图形的旋转导学案
- 格式:doc
- 大小:150.50 KB
- 文档页数:2
《10.3图形的旋转》导学案班级:姓名:【学习目标】1.通过观察具体实例认识旋转,归纳旋转的概念及其三要素.2.探索图形的旋转概念、特征,体会抽象、类比、分类讨论、由特殊到一般等思想方法.3.会用图形的旋转知识解决问题.【学习过程】一、创设情境—发现问题生活中有哪些旋转现象?请举例说明.二、自主探究—提出问题旋转的概念:在平面内,将一个图形绕着某一个转动,像这样的运动称为图形的旋转.旋转三要素:、和.三、合作探究—分析问题仿照视频,利用手中的工具,画出旋转后的三角形,记为△A'B'C',标记旋转中心为点O.探究1观察两个三角形,你能发现有哪些相等的数量关系吗?测量:(1)AB=cm,AC=________cm,BC=_______cm,A'B'=______cm,A'C'=_______cm,B'C'=______cm.(2)∠CAB=_____o,∠ABC=______o,∠BCA=_____o,∠C'A'B'=____o,∠A'B'C'=_____o,∠B'C'A'=____o.结论1:_________________________________________________________.探究2连接OA、OB、OC、OA´、OB´、OC´,你又能发现哪些相等的线段?测量:OA=__________cm,OB=_______cm,OC=______cm,OA'=_________cm,OB'=_______cm,OC'=______cm.结论2:_________________________________________________________.探究3你还能发现哪些相等的角?测量:∠AOA'=________o,∠BOB'=_______o,∠COC'=_______o.结论3:_________________________________________________________.旋转的特征1.对应线段_______,对应角_______,图形的形状与大小_______.(保形)2.对应点到旋转中心的_______相等.(保距)3.图形中每一点都绕着________按_________旋转了______的角度.(保角)四、运用新知—解决问题例1如图,△ABC是等边三角形,D是BC上一点,△ABD经过逆时针旋转后到达△ACE的位置.(1)旋转中心是点.(2)旋转了度.(3)如果M是AB的中点,那么经过上述旋转后,点M转到了位置上.例2如图,D是等腰直角△ABC外一点,AB是斜边,△ACD绕点C顺时针旋转到达△BCE的位置.(1)若BE=6,则AD=.(2)若∠CAD=20°,则∠CBE=.(3)∠CED的度数是.五、课堂小结—升华思维1.本节课探究了什么问题,你学到了哪些知识?2.本节课我们经历了怎样的学习过程,是如何来研究图形的旋转的?3.平移、轴对称、旋转之间有什么相同点?六、课后作业—发展创新基础型作业:教科书习题10.3第1题,第2题.发展型作业:以小组为单位,综合运用图形变换的知识,为即将到来的母亲节创作一份礼物.在创作中享受数学之美!数学之妙!。
小学五年级数学下册《图形的旋转》导学案学习目标:1.认识图形的旋转,探索图形旋转的特征和性质,能在方格纸上把筒单图形旋转90度。
2.学生初步学会应用对称,平移和旋转的方法在方格纸杀个设计图案。
3.观察,想象,分析和推理等过程,独立探究,增强空间观念。
学习重点:掌握轴对称图形、特征。
新知识一、激趣定标(1)自学P5――6的例3和例4(2)在日常生活中大家还见过哪些轴对称图形呢?(3)课文第3页的六幅图。
画出这些轴对称图形的对称轴。
(4)我还能提出什么问题?怎么解答?二、自学互动(适时点拨)1.课文第5页例题3的钟面。
(1)观察,描述旋转现象(2)根据旋转现象,想想看,要想把一个旋转现象描述清楚,应该从哪些方面去说明?2、课文第5页例题例3的风车。
(1)从图1到图2,风车发生了怎样的变化呢?你是怎样判断风车旋转的角度的?(2)风车旋转后,每个三角形的位置都发生了变化,那什么没有发生变化?(3)如果将风车在图2的基础上,继续绕点O逆时针旋转180°,那么黄色的三角形应该转到什么位置?这条线段应该转到什么位置?3、课文第5页例4.(1)自己尝试画一画。
