材料分析方法 考前复习总结(一)
- 格式:docx
- 大小:673.54 KB
- 文档页数:8
第一章 X 射线物理学基础一、X 射线产生的主要装置和条件 主要装置:阳极靶材、阴极灯丝条件:a. 大量自由电子;b. 定向高速运动;c. 运动路径上遇到障碍(靶材)二、短波限一个电子在与阳极靶撞击时,把全部能量给予一个光子,这就是一个光量子所能获得的最大能量,即:h c/λ=eU ,此时光量子的波长即为短波限λSWL 。
三、连续X 射线(强度公式)大量电子在与靶材碰撞的过程中,能量不断减小,光子所获得的能量也不断减小,形成了一系列由短波限λSWL 向长波方向发展的连续波谱。
连续谱强度21iZU K I四、特征X 射线(莫塞莱定律)当X 射线管两端的电压增高到某一特定值U k 时,在连续谱的特定的波长位置上,会出现一系列强度很高,波长范围很窄的线状光谱,它们的波长对一定材料的阳极靶材有严格恒定的数值,此波长可作为阳极靶材的标志或特征,所以称为特征谱或标识谱。
莫塞莱定律:Z K 21) U - U ( i K I m n 3 (Un 为临界激发电压,原子序数Z 越大,Un 越大)五、X 射线吸收(透射)公式——(质量吸收系数:单质、化合物(固溶体、混合物)) 单质 m tm m e I eI I 00化合物ni i mim w 1六、光电效应、荧光辐射、俄歇效应光电效应:当入射X 射线光量子能量等于或略大于吸收体原子某壳层电子的结合能时,电子易获得能量从内层逸出,成为自由电子,称为光电子,这种光子击出电子的现象称为光电效应。
荧光辐射:因光电效应处于相应的激发态的原子,将随之发生如前所述的外层电子向内层跃迁的过程,同时辐射出特征X 射线,称X 射线激发产生的特征辐射为二次特征辐射,称这种光致发光的现象为荧光效应。
俄歇效应:原子K 层电子被击出后, L 层一个电子跃入 K 层填补空位,而另一个L 层电子获得能量逸出原子成为俄歇电子,称这种一个K 层空位被两个 L 层空位代替的过程为俄歇效应。
光电效应——光电子荧光辐射——荧光X 射线(二次X 射线) 俄歇效应——俄歇电子七、吸收限及其两个应用:滤波片的选择、靶材的选择吸收限:欲激发原子产生K、L、M等线系的荧光辐射,入射X 射线光量子的能量必须大于或至少等于从原子中击出一个K、L、M层电子所需的能量W K、W L、W M,如,W K= h K = hc / K,式中, K、 K是产生K系荧光辐射时,入射X射线须具有的频率和波长的临界值。
材料现代分析方法知识点汇总1.基础分析技术:材料现代分析方法常用的基础分析技术包括光学显微镜、电子显微镜、X射线衍射、扫描电子显微镜等。
这些技术可以用于材料样品的形态、结构和成分的分析和表征。
2.元素分析方法:材料中元素的分析是材料研究中的重要内容。
现代元素分析方法包括原子吸收光谱、原子发射光谱、原子荧光光谱、质谱等。
通过这些方法可以获取样品中各个元素的含量和分布情况。
3.表面分析技术:材料的表面性质对其性能有着重要影响。
表面分析技术包括扫描电子显微镜、原子力显微镜、拉曼光谱等。
这些技术可以用于研究材料表面形貌、结构和成分,以及表面与界面的性质。
4.结构分析方法:材料的结构对其性能有着决定性的影响。
结构分析方法包括X射线衍射、中子衍射、电子衍射等。
这些方法可以用于确定材料的晶体结构、非晶态结构和纳米结构,从而揭示材料的物理和化学性质。
5.磁学分析方法:材料的磁性是其重要的性能之一、磁学分析方法包括霍尔效应测量、磁化率测量、磁滞回线测量等。
这些方法可以用于研究材料的磁性基本特性,如磁场效应、磁滞行为和磁相互作用。
6.热学分析方法:材料的热性质对其在高温、低温等条件下的应用具有重要意义。
热学分析方法包括热重分析、差示扫描量热法、热导率测量等。
这些方法可以用于研究材料的热稳定性、相变行为和导热性能。
7.分子分析技术:材料中分子结构的分析对于研究其化学性质具有重要意义。
