电磁学_ 磁介质_ 介质的磁化规律_
- 格式:pptx
- 大小:953.20 KB
- 文档页数:16
磁介质是指具有磁性的物质,比如铁、钴、镍等。
正如电介质在外电场的作用下将发生极化,磁介质在外磁场的作用下将发生磁化。
因此,磁介质的磁化与电介质的极化有许多共通之处。
对于磁介质的磁化微观机制,有两种主要的观点。
最初形成的观点是磁荷观点,将磁的N、S极看称是磁荷集聚的地方,磁介质由一个个磁偶极子组成。
后来形成的观点是分子电流观点,磁介质由一个个分子环形电流组成。
这两种观点有各自的优劣。
后一种观点几乎所有的电磁学教材均会阐述,前一种观点则较少。
但磁荷观点理解起来可能要容易一些,因为它很像电荷观点(电介质的极化),很多推导可以从电介质的极化类比过来。
大学物理电磁学总结一、三大定律库仑定律:在真空中,两个静止的点电荷q1 和q2 之间的静电相互作用力与这两个点电荷所带电荷量的乘积成正比,与它们之间距离的平方成反比,作用力的方向沿着两个点电荷的连线,同号电荷相斥,异号电荷相吸。
uuu r q q ur F21 = k 1 2 2 er rur u r 高斯定理:a) 静电场:Φ e = E d S = ∫s∑qiiε0(真空中)b) 稳恒磁场:Φ m =u u r r Bd S = 0 ∫s环路定理:a) 静电场的环路定理:b) 安培环路定理:二、对比总结电与磁∫Lur r L E dl = 0 ∫ ur r B dl = 0 ∑ I i (真空中)L电磁学静电场稳恒磁场稳恒磁场电场强度:E磁感应强度:B 定义:B =ur ur F 定义:E = (N/C) q0基本计算方法:1、点电荷电场强度:E =ur r u r dF (d F = Idl × B )(T) Idl sin θ方向:沿该点处静止小磁针的N 极指向。
基本计算方法:urq ur er 4πε 0 r 2 1r ur u Idl × e r 0 r 1、毕奥-萨伐尔定律:d B = 2 4π r2、连续分布的电流元的磁场强度:2、电场强度叠加原理:ur n ur 1 E = ∑ Ei = 4πε 0 i =1r qi uu eri ∑ r2 i =1 inr ur u r u r 0 Idl × er B = ∫dB = ∫ 4π r 23、安培环路定理(后面介绍)4、通过磁通量解得(后面介绍)3、连续分布电荷的电场强度:ur ρ dV ur E=∫ e v 4πε r 2 r 0 ur σ dS ur ur λ dl ur E=∫ er , E = ∫ e s 4πε r 2 l 4πε r 2 r 0 04、高斯定理(后面介绍)5、通过电势解得(后面介绍)几种常见的带电体的电场强度公式:几种常见的磁感应强度公式:1、无限长直载流导线外:B = 2、圆电流圆心处:B = 3、圆电流轴线上:B =ur 1、点电荷:E =q ur er 4πε 0 r 2 10 I2R0 I 2π r2、均匀带电圆环轴线上一点:ur E=r qx i 2 2 32 4πε 0 ( R + x )R 2 IN 2 ( x 2 + R 2 )3 21 0α 23、均匀带电无限大平面:E =σ 2ε 0(N 为线圈匝数)4、无限大均匀载流平面:B =4、均匀带电球壳:E = 0( r < R )(α 是流过单位宽度的电流)ur E=q ur er (r > R ) 4πε 0 r 25、无限长密绕直螺线管内部:B = 0 nI (n 是单位长度上的线圈匝数)6、一段载流圆弧线在圆心处:B = (是弧度角,以弧度为单位)7、圆盘圆心处:B =r ur qr (r < R) 5、均匀带电球体:E = 4πε 0 R 3 ur E= q 4πε 0 r ur er (r > R ) 20 I 4π R0σω R2(σ 是圆盘电荷面密度,ω 圆盘转动的角速度)6、无限长直导线:E =λ 2πε 0 x λ 0(r > R ) 2πε 0 r7、无限长直圆柱体:E =E=λr (r < R) 4πε 0 R 2电场强度通量:N·m2·c-1)(磁通量:wb)(sΦ e = ∫ d Φ e = ∫ E cos θ dS = ∫s sur u r E d S通量u u r r Φ m = ∫ d Φ m = ∫ Bd S = ∫ B cos θ dS s s s若为闭合曲面:Φ e =∫sur u r E d S若为闭合曲面:u u r r Φ m = Bd S = B cos θ dS ∫ ∫s s均匀电场通过闭合曲面的通量为零。