(2)作品展示,交流画法。
4、我的收获三、达标检测一、认真思考,准能填好。
1.变换图形的位置可以有()、()等方法;按比例放大或缩小图形可以改变图形的()而不改变它的()2.圆是轴对称图形,它有()条对称轴。
在我们学习认识过的平面图形中,是轴对称图形的还有()。
3.将一个三角形按2:1的比放大后,面积是原来的()倍。
4.一个30。
的角,将它的一条边旋转()。
可得到一个直角。
5.长方形有()条对称轴;正方形有()条对称轴;圆有()条对称轴。
二、仔细推敲,准确判断。
1.线段也是轴对称图形。
()2.将一个平行四边形木框拉成一个长方形后、周长不变,面积不变。
()3.把一个图按1:3的比缩小后,周长会比原来缩小3倍,面积会比原来缩小6倍。
()三、反复权衡,慎重选择。
23.1图形的旋转学习目标:1)认识旋转,理解图形旋转的三要素。
2)理解旋转的性质。
3)利用旋转的性质设计图形。
学习重点:理解旋转的性质。
学习难点:利用旋转的性质设计图形。
学习过程1)课前导入提问:参照摩天轮的运动轨迹,钟表的时针和风扇叶片的转动过程,你发现了什么?它们都是沿某个方向绕定点转动。
2)课堂探究一、认识旋转【小结】旋转的概念:在平面内,把一个平面图形绕着平面内一个定点沿某一方向转动一个角度,就叫做图形的旋转。
这个定点叫做旋转中心。
转动的角叫做旋转角。
【基础巩固】问题一如果图形上的点P经过旋转变为点P′,那么这两个点P和P′叫做这个旋转的对应点.旋转中心是点O,旋转角度是120°.问题二如图,△ABC是等边三角形,D是BC边上的中点,△ABD经过旋转后到达△ACE的位置,那么1)旋转中心是点A;2)点B、D的对应点分别是点C和点E;3)线段AB、BD、DA的对应线段分别是AC、CE、AE;4)∠B的对应角是∠ACE;5)旋转角度为60°;二、探究旋转的性质探索与思考如图所示,在硬纸板上,挖一个三角形洞,再另挖一个小洞O作为旋转中心硬纸板下面放一张白纸.先在纸上描出这个挖掉的三角形图案(△ABC),然后围绕旋转中心转动硬纸板,再描出这个挖掉的三角形(△A′B′C′),移开硬纸板。
回答一下问题:1)OA与OA′、OB与OB′、OC与OC′分别有何关系?分别相等2)∠AOA′、∠BOB′、∠COC′之间有何关系?分别相等3)△ABC与ΔA'B'C'的形状和大小有什么关系?全等【小结】旋转的性质:1)旋转前、后的图形全等。
2)对应点到旋转中心的距离相等。
3)对应点与旋转中心所连线段的夹角等于旋转角。
三、利用旋转的性质画图问题四如图,将△ABC绕点O顺时针旋转180°后得到△A1B1C1.请你画出旋转后的△A1B1C1.问题五如何确定它们的旋转中心位置?找到两条对应点连线段的垂直平分线的交点.【练一练】1.在以下生活现象中,属于旋转变换的是()A.钟表的指针和钟摆的运动B.站在电梯上的人的运动C.坐在火车上睡觉的旅客D.地下水位线逐年下降【详解】解:A、钟表的指针和钟摆的运动都是旋转变换,故本选项正确;B、站在电梯上的人的运动属于平移现象,故本选项错误;C、坐在火车上睡觉,属于平移现象,故本选项错误;D、地下水位线逐年下降属于平移现象,故本选项错误;故选:A.2.如图,在正方形网格中,线段AB绕点O旋转一定的角度后与线段CD重合(C、D均为格点,A的对应点是点C),若点A的坐标为(-1,5),点B的坐标为(3,3),则旋转中心O点的坐标为()A.(1,1)B.(4,4)C.(2,1)D.(1,1)或(4,4)【详解】解:作AC、BD的垂直平分线交于点E,点E 即为旋转中心,E (1,1),故选:A.3.如图,一块直角三角板ABC (∠A =60°)绕点C 顺时针旋转到△A ′B ′C ,当B ,C ,A ′在同一条直线上时,三角板ABC 旋转的角度为()A.150°B.120°C.60°D.30°【详解】解:由旋转得:ACA 为旋转角,6,090A ABC ∵,150ACA AB A C ,即三角板ABC 旋转的角度为150 ,故选:A.4.