分子分析技术包括红外光谱、拉曼光谱、核磁共振等。
通过这些技术可以确定材料的分子结构、键合方式和功能性分子的存在情况。
8.表征方法:材料的表征是指对其特定性能的评估和描述。
表征方法包括电阻率测量、粘度测量、硬度测量等。
这些方法可以用于研究材料的电学、力学和流变学性质。
总之,材料现代分析方法是一门综合应用各种科学技术手段对材料样品进行分析与表征的学科。
掌握这些现代分析方法的知识,可以帮助科学家和工程师更好地了解材料的性质和特点,为材料设计和应用提供科学依据。
1. 已知某原子的光谱项,能够用能级示意图表示出其光谱支项与塞曼能级。
原子能级由符号n M L J 表示,其中n表示主量子数,即原子层数。
M是J可能存在的个数,一般为2S+1或2L+1;L一般用大写字母S、P、D、F、G等表示,分别表示L的值是0,1,2,3,4…;例如:某原子的一个光谱项为23P J,即有n=2,L=1,设S=1,(故M=2S+1=3),则J=2,1,0。
当J=2时,M J=0,±1,±2;J=1时,M J=0,±1;J=0时,M J=0。
23P J光谱项及其分裂所示。
2. 掌握满带、禁带、价带、导带以及费米能的概念。
满带:能带中的所有能级(能态)都被电子填满;禁带:原子不同能级分裂的能带之间存在间隙;价带:与原子基态价电子能级相应的能带称为价带;导带:与原子激发态能级相应的能带成为导带。
费米能:绝对零度时固体中电子占据的最高能级称为费米能级,其能量称为费米能E F 3.能够在给定晶体结构(如简单立方晶胞、面心立方晶胞),在其中画出(001), (002), (003) 等晶面,根据干涉指数的定义,回答由干涉指数表示的晶面上是否一定有原子的分布,为什么?画晶面(注意:晶面指数是截距的倒数。
)干涉指数定义为可带有公约数n的晶面指数[n(hkl)],即为广义的晶面指数。
干涉指数表示的晶面并不一定是晶体中的真实原子面,也就是说干涉指数表示的晶面并不一定有原子分布。
因为若将干涉指数按比例约分后,最后干涉指数还是还原为晶面指数,所以只用晶面空间方位来标识晶面。
4. 掌握由倒易矢量性质,倒易点阵与正点阵关系推导出立方晶系晶面间距公式的推导过程。
根据(r*HKL)=1/d2HKL,按照矢量点积的公式,可确定1/d2HKL=(Ha*+Kb*+Lc*)(Ha*+Kb*+Lc*)=H2(a*)2+K2(b*)2+L2(c*)2+2HK(a*∙b*)+2HL(a*∙c*)+2KL(b*∙c*) 又有,(a*)2=(b*)2=(c*)2=1/a2,cosα*=cosβ*=cosγ*=01/d2HKL=H2+K2+L2ad HKL=√H2+K2+L25. 掌握晶带定理及晶带轴计算方法。
1. 已知某原子的光谱项,能够用能级示意图表示出其光谱支项与塞曼能级。
原子能级由符号n M L J 表示,其中n表示主量子数,即原子层数。
M是J可能存在的个数,一般为2S+1或2L+1;L一般用大写字母S、P、D、F、G等表示,分别表示L的值是0,1,2,3,4…;例如:某原子的一个光谱项为23P J,即有n=2,L=1,设S=1,(故M=2S+1=3),则J=2,1,0。
当J=2时,M J=0,±1,±2;J=1时,M J=0,±1;J=0时,M J=0。
23P J光谱项及其分裂所示。
2. 掌握满带、禁带、价带、导带以及费米能的概念。
满带:能带中的所有能级(能态)都被电子填满;禁带:原子不同能级分裂的能带之间存在间隙;价带:与原子基态价电子能级相应的能带称为价带;导带:与原子激发态能级相应的能带成为导带。
费米能:绝对零度时固体中电子占据的最高能级称为费米能级,其能量称为费米能E F 3.能够在给定晶体结构(如简单立方晶胞、面心立方晶胞),在其中画出(001), (002), (003) 等晶面,根据干涉指数的定义,回答由干涉指数表示的晶面上是否一定有原子的分布,为什么?画晶面(注意:晶面指数是截距的倒数。
