第三节---动校正与静校正
- 格式:ppt
- 大小:3.28 MB
- 文档页数:46
《地震资料采集与处理》课程总结(仅供参考)郑重申明:采集与处理难度较大,老师上面提及‘仅供参考’四字,可能出的题目会有较大偏差,被坑了不关我事。
这总结内容有点多,包含了一些相关内容,答案还要从中自己总结,前面是老师总结的内容,后面是附加重点,内容有点混乱,因为自己都不懂的情况下总结的,仅供本人使用。
提高地震资料信噪比:1、组合法压制干扰波(面波和随机干扰波)的基本原理及其优缺点。
组合法的原理:它是利用有效波(反射波)与低速规则干扰波(面波)的传播方向或视速度的差异,根据地震信号的叠加原理和组合统计效应,来压制低速规则干扰面波和无规则的随机干扰波,以增强反射波提高地震资料信噪比(Ratio Signal to Noise)。
➢优点:(1)利用组合的方向特性,可以压制低速规则干扰面波。
(2)利用组合的统计效应,可以压制随机干扰波。
(3)组合表层的平均效应,有利于波形对比和追踪。
➢缺点:(1)组合具有低频滤波作用,可能会使波形发生畸变。
(2)组合深层的平均效应,模糊了深层反射界面构造细节,降低了地震资料的横向分辨率,易漏掉小断层、小构造。
(3)不能压制高速规则干扰波(多次反射波)。
2、多次覆盖技术(共反射点多次叠加法)压制干扰波(多次波和随机干扰波)的基本原理及其与组合法的异同点。
基本原理:它是利用有效波(一次反射波)和规则干扰波(如多次反射波) 经正常时差校正(Normal MoveOut Correction)后,存在着剩余时差的差异,来突出有效波(一次反射波),压制干扰波(如多次波),提高资料信噪比(S/N)的。
➢相同点:● 1.共反射点多次叠加法(多次覆盖法)与组合检波方法都是进行多个地震道叠加。
● 2.当界面倾斜时,多次覆盖法和组合法都存在平均效应。
● 3.多次覆盖法和组合法利用统计效应,均可压制随机干扰波。
● 4.当有剩余时差时,多次覆盖法对地震波有低通滤波作用,组合法也有低通滤波作用。
➢相同点:● 1.共反射点多次叠加法(多次覆盖法)与组合检波方法都是进行多个地震道叠加。
第六章 动、静校正第一节 静校时差对高频信号的破坏这里说的静校时差主要指野外组合中的时差,同时也指室内处理中静校正的误差。
野外组合方面既包括各检波器间的时差,也包括可控震源各震点所在位置的静校时差。
很早以前R.E.Sheriff 就指出过:“相对高程微小的变化、埋置条件或表层速度差异都极易产生2ms 的时差,这就构成了一个62Hz 的高截滤波起。
”见图54。
我们可以从静校正误差对高频损失的影响来作如下讨论:设静校正误差大致为一个服从正态分布概率的情况:即误差小的居多,大到一定范围就不大可能。
如图55(a ),其中σ是误差(σ2称方差),μ为大大小小误差的平均值。
这种正态分布的概率函数有如下公式误差几率 ]2)(exp[21)(22σμσπ--⋅⋅=x x P N (51) 当均值μ为零,且方差为1时,称为标准正态分布,有公式]2exp[21)(2x x P N -⋅=π(52) 其形态如图55(b ),我们来分析这种情况。
此时,当x =0时,概率的峰值为π2/1,即0.3989,而1±=x 之处,概率下降到2121-⋅e π,即下降到峰值的60.65%,这个横坐标1±=x 就是代表典型均方根误差大小的地方。
现在让我们来想一下:如果静校正均方根误差趋近于零,其正态分布曲线将压缩成一个尖锐的冲激函数δ(t ),那么,对接收反射波形就没有滤波作用了。
而现在图55(a )或(b )就是相当于时间域的一种滤波算子,它具有对高频的压制作用。
正态分布的公式(51)的振幅谱可表达为下式2)(2)(σπf e f A -= (53)我们将静校正误差为1±=x ms 的情况作频谱分析,其结果如图55(c )。
此图横坐标是频率。
显然,高频受到了压制,即142Hz 振幅下降到-3dB ,而186Hz 下降到-6dB (即一半)。
我们将振幅降一倍(-6dB )之处定为截频点。
于是将不同静校误差的高截频值列表如表6。
物探(概述):通过观测和研究各种地球物理场的变化来解决地质问题的一种勘查方法。
地球物理勘探(全称):通过专门的仪器观测地球物理场的分布和变化特征,然后结合已知地质资料进行分析研究,推断出地下岩土介质的性质和环境资源等状况,从而达到解决问题的目的。
2、物探的分类及关系按研究地球物理场不同分类:①地震勘探:以介质弹性差异为基础,研究波场变化规律的方法。
②电法勘探:以介质电性差异为基础,研究天然或人工电场变化规律的方法。
③放射性勘探:以介质放射性差异为基础,研究辐射场变化特征的方法。
④地热测量:以地下热能分布和介质导热为基础,研究地温场的方法。
⑤重力勘探:以地下介质密度差异为基础,研究重力场变化的方法。
⑥磁法勘探:以介质磁性差异为基础,研究地磁场变化规律的方法。
按物探工作的空间分类: ①航空物探②海洋物探③地面物探④地下勘探按工作目的和应用范围分类:①金属物探②石油物探③工程与环境物探形变:任何固体介质在外力作用下,内部质点的相互位置会发生变化,使得介质的形状或大小产生变化。