如图,若正方形EFGH 由正方形ABCD 绕某点旋转得到,则可以作为旋转中心的是()A.M 或O 或N B.E 或O 或C C.E 或O 或N D.M 或O 或C 【详解】试题分析:若以M 为旋转中心,把正方形ABCD 顺时针旋转90°,A 点对应点为H ,B 点对应点为E ,C 点对应点为F ,D 点对应点为G ,则可得到正方形EFGH ;若以O 为旋转中心,把正方形ABCD 旋转180°,A 点对应点为G ,B 点对应点为H ,C 点对应点为E ,D 点对应点为F ,则可得到正方形EFGH ;若以N 为旋转中心,把正方形ABCD 逆时针旋转90°,A 点对应点为F ,B 点对应点为G ,C 点对应点为H ,D 点对应点为E ,则可得到正方形EFGH .故选A.5.如图,将△ABC 绕着点C 顺时针旋转50 后得到A B C .若40A ,110B ,则BCA 的度数是()A.30°B.40 C.80 D.110 【详解】解:由旋转的性质得:110B B ,50ACA ,40A ∵,18030BCA A B ,305080BCA BCA ACA ,故选:C.6.如图,将△ABC 绕点A 顺时针旋转60°得到△AED .若线段AB =3,则BE =()A.2B.3C.4D.5【详解】解:由旋转可知AE =AB =3,∠BAE =60°,∴△ABE 为等边三角形,∴BE =AB =3.故选:B.7.如图,方格纸中,将Rt △AOB 绕点B 按顺时针旋转90°后可以得到Rt △A ′O 'B 的是()A.B.C.D.【详解】解:A.选项是原图形的对称图形,故A不正确;B.选项是Rt△AOB绕点B按顺时针方向旋转90°后得到Rt△A′O′B,故B正确;C.选项旋转后的对应点错误,即形状发生了改变,故C不正确;D.选项是按逆时针方向旋转90°,故D不正确;故选:B.8.相信同学们都玩过万花筒,如图是某个万花筒的造型,图中的小三角形均是全等的等边三角形,那么图中的菱形AEFG可以看成是把菱形ABCD以A为旋转中心()A.顺时针旋转60°得到B.顺时针旋转120°得到C.逆时针旋转60°得到D.逆时针旋转120°得到【详解】解:根据旋转的意义,观察图片可知,菱形AEFG可以看成是把菱形ABCD以A为中心逆时针旋转120 得到.故选:D.9.在如图所示的直角坐标(1)分别写出A ,B 两点的坐标.(2)将△ABC 绕点A 顺时针旋转90°,画出旋转后的△AB 1C 1.(3)分别写出B 1,C 1两点的坐标.【答案】(1)解:由图可知:(2,0)A 、(1,4)B ;(2)解:如图所示,△11AB C 即为所求.(3)解:由(2)图可知: 11(2,3),1,1B C .10.如图,在ΔABC 中,∠ACB =90°,AC =BC ,D 是AB 边上一点(点D 与A ,B 不重合),连接CD ,将线CD 绕点C 按逆时针方向旋转90°得到线段CE ,连接DE 交BC 于点F ,连接BE .(1)求证:ΔACD ≌ΔBCE ;(2)当AD =BF 时,求∠BEF 的度数.【答案】(1)证明:∵90ACB90ACD DCB又∵CD 绕点C 按逆时针方向旋转90°得到线段CE ∴90DCE ,CD =CE∴90BCE DCB∴ACD BCE在ACD △和BCE 中:AC BC ACD BCE CD CE∴ACD BCE △△(SAS)(2)解:由第一问知,ACD BCE △△∴AD =BE ,∠CAD =∠CBE又∵AD =BF∴BE =BF在ACB △中,AC =BC ,90ACB∴45CAD CBA在BEF 中,BE =BF ,∠CBE =45∴1(18045)67.52BEF BFE。
《图形的旋转》导学案保亭思源小学黄海娟学习内容:(人教版)数学五年级下册第83的例1至84页的例2及做一做。
学习目标:1.进一步认识旋转,明确旋转的含义,理解旋转的三要素。
2.能在方格纸上把三角形旋转90°进一步认识在旋转过程中旋转图形的特征。
学习重点:认识旋转,理解旋转的三要素及特征。
学习难点:认识在旋转过程中旋转图形的特征。
学习过程:一、激趣定标1、创设情境,引入课题师:同学们,很多数学知识来源于生产、生活,只要我们留心观察,就会有所发现。
请看大屏幕。
出示图片学生观察。
提问:你看到了什么?(学生回答)今天这一节课老师将和同学们一起来学习图形的旋转。