)干涉指数定义为可带有公约数n的晶面指数[n(hkl)],即为广义的晶面指数。
干涉指数表示的晶面并不一定是晶体中的真实原子面,也就是说干涉指数表示的晶面并不一定有原子分布。
因为若将干涉指数按比例约分后,最后干涉指数还是还原为晶面指数,所以只用晶面空间方位来标识晶面。
4. 掌握由倒易矢量性质,倒易点阵与正点阵关系推导出立方晶系晶面间距公式的推导过程。
根据(r*HKL)=1/d2HKL,按照矢量点积的公式,可确定1/d2HKL=(Ha*+Kb*+Lc*)(Ha*+Kb*+Lc*)=H2(a*)2+K2(b*)2+L2(c*)2+2HK(a*∙b*)+2HL(a*∙c*)+2KL(b*∙c*) 又有,(a*)2=(b*)2=(c*)2=1/a2,cosα*=cosβ*=cosγ*=01/d2HKL=H2+K2+L2a2d HKL=√H2+K2+L25. 掌握晶带定理及晶带轴计算方法。
材料分析方法知识总结1.结构分析方法:(1)X射线衍射:通过测量材料中X射线的衍射图案,可以确定材料晶体的结构和晶格常数。
(2)扫描电子显微镜(SEM):通过扫描电子束和样品表面相互作用产生的信号,可以获得材料的形貌、尺寸和组成等信息。
(3)透射电子显微镜(TEM):通过透射电子和样品相互作用产生的信号,可以观察到材料的超微结构和晶体缺陷等信息。
(4)原子力显微镜(AFM):通过测量样品表面与探针之间的相互作用力,可以获得材料表面的形貌和物理性质。
2.组成分析方法:(1)X射线荧光光谱(XRF):通过测量样品放射出的特定波长的X射线,可以获得样品中元素的含量和分布。
(2)能谱分析(ES):通过测量材料中宇宙射线与样品相互作用产生的信号,可以确定样品中所有元素的含量和相对比例。
(3)质谱分析(MS):通过测量样品中的化合物分子或离子的质量-电荷比,可以确定样品的组成和相对分子质量。
(4)核磁共振(NMR):通过测量样品中原子核的回复信号,可以获得样品的结构和分子组成等信息。
3.性能分析方法:(1)热重分析(TGA):通过测量材料在加热过程中的质量变化,可以确定样品的热稳定性和热分解特性等。
(2)差示扫描量热分析(DSC):通过测量样品在加热或冷却过程中的热量变化,可以获得样品的热性能和热转变特性等信息。
(3)拉伸试验:通过施加拉力对材料进行拉伸,可以获得材料的机械性能,如强度、伸长率和断裂韧性等。
(4)电化学测试:通过测量样品在电解液中的电流、电压和电荷等参数,可以评估样品的电化学性能,如电容、电阻和电化学反应速率等。
4.表面分析方法:(1)扫描电子能谱(SEE):通过测量样品表面与电子束相互作用产生的特定能量的电子,可以获得材料表面的元素组成和化学状态等信息。
(2)原子力显微镜(AFM):通过测量样品表面与探针之间的相互作用力,可以获得材料表面的形貌和物理性质。
(3)X射线光电子能谱(XPS):通过测量样品表面受激电子的能量分布和能级结构,可以分析样品的化学组成和表面的化学状态。
1.透射电镜中有哪些主要光阑? 分别安装在什么位置? 其作用如何?答:主要有三种光阑:①聚光镜光阑。
在双聚光镜系统中,该光阑装在第二聚光镜下方。
作用:限制照明孔径角。
②物镜光阑。
安装在物镜后焦面。
作用: 提高像衬度;减小孔径角从而减像差;进行暗场成像。
③选区光阑:放在物镜的像平面位置。
作用: 对样品进行微区衍射分析。
2.决定X 射线强度的关系式是试说明式中各参数的物理意义?3.比较物相定量分析的外标法、内标法、K 值法、直接比较法和全谱拟合法的优缺点?答:外标法就是待测物相的纯物质作为标样以不同的质量比例另外进行标定,并作曲线图。
外标法适合于特定两相混合物的定量分析,尤其是同质多相(同素异构体)混合物的定量分析。
内标法是在待测试样中掺入一定量试样中没有的纯物质作为标准进行定量分析,其目的是为了消除基体效应。
