.f : N→N⨯N, f (n) = <n , n+1> ;C.f : R→I , f (x) = [x] ;D.f :I→N, f (x) = | x | 。
.离散1一、选择题(每题2分,共20分) CABBB DACDA二、填空题(每题2分,共20分)1.n222.a∨b=1,a∧b=03.x*(xΔy)=x xΔ(x*y)=x4. 无回路5. 大项的合取所组成6. (∃x)⌝ P(x) (∀x)⌝ P(x)7.68.对任意的a,b G∈,有(a*b)*(a*b)=(a*a)*(b*b)9.βγ10. {<1,2>,<3,3>,<1,3>,<4,2>},{<1,4>,<2,2>}三、判断题(每题1分,共10分)×√√×××××√√四、解答题(5小题,共30分)1.(5分)给定无孤立点图G,若存在一条路,经过图中每边一次且仅一次,该条路称为欧拉路;如果一个图有欧拉路,则这个图能一笔画出。
2.(8分)各4分,步骤对,结果错,适当扣分,如果求出其一个,另一个直接写出,也不扣分。
只有结果,且结果对,给一半分,只有结果,且结果错,不给分。
解:主析取式:(┐P∧┐Q∧R)∨(┐P∧┐Q∧┐R)∨(P∧Q∧R)∨(P∧┐Q∧R)∨(┐P∧Q∧R)主合取式:(┐P∨Q∨R)∧(┐P∨┐Q∨R)∧(P∨┐Q∨R)3.(5分)由无向树的性质可知,无向树的顶点数是边数加1,又知无向图所有顶点的度之和为边数的2倍。
(1分)令1度顶点个数为x,则顶点数为2+1+3+x,所有顶点的度之和为x+2*2+3+3*4,(2分)从而有x+2*2+3+3*4=2*(2+1+3+x-1),解之得x=9,即有9个1度的点。
(2分)4.(7分)解:5. (5分)⎪⎪⎪⎪⎪⎭⎫⎝⎛=1100110100100101R M (2分),(2分),具有自反,对称性质(1分)五、证明(3小题,共20分)1. (10分)每步约1分,没有P,T 标识扣3分,没有序号扣3分。
证明过程:(1)P →R P (2)⌝R →⌝P T (1)E (3)P ∨Q P (4)⌝P →Q T (3)E (5)Q →S P (6)⌝P →S T (4)(5)I (7)⌝R →S T (2)(6)I (8)R ∨S T (8)E 2. (5分)。
离散数学试题与答案试卷一一、填空 20% (每小题2分)1.设 }7|{)},5()(|{<∈=<∈=+x E x x B x N x x A 且且(N :自然数集,E + 正偶数) 则 =⋃B A 。
2.A ,B,C表示三个集合,文图中阴影部分的集合表达式为。
3.设P ,Q 的真值为0,R ,S 的真值为1,则 )()))(((S R P R Q P ⌝∨→⌝∧→∨⌝的真值= 。
4.公式P R S R P ⌝∨∧∨∧)()(的主合取范式为。
5.若解释I 的论域D 仅包含一个元素,则 )()(x xP x xP ∀→∃ 在I下真值为。
6.设A={1,2,3,4},A 上关系图为则 R 2= 。
7.设A={a,b,c ,d},其上偏序关系R 的哈斯图为则 R= 。
8.图的补图为 。
9.设A ={a,b,c,d } ,A 上二元运算如下:* a b cdA B Cabcda b cdb c dac d abda bc那么代数系统<A,*>的幺元是,有逆元的元素为,它们的逆元分别为。
10.下图所示的偏序集中,是格的为。
二、选择 20%(每小题 2分)1、下列是真命题的有( )A.}}{{}{aa⊆; ﻩﻩ B.}}{,{}}{{ΦΦ∈Φ;C.}},{{ΦΦ∈Φ; D.}}{{}{Φ∈Φ。
2、下列集合中相等的有()A.{4,3}Φ⋃;B.{Φ,3,4};C.{4,Φ,3,3};D.{3,4}。
3、设A={1,2,3},则A上的二元关系有( )个。
A. 23 ;B. 32; C. 332⨯; D.223⨯。
4、设R,S是集合A上的关系,则下列说法正确的是()A.若R,S是自反的, 则SR 是自反的;B.若R,S是反自反的,则SR 是反自反的;C.若R,S 是对称的,则SR 是对称的;D.若R,S 是传递的, 则SR 是传递的。