(板书课题)2、出示目标,齐读目标。
二、自学互动、适时点拨【活动一】:认识旋转1说说生活中还有的旋转现象。
师:旋转现象在我们的生活中随处可见,你还能在我们的周围生活中找到旋转的例子吗?(学生汇报)2、认识旋转现象的共同特点。
师:通过刚才同学们看到的、听到的和自己想到的这么多的旋转现象,你们能说说旋转现象有哪些共同特点吗?(学生汇报)师板书:旋转中心旋转方向旋转角度顺时针逆时针3、学习例1学习方式:小组合作、汇报交流学习任务:观察钟面上的指针并把下面的三句话补充完整:从“1”到“”,指针绕点O按顺时针方向旋转了 60°;从“3”到“6”,指针绕点O按顺时针方向旋转了°;从“6”到“12”,指针绕点O按顺时针方向旋转了°;学生汇报成果时师点拨引导概括旋转的意义,并理解旋转的三要素:旋转中心、旋转方向、旋转角度。
即时练习:第80页的“做一做”。
【活动二】认识图形旋转的特征学习内容:学习例2学习方式:小组合作、汇报交流学习任务:1、小组合作将直角三角尺固定在方格纸上绕点O每次按顺时针方向旋转三角形90°,观察每次旋转后三角尺的位置是如何变化的?2、操作与交流:①、旋转后,三角尺什么变了?什么没变?②、用自己的话说说三角尺旋转后的现象。
《图形的旋转》导学案一、教学目标1. 知识与技能:使学生能够在方格纸上画出一个图形的旋转图形,能够根据旋转后的图形确定旋转中心和旋转角,并理解对应点与旋转中心所连线段的夹角就是旋转角。
2. 过程与方法:通过观察、操作、想象,培养学生的观察能力、操作能力和空间想象力。
3. 情感态度和价值观:激发学生探索图形变化的兴趣,体会数学在生活中的应用。
二、教学重点使学生理解图形旋转的特征,学会在方格纸上画出一个图形旋转90°后的图形。
三、教学难点如何确定旋转中心及旋转角。
四、教学过程1. 导入通过生活中的旋转现象,如钟表的指针、开锁等,引导学生发现旋转的普遍性和趣味性,从而引出课题——《图形的旋转》。
2. 新课讲授(1)初步感知旋转出示一些简单的图形,如线段、角、三角形等,让学生观察这些图形旋转后的样子,引导学生发现旋转的特征:大小不变,形状不变,方向改变。
(2)探究旋转三要素让学生动手操作,尝试将一个图形旋转一定的角度,并引导学生发现旋转的三要素:旋转中心、旋转方向、旋转角度。
重点强调旋转中心是旋转的点,旋转方向可以是顺时针或逆时针,旋转角度是旋转的大小。
(3)学习在方格纸上画出一个图形旋转90°后的图形以正方形为例,引导学生学习如何在方格纸上画出一个图形旋转90°后的图形。
步骤如下:a. 找到旋转中心,通常是对角线的交点。
b. 以旋转中心为中心,画一个半径等于对应点到旋转中心的距离的圆。
c. 将对应点沿圆弧旋转90°,得到新的对应点。
d. 连接新的对应点,得到旋转后的图形。
3. 巩固练习让学生独立完成一些图形的旋转练习,加深对旋转的理解和掌握。
4. 课堂小结通过提问方式,让学生回顾本节课所学内容,总结旋转的特征和画法。
五、作业布置1. 完成课后练习题。
2. 观察生活中还有哪些旋转现象,并尝试用今天所学的知识进行解释。
六、板书设计图形的旋转一、旋转的特征:大小不变、形状不变、方向改变二、旋转的三要素:旋转中心、旋转方向、旋转角度三、在方格纸上画出一个图形旋转90°后的图形的方法四、生活中的旋转现象通过本节课的学习,我们了解了图形旋转的特征和画法,希望大家能够灵活运用所学知识,解决实际问题。
六年级下册数学导学案-3.2图形的旋转(二)北师大版一、教学目标1. 知识与技能:(1)使学生进一步理解旋转的含义,掌握图形旋转的基本方法。
(2)使学生能够运用旋转的方法解决实际问题,提高学生的空间想象能力。
2. 过程与方法:(1)通过观察、操作、讨论等活动,让学生体验图形旋转的过程,培养学生的动手操作能力和合作意识。
(2)通过解决实际问题,让学生感受数学与生活的紧密联系,提高学生运用数学知识解决实际问题的能力。
3. 情感态度价值观:(1)激发学生学习数学的兴趣,培养学生的探究精神和创新意识。
(2)培养学生积极参与、团结协作的精神,增强学生的集体荣誉感。
二、教学内容1. 图形的旋转:(1)旋转的定义:将一个图形绕着某一点转动一个角度的图形变换。
(2)旋转的三要素:旋转中心、旋转方向、旋转角度。