内标法最大的特点是通过加入内标来消除基体效应的影响,它的原理简单,容易理解。
但它也是要作标准曲线,在实践起来有一定的困难。
K 值法是内标法延伸。
K 值法同样要在样品中加入标准物质作为内标,人们经常也称之为清洗剂。
K 值法不作标准曲线,而是选用刚玉Al O 作为标准物质,直接比较法通过将待测相与试样中存在的另一个相的衍射峰进行对比,求得其含量的。
直接法好处在于它不要纯物质作标准曲线,也不要标准物质,它适合于金属样品的定量测量。
4磁透镜的像差是怎样产生的? 如何来消除和减少像差?像差分为球差,像散,色差.球差是磁透镜中心区和边沿区对电子的折射能力不同引起的.增大透镜的激磁电流可减小球差.像散是由于电磁透镜的周向磁场不非旋转对称引起的.可以通过引入一强度和方位都可以调节的矫正磁场来进行补偿.色差是电子波的波长或能量发生一定幅度的改变而造成的.稳定加速电压和透镜电流可减小色差5别从原理、衍射特点及应用方面比较X 射线衍射和透射电镜中的电子衍射在材料结构分析中的异同点。
原理: X射线照射晶体,电子受迫振动产生相干散射;同一原子内各电子散射波相互干涉形成原子散射波;晶体内原子呈周期排列,因而各原子散射波间也存在固定的位相关系而产生干涉作用,在某些方向上发生相长干涉,即形成衍射。
材料分析测试方法考点总结1.化学成分分析化学成分分析是材料分析测试的基础内容之一、它可以通过测定材料中的元素含量来确定材料的化学成分。
常用的化学成分分析方法包括:火花光谱分析、光谱分析、质谱分析、原子光谱分析等。
2.物理性能测试物理性能测试是评估材料力学性质的重要手段。
包括材料的硬度、强度、韧性、弹性模量等。
常用的物理性能测试方法有:拉伸试验、硬度测试、冲击试验、压缩试验、剪切试验等。
3.微观结构分析微观结构分析是检测材料内部组织和晶体结构的重要方法。
常用的微观结构分析方法包括:显微镜观察、扫描电子显微镜(SEM)观察、透射电子显微镜(TEM)观察、X射线衍射(XRD)分析等。
4.表面分析表面分析是研究材料表面化学组成、结构和形貌的重要手段。
主要包括表面形貌观察和分析、表面成分分析、表面组织分析等。
常用的表面分析方法有:扫描电子显微镜(SEM)观察、能谱分析(EDS)、X射线光电子能谱(XPS)分析、原子力显微镜(AFM)观察等。
5.热分析热分析是通过对材料在不同温度下的热响应进行测定和分析,来研究材料热性能的一种方法。
典型的热分析方法包括:热重分析(TGA)、差热分析(DTA)、差示扫描量热分析(DSC)等。
6.包装材料测试包装材料测试是对包装材料的物理性能、化学性能、机械性能、耐久性能等进行测试评估的一种方法。
常用的包装材料测试方法有:抗拉强度测试、撕裂强度测试、温湿度测试、冲击测试、水汽透过性测试等。
7.表征技术表征技术是通过测定和分析材料的性质和性能,来获得材料的各种特征和参数的方法。
常用的表征技术包括:拉曼光谱、红外光谱、紫外-可见分光光度计、液相色谱-质谱分析等。
总结而言,材料分析测试方法主要涵盖了化学成分分析、物理性能测试、微观结构分析、表面分析、热分析、包装材料测试和表征技术。
掌握这些测试方法,可以有效评估和控制材料的质量、性能和性质,为材料科学和工程提供有力支持。
材料分析方法期末总结一、材料分析方法的基本步骤(一)收集材料:材料分析的第一步是收集与研究对象相关的材料。
这些材料可以通过文献研究、场地调查、访谈、问卷调查等方式获得。
(二)整理归类:将收集到的材料进行整理和归类,以便于后续的分析和解读。
可以根据材料的性质、内容、时间顺序等进行分类,使用标签、索引或数据库等工具进行管理。
(三)提取关键信息:在整理归类的基础上,将材料中的关键信息提取出来。
可以使用摘要、注释、标记等方式进行标记和记录,以便于后续的分析和比较。
(四)分析解读:根据研究的目的和问题,选择适当的分析方法进行材料的解读。
常见的分析方法包括:内容分析、比较分析、语境分析、符号分析等。