5、设A={1,2,3,4},P(A)(A的幂集)上规定二元系如下t st spR=∈=则P(A)/R=( )<A∧>)(||||}s({t,,|A.A;B.P(A) ;C.{{{1}},{{1,2}},{{1,2,3}},{{1,2,3,4}}};D.{{Φ},{2},{2,3},{{2,3,4}},{A}}6、设A={Φ,{1},{1,3},{1,2,3}}则A上包含关系“⊆”的哈斯图为()7、下列函数是双射的为( )A.f : I→E , f (x) = 2x ; B.f : N→N⨯N, f (n) =<n , n+1> ; C.f : R→I , f (x) = [x] ; D.f :I→N, f (x) = | x | 。
(注:I—整数集,E—偶数集, N—自然数集,R—实数集)8、图中从v1到v3长度为3的通路有( )条。
A. 0; B. 1;ﻩC. 2;ﻩD. 3。
9、下图中既不是Eular图,也不是Hamilton图的图是( )10、在一棵树中有7片树叶,3个3度结点,其余都是4度结点则该树有()个4度结点。
A.1;ﻩB.2;ﻩ C.3; D.4 。
三、证明 26%ﻩ1、R是集合X 上的一个自反关系,求证:R 是对称和传递的,当且仅当< a, b> 和<a , c>在R中有<.b , c>在R中。
(8分)2、f 和g 都是群<G 1 ,★>到< G 2, *>的同态映射,证明<C , ★>是<G1, ★>的一个子群。
其中C=)}()(|{1x g x f G x x =∈且 (8分)3、G=<V , E> (|V| = v,|E|=e ) 是每一个面至少由k (k ≥3)条边围成的连通平面图,则2)2(--≤k v k e , 由此证明彼得森图(Peterson )图是非平面图。
(11分)四、逻辑推演 16%用CP 规则证明下题(每小题 8分)1、F A F E D D C B A →⇒→∨∧→∨,2、)()())()((x xQ x xP x Q x P x ∀→∀⇒→∀五、计算 18%1、设集合A={a,b ,c ,d}上的关系R={<a , b > ,< b , a > ,< b, c > ,< c , d >}用矩阵运算求出R的传递闭包t (R)。
(9分)2、如下图所示的赋权图表示某七个城市721,,,v v v 及预先算出它们之间的一些直接通信线路造价,试给出一个设计方案,使得各城市之间能够通信而且总造价最小。
(9分)试卷二试题与答案一、填空 20% (每小题2分)1、 P:你努力,Q:你失败。
“除非你努力,否则你将失败”的翻译为;“虽然你努力了,但还是失败了”的翻译为。
2、论域D={1,2},指定谓词PP(1,1)P (1,2)P(2,1)P (2,2)T T FF则公式x∃∀真值为。
2、设S={a1 ,a2 ,…,a8},Bi是S的子集,则由B31所表达的子集是。
3、设A={2,3,4,5,6}上的二元关系}|,{是质数xyxyxR∨<><=,则R=ﻩﻩﻩﻩﻩﻩ(列举法)。
R的关系矩阵MR=。
5、设A={1,2,3},则A上既不是对称的又不是反对称的关系R= ;A上既是对称的又是反对称的关系R =。
6、设代数系统<A,*>,其中A={a,b,c},则幺元是;是否有幂等性 ;是否有对称性。
群或群。
8、下面偏序格是分配格的是。
9、n个结点的无向完全图K n的边数为,欧拉图的充要条件是*a b cabca b cb b cc c b。
10、公式R Q P Q P P ⌝∧∨⌝∧∧⌝∨)(())((的根树表示为。
二、选择 20% (每小题2分)1、在下述公式中是重言式为( )A.)()(Q P Q P ∨→∧;B .))()(()(P Q Q P Q P →∧→↔↔;C .Q Q P ∧→⌝)(;D .)(Q P P ∨→。
2、命题公式 )()(P Q Q P ∨⌝→→⌝ 中极小项的个数为( ),成真赋值的个数为( )。
A.0; B .1; C .2; D .3 。
3、设}}2,1{},1{,{Φ=S ,则 S 2 有( )个元素。
A .3;B .6; C.7; D .8 。