(3)旋转的基本性质:图形旋转后,对应点与旋转中心所连线段的夹角等于旋转角;对应点到旋转中心的距离相等。
2. 旋转作图:(1)确定旋转中心、旋转方向和旋转角度。
(2)作图方法:以旋转中心为原点,旋转角度为半径,画出对应点的位置;连接对应点,得到旋转后的图形。
三、教学重点与难点1. 教学重点:(1)理解旋转的含义,掌握旋转的三要素。
(2)掌握旋转作图的基本方法。
2. 教学难点:(1)旋转作图的准确性。
(2)解决实际问题时,运用旋转的方法。
四、教学过程1. 导入:(1)复习上节课的内容,让学生回顾旋转的含义和基本性质。
(2)提出问题:如何将一个图形绕着某一点旋转一定的角度?2. 探究新知:(1)引导学生通过观察、操作,发现旋转的三要素:旋转中心、旋转方向、旋转角度。
(2)通过实例,让学生理解旋转的基本性质,并掌握旋转作图的方法。
3. 巩固练习:(1)让学生独立完成课本上的练习题,巩固旋转作图的方法。
(2)组织学生进行小组讨论,解决实际问题,培养学生的合作意识和解决问题的能力。
4. 课堂小结:(1)让学生总结本节课所学内容,加深对旋转的理解。
六年级下册数学导学案-3.1图形的旋转(一)北师大版一、教学目标1. 知识与技能:(1)了解图形旋转的定义,掌握图形旋转的基本方法。
(2)能正确画出图形旋转后的位置,并描述旋转的过程。
(3)运用旋转知识解决实际问题,提高空间想象力和动手操作能力。
2. 过程与方法:(1)通过观察、实践、交流等环节,培养学生的观察能力、动手能力和团队协作能力。
(2)引导学生运用旋转知识解决实际问题,提高分析问题和解决问题的能力。
3. 情感、态度与价值观:(1)培养学生对数学学习的兴趣和自信心,激发学生的求知欲。
(2)培养学生的空间观念,提高审美素养。
(3)培养学生的团队协作精神,形成积极向上的学习氛围。
二、教学内容1. 图形旋转的定义:图形旋转是指将一个图形绕着某一点转动一个角度的图形变换。
2. 图形旋转的要素:(1)旋转中心:图形旋转的中心点。
(2)旋转方向:图形旋转的方向,如顺时针或逆时针。
(3)旋转角度:图形旋转的角度,通常用度数表示。
3. 图形旋转的方法:(1)直接旋转法:将图形绕旋转中心直接转动到目标位置。
(2)分解旋转法:将图形分解为若干个部分,分别进行旋转,再组合成旋转后的图形。
4. 图形旋转的性质:(1)对应角相等:旋转前后,对应角的大小不变。
(2)对应边相等:旋转前后,对应边的长度不变。
(3)旋转后的图形与原图形相似:旋转后的图形与原图形的形状和大小相同。
三、教学过程1. 导入新课:通过生活中的实例,引导学生了解图形旋转的概念,激发学生的学习兴趣。
2. 探究新知:(1)教师引导学生观察图形旋转的现象,发现旋转的要素。
(2)学生通过实践,掌握图形旋转的方法。
(3)教师讲解图形旋转的性质,引导学生运用性质解决实际问题。
3. 巩固练习:布置一些图形旋转的练习题,让学生独立完成,巩固所学知识。
4. 课堂小结:教师引导学生回顾本节课所学内容,总结图形旋转的定义、要素、方法和性质。
5. 课后作业:布置一些与图形旋转相关的实际问题,让学生运用所学知识解决问题。
23.1图形的旋转(第一课时)龙王中心学校王娇一.教学目标:1.了解旋转及其旋转中心和旋转角的概念.2.了解旋转对应点的概念及应用它们解决一些实际问题.3.通过观察具体实例认识旋转,探索它的基本性质.4.了解图形旋转的特征,并能根据这些特征绘制旋转后的几何图形.二.教学重点和难点:重点:旋转及对应点的有关概念及其应用以及图形旋转的基本性质。
难点:图形旋转的基本性质的归纳与运用三.教学过程:(一)复习引入,自主探究:1.请同学们完成下面各题.(1)观察图片(2)归纳:平移的有关概念及性质。
(3)除了平移这种运动,还有其他运动吗?出示图片(二)探究新知:1.图形的旋转的含义:观察课件上的图片:问题:(1)钟表的指针在不停地转动,如图,从3时到5时,时针转动了多少度?(2)如图,风车风轮的每个叶片在风的吹动下转动到新的位置,以上这些现象有什么共同特点?(课件出示图形)归纳新知,形成概念像这样,把一个平面图形绕着平面内某一点O转动一个角度,叫做图形的旋转.点O叫做旋转中心,转动的角叫做旋转角。