弹性:某物体在外力作用下产生形变,当外力取掉之后,物体能迅速恢复到受力前的形态和大小,物体的这种性质。
弹性介质:具有弹性的介质。
地震勘探中,人工震源的激发是脉冲式的,作用时间短,激发能量对地下岩层和接收点介质产生作用力较小。
因此,可以把地下介质近似看作弹性介质。
各向同性介质:弹性性质与空间方向无关;各向异性介质:弹性性质与空间方向有关应变:单位长度所产生的形变ΔL/L。
应力:单位横截面所产生的内聚力F/s杨氏模量(或拉伸模量):线性弹性形变区,应力与应变的比值。
泊松比:介质的横向应变与纵向应变的比值。
拉梅系数:各向同性的均匀介质,各不同方向的弹性系数大都对应相等,可以归结为应力与应变方向一致和互相垂直时的两个系数λ和μ,合称拉梅系数弹性振动:应力和惯性力不断作用,使质点围绕其原来的平衡位置发生振动等效空穴:震源点附近的非线性形变区振动图:用u-t坐标系统表示的质点振动位移随时间变化的图形描述振动曲线的参数:A:地震波振动位移大小(称振幅值变化)T:振动周期△t:延续时间 t0:初至时间波长:波峰至相邻波峰间的距离λ。
第四章动静校正在地震记录上,反射波的到达时间中包含了炮检距引起的正常时差和表层不均匀性引起的时差,为了使反射波到达时间尽可能直观、精确地反映地下构造形态,必须将这些时差从观测时间中去掉,这个过程,称为反射时间的校正。
由于这两种时差的性质不同,故校正的方法也不同,对正常时差校正称为“动”校正,对由表层不均匀性引起时差的校正称为“静”校正。
动静校正是地震资料数字处理中不可缺少的基本内容之一,其方法较多,本章在讲清概念的基础上,以两种方法为例,重点阐述方法的原理、思路,简单介绍实现步骤和参数选择,本章包括动校正、野外一次静校正、自动统计剩余静校正、折射波静校正以及剩余静校正技术的新发展等内容。
第一节动校正基本概念动校正方法是以动校正量(即正常时差)的计算原理、动校正量的计算与存储以及动校正的实现过程为主要内容的。
就其方法原理而言,并不复杂,然而动校正量的计算与存储却是该方法中的技术关健,由于地震记录上每一个采样值的动校正量都要计算与存储,因此将占用大量的计算机时间与空间,为了提高经济效益和便于在大、中、小计算机上推广使用,因此各种动校正方法为攻克上述两个技术难关,做了各种努力。
下面将以快速查表法为例,介绍该方法是如何以查B(K)表的方式提高计算速度和如何用制动校正量表的方法减少占用计算机内存的。
本节还将介绍用成组搬家和插值补空法实现动校正的过程,动校后波形拉伸畸变及克服的方法以及高保真动校正的基本原理等。
由几何地震学可知:当地面水平,反射界面为平面,界面以上的介质均匀的情况下,单次反射时距曲线是一条双曲线(图4-1(a))。
它不能直接反映地下反射界面的起伏情况,尽管当界面为水平时,法线深度和真深度一致,也只有在激发点处接收的t0时间,方能直观地反映界面的真深度,其它各点接收到的反射波旅行时间,除了与界面真深度有关外,还包括由炮检距不同而引起的正常时差,如果能从每个观测时间中去掉正常时差,则剩下的只是与界面的真深度有关的t0部分了。
3速度分析和静校正概述 正常时差 平反射层的正常时差 水平层状介质的正常时差 四阶时差 动校拉伸 倾斜反射界面的正常时差 任意倾角多层的正常时差 动校速度与叠加速度 速度分析 速度谱 一致性测量 影响速度估算的因素 交互速度分析 沿层速度分析 相干属性叠加 剩余静校正 利用旅行时分解法的剩余静校正估计 利用叠加能量最大法剩余静校正估计 旅行时分解法的应用 最大允许时移量 相关窗口 其他条件 叠加能量最大值法的应用 折射静校正 初至波 野外静校正 平折射界面 倾斜折射界面 加减法 广义相遇法 最小平方法 静校正的处理流程 模型试验 野外实例 习题 附录C :时差和静校正 时移双曲线 动校拉伸 倾斜反射界面方程 对剩余静校正量估算的旅行时分解法 由折射初至波估算深度 倾斜折射界面方程 加减法 折射初至波的广义线性反演 折射旅行时层析成像 L 1模折射静校正 参考文献3.0 概述地震波在地层中的传播,其速度是深度的函数,声波测井记录表示直接的速度测量;另一方面,地震资料则给出了间接的速度测量。
基于这两种类型的信息,勘探地震学家推导出许多不同的速度,例如层速度、视速度、平均速度、均方根速度(rms )、瞬时速度、相速度、群速度、动校(NMO )速度、叠加速度和偏移速度。
然而,从地震资料中得出的速度是能产生最好叠加效果的速度。
假设层状介质中,叠加速度与NMO 速度有关。
而又它与均方根速度有关,平均速度和层速度均由均方根速度求得。
层速度为两个反射界面之间的平均速度。
具有一定岩性组成的岩层的层速度的几个影响因素有:图3.0-1 含微裂隙的Bedford 石灰岩中在干的和水饱和时,纵波和横波速度因围压变化而变化,流体体积在测量中保持为常数。
这里,S 为饱和的,D 为干燥的,V p 为纵波速度,V s 为横波速度(引自Nur ,1981)速度(k m /s )围压图3.0-2 有圆形孔隙的Berca 砂岩样本,纵波和横波速度随围压的变化。