4、 设} 3 ,2 ,1 {=S ,定义S S ⨯上的等价关系},,,, | ,,,{c b d a S S d c S S b a d c b a R +=+⨯>∈<⨯>∈<><><<=则由 R产 生的S S ⨯上一个划分共有( )个分块。
A.4; B .5; C.6; D .9 。
5、设} 3 ,2 ,1 {=S ,S 上关系R的关系图为则R 具有( )性质。
A .自反性、对称性、传递性;B .反自反性、反对称性;C .反自反性、反对称性、传递性; D.自反性 。
6、设 ,+ 为普通加法和乘法,则( )>+< ,,S 是域。
A .},,3|{Q b a b a x x S ∈+== B.},,2|{Z b a n x x S ∈==C .},12|{Z n n x x S ∈+== D.}0|{≥∧∈=x Z x x S = N 。
7、下面偏序集( )能构成格。
8、在如下的有向图中,从V1到V 4长度为3 的道路有( )条。
A .1; B.2; C.3; D.4 。
9、在如下各图中( )欧拉图。
10、设R是实数集合,“⨯”为普通乘法,则代数系统<R ,×> 是( )。
A.群; B.独异点; C .半群 。
三、证明 46%1、 设R是A 上一个二元关系,)},,,(),(|,{R b c R c a A c A b a b a S >∈<>∈<∈∧∈><=且有对于某一个试证明若R 是A上一个等价关系,则S 也是A 上的一个等价关系。
(9分)2、 用逻辑推理证明:所有的舞蹈者都很有风度,王华是个学生且是个舞蹈者。
因此有些学生很有风度。
(11分)3、 若B A f →:是从A 到B的函数,定义一个函数A B g 2:→对任意B b ∈有)})(()(|{)(b x f A x x b g =∧∈=,证明:若f是A 到B 的满射,则g 是从B到 A 2的单射。
(10分)4、 若无向图G中只有两个奇数度结点,则这两个结点一定连通。
(8分)5、 设G 是具有n 个结点的无向简单图,其边数2)2)(1(21+--=n n m ,则G是Ham ilto n图(8分) 四、计算 14%1、 设<Z 6,+6>是一个群,这里+6是模6加法,Z6={[0 ],[1],[2],[3],[4],[5]},试求出<Z 6,+6>的所有子群及其相应左陪集。
(7分)2、 权数1,4,9,16,25,36,49,64,81,100构造一棵最优二叉树。
(7分)试卷二答案:试卷三试题与答案一、 填空 20% (每空 2分)1、 设 f,g 是自然数集N 上的函数x x g x x f N x 2)(,1)(,=+=∈∀,则=)(x g f 。
2、 设A ={a ,b,c},A 上二元关系R={< a, a > , < a, b >,< a, c >, < c, c>} ,则s(R )= 。
3、 A={1,2,3,4,5,6},A 上二元关系}|,{是素数y x y x T ÷><=,则用列举法 T= ;T 的关系图为; T 具有 性质。
4、 集合}}2{},2,{{Φ=A 的幂集A 2= 。
5、 P,Q 真值为0 ;R ,S 真值为1。
则))()(())((S R Q P S R P wff ∧∧∨→∨∧的真值为 。
6、 R R Q P wff →∨∧⌝))((的主合取范式为 。
7、 设 P(x):x 是素数, E(x):x 是偶数,O(x):x是奇数 N (x,y ):x 可以整数y 。
则谓词))),()(()((x y N y O y x P x wff ∧∃→∀的自然语言是。
8、 谓词)),,()),(),(((u y x uQ z y P z x P z y x wff ∃→∧∃∀∀的前束范式为。
二、 选择 20% (每小题 2分)1、 下述命题公式中,是重言式的为( )。
A 、)()(q p q p ∨→∧;B 、))())(()(p q q p q p →∧→↔↔;C、q q p ∧→⌝)(; D 、q p p ↔⌝∧)(。
2、 r q p wff →∧⌝)(的主析取范式中含极小项的个数为( )。