如果图形上的点P经过旋转变为点P′,那么这两个点叫做这个旋转的对应点。
练习:(1)下列现象中属于旋转的有( )个①地下水位逐年下降;②滑雪运动员在雪地上滑行;③方向盘的转动;④水龙头开关的转动;⑤钟摆的运动;⑥荡秋千运动.A.2B.3C.4D.5(2)时钟的时针在不停地旋转,从上午6时到上午9时,时针旋转的旋转角是多少度?从上午9时到上午10时呢?(3)如图,杠杆绕支点转动撬起重物,杠杆的旋转中心在哪里?旋转角是哪个角?(课件出示图形)合作探究在硬纸板上,挖一个三角形洞,再挖一个小洞O作为旋转中心,硬纸板下面放一张白纸.先在纸上描出这个挖掉的三角形图案(△ABC),然后围绕旋转中心转动硬纸板,再描出这个挖掉的三角形(△A′B′C′),移开硬纸板.(课件出示图形)讨论:⑴线段OA与线段OA′间有什么关系⑵∠AOA′与∠BOB′有什么关系?⑶⊿ABC与⊿A′B′C′形状和大小有什么关系?归纳新知:旋转的性质(1)对应点到旋转中心的距离相等.(2)对应点与旋转中心所连线段的夹角等于旋转角. (3)旋转前、后的图形全等(4)图形的旋转是由旋转中心和旋转的角度、方向决定.例题展示如图,E是正方形ABCD中CD边上任意一点,以点A为中心,把△ADE顺时针旋转90度,画出旋转后的图形.(课件出示图形)变式:如图,在正方形ABCD中,E是CB延长线上一点,△ABE经过旋转后得到△ADF,请按图回答:(课件出示图形)(1)旋转中心是哪一点?(2)旋转角是多少度?(3)∠EAF等于多少度?(4)经过旋转,点B与点E分别转到什么位置?(5)若点G是线段BE的中点,经过旋转后,点G转到了什么位置?请在图形上作出.练习:1.如图,小明坐在秋千上,秋千旋转了80°,请在图中小明身上任意选一点P,利用旋转性质,标出点P的对应点。
《图形的旋转》教案1教学目标:1、了解旋转及其旋转中心和旋转角等相关概念.2、理解旋转的基本性质并利用性质解决相关问题.教学重难点:重点:旋转及对应点的有关概念及其应用.难点:从活生生的数学中抽象出概念.教学过程:(一)学生预习教师导学观察下列图片:(1)由平面图形转动而产生的奇妙图案;(2)汽车上的雨刮器.●这些情景中的转动现象,有什么共同特征?(二)学生探究教师引领1、建立旋转的概念:试一试,请同学们尝试用自己的语言来描述以下旋转.问题:单摆上小球的转动由位置A 转到B ,它绕着哪一个点转动?沿着什么方向(顺时针或逆时针)?转动了多少角度?抽象出点的旋转B (图1)图1:在同一平面内,点A 绕着定点O 旋转某一角度得到点B ;图2:在同一平面内,线段AB 绕着定点O 旋转某一角度得到线段CD ;图3:在同一平面内,△ABC 绕着定点O 旋转某一角度得到△DEF .旋转定义:在平面内,将一个图形绕一个定点按某个方向转动一个角度,图形的这种变化称为旋转,这个定点称为旋转中心,转动的角度称为旋转角.对应点到旋转中心的距离相等.旋转的三个要素:旋转中心、旋转角、旋转方向. 思考:①同学们观察图3,点A ,线段AB ,∠ABC 分别转到了什么位置?②请找出图3中其他的对应点、对应线段、对应角,并指出旋转中心和旋转角度. (三)学生展示教师激励:例1如图4-20,如果把钟表的指针看做四边形AOBC ,它绕O 点按顺时针方向旋转得到四边形DOEF .在这个旋转过程中:(1)写出它的旋转中心和旋转角;(2)经过旋转,点A 、C ,B 分别到达什么位置?抽象出三角形的旋转 ·O AB C O F DE(图3) · O AB CD(图2)抽象出线的旋转(3)AO与DO的长有什么关系?你还能在图4-20中找出相等的线段吗?说明理由;(4)∠AOD与∠BOE有什么大小关系?你还能在图4-20中找出相等的角吗?说明理由.解:(1)旋转中心是点O,旋转角是∠AOD.(2)点A,C,B分别旋转到点D,F,E.(3)AO=DO,BO=EO,AC=DF,CB=FE.(4)∠AOD=∠BOE,∠A=∠D,∠C=∠F,∠B=∠E,∠AOB=∠DOE.(四)学生归纳教师提炼:1、从我们看到的旋转现象,你认为旋转的主要决定因素是什么?2、在图形的旋转过程中,哪些发生了改变?哪些没有发生改变?3、在图形的旋转过程中,图形上各个点旋转的角度有什么关系吗?