通过对材料中的信息进行分析和解读,可以发现其中的规律、关系和意义。
(五)总结归纳:在分析解读的基础上,对材料分析的结果进行总结和归纳。
可以从多个角度和维度出发,提炼出材料中的共性、差异和趋势。
确保总结归纳的结果能够回答研究问题,并对研究对象提出相应的结论。
二、材料分析方法的技巧和注意事项(一)注重材料的质量和可信度:在进行材料分析时,需要注重材料的质量和可信度。
应该选择权威的、可靠的和有代表性的材料进行分析,避免不合理偏见和无根据的推测。
(二)注重材料的多样性和综合性:材料分析应该尽量采用多种来源、多种类型、多个角度的材料进行分析。
通过综合分析不同类型的材料,可以获得更全面、准确和全面的研究结果。
(三)注重材料的背景和语境:在进行材料分析时,需要考虑材料的背景和语境。
包括作者的身份、时代背景、社会环境等因素,这些因素会对材料的解读和理解产生重要影响。
(四)注重材料的内外联系:对于同一研究对象的不同材料,应该注重它们之间的内在联系和外在联系。
内在联系指的是不同材料之间的关联和互动,而外在联系指的是材料与研究对象之间的关系。
通过分析内外联系,可以深入理解研究对象的本质和特点。
(五)注重材料的深度和广度:材料分析应该注重深度和广度的平衡。
一X射线基础1 X射线:是一种波长很短的电磁波(0.05-0.25nm,可见光390-760nm)。
X射线能使气体电离,使照相底片感光,能穿过不透明的物体,还能使荧光物质发出荧光。
呈直线传播,在电场和磁场中不发生偏转;当穿过物体时仅部分被散射。
产生条件:产生自由电子;使电子做定向高速运动;在电子运动的路径上设置使其突然减速的障碍物。
产生方式:利用类似热阴极二极管装置,用一定材料制作的板状阳极(靶)和阴极(灯丝)密封在一个玻璃-金属管壳内,阴极通电加热,在两极间加直流高压U,则阴极产生的热电子将在高压电场作用下飞向阳极,在碰撞的瞬间产生X射线。
连续X射线:强度随波长连续变化的谱线,波长从一最小值(短波限)向长波伸展,并在一波长处有强度最大值。
受管电压U、管电流I和阳极靶材原子序数Z的作用。
U提高,强度提高,短波限和强度最大值对应的波长减小;I提高,强度提高;Z越高,强度越大。
根据量子力学,在管电压作用下电子动能为eU,若电子碰撞时把全部能量给予一个光子,则使其获得最大能量,,此光量子的波长即为短波限。
绝大多数到达阳极靶面的电子经多次碰撞消耗能量,每次碰撞产生一个光量子,并以均大于短波限的波长辐射,产生连续谱。
特征X射线:管电压增高到一定值时,在连续谱的某些特定的波长位置会出现一系列强度很高、波长范围很窄的线状光谱,其波长只取决于阳极靶材元素的原子序数,可作为阳极靶材的标志或特征。
莫塞莱定律:(Z越大,特征谱波长越短)。
经典原子模型,电子分布在一系列量子化壳层上,内层电子被激出后原子将处于激发状态,必然自发向稳态过渡,此时外层电子将填充内层空位,相应伴随着原子能量的降低。
原子从高能态变成低能态时,多出的能量以X射线形式辐射出来。
物质一定,原子结构一定,两特定能级间的能量差一定,故辐射出的特征X射波长一定。
特征谱强度随U和I的提高而增大。
2 X-ray与物质的相互作用1)散射:相干散射:当X射线与原子中束缚较紧的内层电子相撞时,光子方向改变但能量无损失,产生波长不变的散射线,可发生干涉,是x射线衍射的基础。
(汤姆逊散射)非相干散射:当X射线光子与束缚不大的外层电子或价电子或金属晶体中的自由电子相撞,电子被撞离原子带走一部分光子的能量成为反冲电子,损失了能量的光子被撞偏一个角度。
散布于各方向的散射波波长不等,不能发生干涉。
(康-吴效应)2)真吸收(光电效应、俄歇效应和热效应消耗):入射x射线能量足够大时,可将内层电子击出,产生光电效应。
被击出的电子为光电子;外层电子向内层跃迁,辐射出波长严格一定的特征x射线,因属于光致发光的荧光现象,成为荧光X射线。