电磁学笔记(全)第一章 静电场库仑定律物理定律建立的一般过程观察现象; 提出问题; 猜测答案; 设计实验测量;归纳寻找关系、发现规律;形成定理、定律(常常需要引进新的物理量或模型,找出新的内容,正确表述); 考察成立条件、适用范围、精度、理论地位及现代含义等 。
库仑定律的表述: (p5)在真空中,两个静止的点电荷q1和q2之间的相互作用力大小和q1 与q2的乘积成正比,和它们之间的距离r 平方成反比;作用力的方向沿着他们的联线,同号电荷相斥,异号电荷相吸。
电场强度电荷q 所受的力的大小为:场强 E = F/q场强叠加原理:点电荷组:连续带电体:的电量大小、正负有关激发的电场有关q Q r Qq F 与与2041πε=∑=iiE ∧⎰⎰⎰==r rdq d d 2041,πε受的力的方向一致方向:与单位正电荷所小场中受到的电场力的大大小:单位正电荷在电E高斯定理任意曲面:高斯定理:环路定理电荷间的作用力是有心力 —— 环路定理在任何电场中移动试探电荷时,电场力所做的功除了与电场本身有关外,只与试探电荷的大小及其起点、终点有关,与移动电荷所走过的路径无关 静电场力沿任意闭合回路做功恒等于零两点之间电势差可表为两点电势值之差静电场中的导体导体:导体中存在着大量的自由电子 电子数密度很大,约为1022个/cm3d EdS d S E ⋅==θcos Φ的通量通过d ∑⎰⎰=⋅=Φ内S iSE qS d E 01ε⎰⎰⋅=ΦSE Sd E 020204141επεπεqdS r qdS r qEdS S d E SS SS E ====⋅=⎰⎰⎰⎰⎰⎰⎰⎰Φ)()(Q U P U l d E l d E l d E U QPQ PPQ -=⋅+⋅=⋅=⎰⎰⎰∞∞静电平衡条件电容和电容器第二章 恒磁场奥斯特实验奥斯特实验表明:长直载流导线与之平行放置的磁针受力偏转——电流的磁效应 磁针是在水平面内偏转的——横向力突破了非接触物体之间只存在有心力的观念——拓宽了作用力的类型毕奥—萨筏尔定律B-S 定律:电流元对磁极的作用力的表达式:由实验证实电流元对磁极的作用力是横向力整个电流对磁极的作用是这些电流元对磁极横向力的叠加由对称性,上述折线实验结果中,折线的一支对磁极的作用力的贡献是H 折的一半'0E E E +=内 0导体储能能力与q、U无关关与导体的形状、介质有⎪⎩⎪⎨⎧⎭⎬⎫=Uq C ⎰⎰∑∑==iS e ii n i i i e dSU U Q W σ2121构成的平面B 成反比与r 成正比与B 2r l d d Idl r l d I d ,sin )(413110⊥⨯=,、θπμ2tanαr I k H =折k k 21=磁感应强度B :电场E 定量描述电场分布 磁场B 定量描述磁场分布 引入试探电流元安培环路定理表述:磁感应强度沿任何闭合环路L 的线积分,等于穿过这环路所有电流强度的代数和的0倍磁高斯定理 磁矢势,)ˆ(12212122112r r l d l d I I kF d ∧⨯⨯=⎰∧⨯⨯=112212122102)ˆ(4L r r l d l d I I F d πμ⎥⎥⎦⎤⎢⎢⎣⎡⨯⨯=⎰∧112212110222)ˆ(4L r r l d I l d I F d πμ22l d I 11l d I ⎰∑=⋅L L I l d B 内0μ∑-=内L I II 212rIB I I R r πμ2,,0==>∑内∑==<20222,,R Ir B r R I I R r πμππ内磁场的“高斯定理” 磁矢势 :磁通量任意磁场,磁通量定义为 :磁感应线的特点:环绕电流的无头无尾的闭合线或伸向无穷远:磁高斯定理 :通过磁场中任一闭合曲面S 的总磁通量恒等于零 证明:单个电流元Idl 的磁感应线:以dl 方向为轴线的一系列同心圆,圆周上B 处处相等;考察任一磁感应管(正截面为),取任意闭合曲面S ,磁感应管穿入S 一次,穿出一次。
第六章磁介质•介质在磁场中的磁化现象•磁介质存在下的磁场理论§6.1 磁介质的磁化顺磁性和抗磁性•与电介质的极化不同,从磁化规律看有两种性质相反的磁介质:–顺磁质:磁介质在磁化后的等效磁矩和外磁场同向,比如铝、钠–抗磁质:磁介质在磁化后的等效磁矩和外磁场反向,比如铜、铅、水–在外磁场下,顺磁质和抗磁质在磁化后的受力方向相反。