旋转的基本性质:一般地,我们可以得到:一个图形和它经过旋转所得到的图形中,(1)旋转不改变图形的大小,对应边相等,对应角相等.(2)图形上的每一点都绕旋转中心沿相同方向转动了旋转角;(3)任意一对对应点与旋转中心的连线所成的角度都等于旋转角.《图形的旋转》教案2教学目标:知识与技能:1.简单平面图形旋转后的图形的作法.2.确定一个三角形旋转后的位置的条件.过程与方法:1.经历对具有旋转特征的图形进行观察、分析、画图和动手操作等过程,掌握画图技能.2.能够按要求作出简单平面图形旋转后的图形.情感、态度与价值观:1.通过画图,进一步培养学生的动手操作能力.2.在对具有旋转特征的图形进行观察、分析、画图过程中,进一步发展学生的审美观念.教学重、难点:教学重点:简单平面图形旋转后的图形的作法.教学难点:简单平面图形旋转后的图形的作法.教学过程:Ⅰ.巧设情景问题,引入课题[师]上节课我们探讨了生活中的旋转,那什么样的运动是旋转呢?[生]在平面内,将一个图形绕着一个定点沿某个方向转动一个角度,这样的图形运动称为旋转.旋转不改变图形的大小和形状.[师]很好,旋转有什么性质呢?[生]旋转前后两个图形对应点到旋转中心的距离相等;任意一对对应点与旋转中心的连线所组成的角都是旋转角,旋转角彼此相等.[师]很好,大家来看一面小旗子(出示小旗子,然后一边演示一边叙述),把这面小旗子绕旗杆底端旋转90°后,这时小旗子的位置发生了变化,形成了新的图案,你能把这时的图案画出来吗?如下图,在方格纸上作出“小旗子”绕O点按顺时针方向旋转90°后的图案,并简述理由.然后在教师发的纸上画图(教师给每位同学发一张如上图所示的方格纸)(学生观察、分析、动手画图).[师]同学们画好了吗?哪位同学给大家说说你如何画出来的?[生]我在原图上找了四个点,即O点、A点、B点、C点,如图(教师把该生所画的图在投影上放影)这四个点可以是能表示这面小旗子的关键点.因为旋转前后两个图形的对应点到旋转中心的距离相等,对应点与旋转中心的连线所组成的旋转角彼此相等,所以根据已知:要把这面小旗绕O点按顺时针旋转90°.我在方格中找到点A、B、C的对应点A′、B′、C′,然后连接,就得到了所求作的图形.[师]这位同学描述得很好,作出的图案也很漂亮.同学们在作图过程中,基本掌握了作图的一个要点:找图形的关键点,这很让老师为大家高兴.这面小旗子是结构简单的平面图形,在方格纸上大家能画出它绕点旋转后的图形,那么在没有方格纸或旋转角不是特殊角的情况下,能否也画出简单平面图形旋转后的图形呢?这节课我们就来研究:简单的旋转作图.Ⅱ.讲授新课[师]我们通过一例题来说明简单图形旋转后的图形的作法如图,△ABC绕O点旋转后,顶点A的对应点为点D,试确定顶点B、C对应点的位置,以及旋转后的三角形.分析:一般作图题,在分析如何求作时,都要先假设已经把所求作的图形作出来,然后再根据性质,确定如何操作.假设顶点B、C的对应点分别为点E、点F,则∠BOE、∠COF、∠AOD都是旋转角.△DEF就是△ABC绕点O旋转后的三角形.根据旋转的性质知道:经过旋转,图形上的每一点都绕旋转中心沿相同方向转动了相同的角度,即旋转角相等,对应点到旋转中心的距离相等,则∠BOE=∠COF=∠AOD,OE=OB,OF=OC,这样即可求作出旋转后的图形.[师]通过分析知道如何作出△DEF,现在大家拿出直尺和圆规,我们共同来把这一旋转后的图形作出来,要注意把痕迹保留下来.(教师一边叙述,板书作法,一边强调正确使用直尺、圆规,同时作图;学生作图)解:(1)连接OA、OD、OB、OC.(2)如下图,分别以OB、OC为一边作∠BOE、∠COF,使得∠BOE=∠COF=∠AOD.(3)分别在射线OE、OF上截取OE=OB、OF=OC.(4)连接EF、ED、FD.△DEF,就是△ABC绕O点旋转后的图形.[师]同学们画得很好,大家想一想,分组讨论:本题还有没有其他作法,可以作出△ABC绕O点旋转后的图形△DEF吗?(同学们讨论、归纳).[生甲]可以先作出点B的对应点E,连结DE,然后以点D、E为圆心,分别以AC、BC 为半径画弧,两弧交于点F,连结DF、EF,则△DEF就是△ABC绕点O旋转后的图形.[生乙]也可以先作出点C的对应点F,然后连结DF.