原子外层电子跃迁填补内层空位后释放能量并产生新的空位,这些能量被包括空位层在内的临近原子或较外层电子吸收,受激发逸出原子的电子叫做俄歇电子。
(荧光效应用于表层重元素>20的成分分析;俄歇效应用于表层轻元素的成分分析)3)衰减X射线吸收规律:强度为I的特征X射线在均匀物质内部通过时,强度的衰减与在物质内通过的距离x成比例,即-dI/I=μdx 。
线吸收系数:即为上式中的μ,指在X射线传播方向上,单位长度上的X射线强弱衰减程度。
质量吸收系数:X射线通过单位面积上单位质量物质后强度的相对衰减量,拜托密度影响。
吸收限:当吸收物质一定时,波长越长越容易被吸收,但吸收系数并不随波长减小单调下降,会有几个跳跃台阶(对应荧光辐射吸收)。
①根据样品化学成分选择靶材:要求尽可能少激发荧光辐射,入射线波长略长于样品的吸收线或短很多。
Z靶≤Z样+1或Z靶>>Z样②滤片选择:滤去K系谱线中的Kβ线,使其吸收线位于K系谱线直接,尽可能靠近Kα线。
Z靶<40,Z滤=Z靶-1;Z靶>40,Z滤=Z靶-2 1分析下列荧光辐射产生的可能性,为什么?答:根据经典原子模型,原子内的电子分布在一系列量子化的壳层上,在稳定状态下,每个壳层有一定数量的电子,他们有一定的能量。
最内层能量最低,向外能量依次增加。
根据能量关系,M、K层之间的能量差大于L、K成之间的能量差,K、L层之间的能量差大于M、L层能量差。
由于释放的特征谱线的能量等于壳层间的能量差,所以Kß的能量大于Ka的能量,Ka能量大于La的能量。
因此在不考虑能量损失的情况下:CuKa能激发CuKa荧光辐射;(能量相同)CuKß能激发CuKa荧光辐射;(Kß>Ka)CuKa能激发CuLa荧光辐射;(Ka>la)2为什么出现吸收限?K吸收限只有一个而L吸收限有三个?当激发K系荧光Ⅹ射线时,能否伴生L系?当L系激发时能否伴生K系?一束X射线通过物体后,其强度将被衰减,它是被散射和吸收的结果。
并且吸收是造成强度衰减的主要原因。
物质对X射线的吸收,是指X射线通过物质对光子的能量变成了其他形成的能量。
原子系统中的电子遵从泡利不相容原理不连续地分布在K,L,M,N等不同能级的壳层上,当外来的高速粒子(电子或光子)的动能足够大时,可以将壳层中某个电子击出原子系统之外,从而使原子处于激发态。
这时所需的能量即为吸收限,它只与壳层能量有关。
即吸收限只与靶的原子序数有关,与管电压无关。
因为L层有三个亚层,每个亚层的能量不同,所以有三个吸收限,而K只是一层,所以只有一个吸收限。
激发K系光电效应时,入射光子的能量要等于或大于将K电子从K层移到无穷远时所做的功Wk。
从X射线被物质吸收的角度称入K 为吸收限。
当激发K系荧光X射线时,能伴生L系,因为L系跃迁到K系自身产生空位,可使外层电子迁入,而L系激发时不能伴生K系。
3计算当管电压为50 kv时,电子在与靶碰撞时的速度与动能以及所发射的连续谱的短波限和光子的最大动能。
电子静止质量:m0=9.1×10-31kg 光速:c=2.998×108m/s电子电量:e=1.602×10-19C 普朗克常数:h=6.626×10-34J.s电子从阴极飞出到达靶的过程中所获得的总动能为 E=eU=1.602×10-19C×50kv=8.01×10-18kJ由于E=1/2m0v02 所以电子与靶碰撞时的速度为v0=(2E/m0)1/2=4.2×106m/s所发射连续谱的短波限λ0的大小仅取决于加速电压λ0(Å)=12400/v(伏) =0.248Å辐射出来的光子的最大动能为 E0=hʋ0=hc/λ0=1.99×10-15J二X 射线衍射方向1 七种晶系(立方3、正方2、斜方4、菱方1、六方1、单斜2、三斜1),十四种布拉菲点阵2 晶向指数[uvw] 晶面指数(hkl )晶带定律:hu+kv+lw=03晶面:在空间点阵中可以作出相互平行且间距相等的一组平面,使所有的节点均位于这组平面上,各平面的节点分布情况完全相同,这样的节点平面成为晶面。