–注意:在外磁场中放入磁介质,磁场是增强还是减弱了?和电介质的极化比较一下。
磁化现象的解释•最初,物质磁效应的解释是“磁荷”说。
磁荷说难以解释抗磁性的存在;迄今也未发现磁荷。
•后来,安培提出了磁性的电流说。
认为物质的磁性起源于物质体内“分子环流”。
•现代观点看,原子中存在电子、原子核运动导致的原子的总磁矩是物质磁性的起源。
–自然状态下,如果原子自身磁矩为零,或者尽管有非零的原子磁矩,但大量原子随机取向导致叠加的磁矩为零,则物质不显示宏观磁性。
–在自然条件下,或在外磁场的作用下,如果物质中大量原子磁矩的叠加非零,则物质显示宏观磁性。
顺磁和抗磁性的解释•外磁场对物质的作用有两方面–分子环流的磁矩在外磁场作用下转向磁场的方向,这就是顺磁性的起源。
–外磁场建立的过程中磁介质中的分子环流在电磁感应的作用下出现了附加的感应磁矩。
这种感应磁矩的作用是抵抗外磁场的建立,这就是抗磁性的起源(更准确的解释需要量子力学)。
•一种物质中顺磁性和抗磁性常常是并存的。
顺磁质中的顺磁性为主。
铁磁质•在物质中,以铁、镍等为代表的一类物质磁性很强,远远强于一般的物质,这类物质称为铁磁质。
•铁磁性起源于量子效应引起的原子间的某种相互作用。
由于这种效应,铁磁体中小范围内的原子的磁矩自动定向排列,构成了一个个小磁铁,称为“磁畴”,在外场下,一个个小磁铁再定向排列,使大部分原子磁矩定向排列。
•相比之下,在同样外磁场下,普通物质中只有极少的原子磁矩发生定向排列。
不妨设(1)单位体积内的分子环流数为n,所有的分子环流都是i(2)在小体积内磁化强度均匀,和所有分子环流tj m ˆ=⋅Kσ考虑^t可为任意方向,故:ab MK 介质tˆ§6.2 磁介质中磁场2ˆn1ˆnSΔ1B Kˆ)(12=⋅−nB B KK nn B B 21=界面两侧磁感应强度的法向分量连续a b 1H K tˆ1(H H K K −•若界面上无传导电流t H H 1=若界面无传导电流,界面两侧磁场强度的切向分量连续考虑t为任意切向SΔ1m B K 1r μmj K 2B K 1B KSΔ1r μ1B K 1θ1θ1H K •方向相同,因此,以上结论对B 和H是相同的。
§1.1介质的电磁性质从电学的角度,宏观物质大体可分为导体、绝缘体、半导体。
其中,绝缘体一般又称为“电介质”。
半导体则介于导体与绝缘体之间,根据研究的需要,常常将它纳入导体或电介质模型,或者两种模型都套用。
磁学则认为,一切物质材料都是“磁介质”,依据磁导率的大小,磁介质仅仅有“铁磁质”和“非铁磁质”的区分。
铁磁质的相对导磁率,它相当于磁场的“导体”;而非铁磁质的相对导磁率,它部分地相当于磁场的“绝缘体”。
通过电磁学课程,已对介质的电磁特性作了详尽的研究和讨论,述及的概念和规律正是电动力学起步的基础,因此,我们在这里仅对介质的电磁特性做一个总结性的概述。
1.介质的分类从材料性质分:各向异性、各向同性介质;线性、非线性介质;均匀、非均匀介质;从电磁行为分:电介质、导电介质;铁磁质、顺磁质、抗磁质等。
从场的作用分:磁介质、电介质。
介质是一个带电粒子系统,内部存在规则而迅速变化的微观电磁场。
真空则被看作一种特殊的介质(),现代物理认为,真空是“量子场的基态”,它也具有物质性。
2.介质的极化和磁化规律在电磁场中,介质又可划分为两类情况,即电介质和磁介质。
它们在电场和磁场中分别发生极化和磁化。
下表虽然不能概括介质在场中行为的详尽情况,却反映了它们的主要特点与规律。
从表中罗列的内容我们还可以看出,介质的极化与介质的磁化有着高度的对称性。
不仅介质的极化与“分子电流模型描述的介质磁化”对称,而且介质极化也与“磁荷模型描述的磁极化”对称。
清楚这种对称对我们的学习记忆是在现代电磁理论中,实验和推理都赞成诠释磁场起源的“分子电流观点”,但这并不意味着古典的“磁荷观点”已经失效。
虽然迄今还没有在现实中找到“磁单极子”,或许它根本不存在,但是“磁偶极子”却是真实存在的。
因为一个微小的电流环既可以用“磁矩”表述,同时也可用“磁偶极矩”表述,这就是说,电流环可以等效于磁偶极子,即无论从“环流模型”还是从“磁偶极矩模型”计算研究磁场是等效的,殊途同归的。