晶面间距:两个相邻的平行晶面的垂直距离。
4推导劳埃方程和布拉格方程1)假定①满足干涉条件②X-ray 单色且平行。
在一维原子排列中,如图,以α0为入射角,α为衍射角,相邻原子波程差为a(cosα-cosα0),产生相长干涉的条件是波程差为波长的整数倍,即:a(cosα-cosα0)=h λ。
式中:h 为整数,λ为波长。
一般地说,晶体中原子是在三维空间上排列的,所以为了产生衍射,必须同时满足:a(cosα-cosα0)=h λ,b(cosβ-cosβ0)=k λ,c(cosγ-cosγ0)=l λ,此三式即为劳埃方程。
2)假定①X-ray 单色且严格平行②晶体中包含无穷多个晶面③原子不做热振动④原子简化为一个集合点。
晶体可看成由平行的原子面组成,晶体的衍射线也当是由原子面的衍射线叠加而得。
晶体对X 射线的衍射可视为某些原子面对X 射线的反射。
将衍射看成反射,是导出布拉格方程的基础。
假设:1)晶体视为许多相互平行且d 相等的原子面 2)X 射线可照射各原子面 3)入射线、反射线均视为平行光一束波长为λ的平行X 射线以θ照射晶体中晶面指数为(hkl)的各原子面,各原子面产生反射。
x 射线有强的穿透能力,在x 射线作用下晶体的散射线来自若干层原子面,除同一层原子面的散射线互相干涉外,各原子面的散射线之间还要互相干涉。
这里任取两相邻原子面的散射波的干涉来讨论。
过D 点分别向入射线和反射线作垂线,则AD 之前和CD 之后两束射线的光程相同,它们的程差为=AB+BC =2dsin θ。
当光程差等于波长的整数倍时,相邻原子面散射波干涉加强,即干涉加强条件为:λθn d =sin 2——布拉格方程 n 为反射级数其中d :晶面间距θ:入射线与晶面的夹角n:为整数,称为反射级数λ:波长5、证明厄瓦尔德球图解法等价于布拉格方程根据倒易矢量的定义O*G=g ,于是我们得到k '-k=g 。
由O 向O*G 作垂线,垂足为D ,因为 g 平行于(hkl )晶面的法向N hkl ,所以OD 就是正空间中(hkl )晶面的方位,若它与入射束方向的夹角为θ,则有O ∗G ̅̅̅̅̅̅̅=OO ∗̅̅̅̅̅̅sin θ 即 g/2=ksin θ 由于 g=1/d k=1/λ 故有 2dsin θ =λ同时,由图可知,k '与k 的夹角(即衍射束与透射束的夹角)等于是2θ,这与布拉格定律的结果也是一致的。
6 布拉格方程的讨论将衍射看成反射,是其基础。
但衍射是本质,反射只是方便描述。
而且X 射线只有在满足布拉格方程的θ角才能反射,称为选择反射。
波长为λ的入射线,以θ角投射到晶体中间距为d 的晶面时,有可能产生反射(衍射)线,条件是相邻晶面反射线的波程差为波长整数倍。
1)反射级数n :把(hkl)的n 级反射看做(nh nk nl)的一级反射,即(hkl)的n 级反射可看成是来自某种虚拟晶面的一级反射。
2(d/n)sin θ=λ2)干涉面指数:(nh nk nl)写为(HKL),称为反射面或干涉面,是虚拟晶面,其面间距为d/n 。
一般所用面间距为干涉面间距。
3)掠射角:入射角与晶面的夹角,表征衍射方向。
sin θ=λ/2d 。
d 相同的晶面,必然在θ相同的情况下才能获得反射;λ一定是,d 减小,θ就要增大,这说明间距小的晶面,其掠射角必须是较大的,否则它们的反射线就无法加强。
4)衍射极限条件:sin θ≤1,所以n ≤2d/λ。
说明d 一定时,λ减小,n 可增大,说明对同一晶面,当采用短波X 射线时可获得较多级数的反射,衍射花样复杂;d ≥λ/2,说明只有间距大于等于x 射线半波长的干涉面才能参与反射。
5)应用:1)利用已知波长的X 射线照射获得晶体中面间距d ,从而揭示晶体的结构,即结构分析。
2)利用已知面间距的晶体来反射从样品发射的X 射线,通过衍射角的测量求波长,即X 射线光谱学,这是电子探针的原理。