因为△ABC与△DEF全等,所以既可以用两边夹角,也可以用两角夹边,找到点B的对应点E,即△DEF.[师]同学们讨论得非常精彩.方法多种多样,很好.接下来,大家来想一想在旋转过程中,确定一个三角形旋转后的位置,除需要此三角形原来的位置外,还需要什么条件?[生丙]还需要知道绕哪个点旋转,旋转的角度是多少?[生丁]就是要知道旋转中心和旋转角.[师]很好,由此我们可以知道,要确定一个三角形旋转后的位置的条件为:(1)三角形原来的位置.(2)旋转中心.(3)旋转角.这三个条件缺一不可.只有这三个条件都具备,我们才能准确地找到一个三角形绕点旋转后的位置,进而作出它旋转后的图形.下面我们来进行更多例题进一步熟悉简单平面图形旋转后的图形的作法.例2 如图4-21,已知线段AB和线段AB所在直线外的一点O,画出线段AB绕点O按逆时针方向旋转45°后的线段.解:(1)连接OA,OB;(2)以OA为一边在OA边的下方画∠AOC=45°,并在OC上截取OM=OA;(3)以OB为一边在OB边的左侧画∠BOD=45°,并在OD上截取ON=OB;(4)连接MN.(如图4-22)线段MN就是线段AB绕点O按逆时针方向旋转45°后的线段.例3 如图4-23△ABC绕C点旋转后,顶点A的对应点为点D.试画出顶点B的对应位置,以及旋转后的三角形.分析:因为点C为旋转中心,点A与点D是对应点,所以∠ACD是旋转角;.假设顶点B的对应点为E,则∠BCE=∠ACD,且CE=CB.解:(1)连接CD;(2)以CB为一边作∠BCF,使得∠BCF=∠ACD;(3)在射线CF上截取CE=CB;(4)连接DE.(如图4-24)△DEC就是△ABC绕O点旋转后的图形.你还能用其它方法作出例3中的△DEC吗?Ⅲ.课堂练习在下图中,将大写字母N绕它右下侧的顶点按顺时针方向旋转90°,作出旋转后的图案.解:如下图,先确定字母N的四个端点绕它右下侧的顶点按顺时针方向旋转90°后的位置,然后连线.Ⅳ.课时小结本节课我们通过作平面图形旋转后的图形,进一步理解了旋转的性质,并且还知道要确定一个三角形旋转后的位置,需要有:①此三角形原来的位置.②旋转中心.③旋转角等三个条件.在作图时,要正确运用直尺和圆规,进而准确作出旋转后的图形.要注意语言的表达.《图形的旋转》教案3教学目标:1、能够按照要求做出简单的图形旋转后的图形.2、继续利用旋转的性质解决相关问题.教学重难点:1、旋转及对应点的有关概念及其应用.2、利用旋转的性质解决相关问题.教学过程:一.新课引入1.如图,把一块砖ABCD直立于地面上,然后将其轻轻推倒,在这个过程中A点保持不动,四边形ABCD旋转到AD′C′B′位置.(1)指出在这个过程中的旋转中心,并说出旋转角度是多大?(2)指出图中的对应线段.C’’分析:因为四边形AD′C′B′是由四边形ABCD旋转得到的,A保持不动,因此A是旋转中心,又因为AB、AD′在同一平面上,且AD垂直于地面,对应线段AB与AB′成90°,因此旋转角度是90°;(2)中由于点A、B、C、D的对应点分别是A、B′、C′、D′,找出了对应点,对应线段也就不难找了.答案:(1)旋转中心是A,旋转角度是90°.(2)对应线段分别是:CD与C′D′,AB与AB′,AD与AB′,BC与B′C′.方法提炼:解答这类题目,应该看哪个点不动,在旋转过程中,图形中的点都动,哪个点不动,哪个点就是旋转中心,只要找出了对应点,对应线段自然可得,抓住“动”与“不动”.难点:运用旋转的特征解决一些实际问题,培养分析问题和解决问题的能力,突破难点的途径应多动手操作,充分认识“图形在旋转过程中每一点与该对应点到旋转中心的距离都相等”这一性质去理解和运用旋转的其它性质.2.如图,正方形ABCD中,E是正方形内一点,把△ADE绕点A按逆时针方向旋转90°,得到旋转后的三角形并回答:(1)图中有哪些相等的线段和相等的角;(2)哪两个三角形的形状、大小都一样.在这个运动'BE =.相等的角有:'''BAE DAE BA E EDA E E ∠=∠∠=∠∠=∠,,(除直角外).(2) △ADE 与△ABE ′的形状和大小都一样.方法提炼:解答这类题目,应考虑旋转的特征,是绕什么点旋转的,图形中的每个点都旋转相同的角度,对应线段相等,对应角相等,关键是是否旋转.二.例题解析例4 画一个腰长等于3的等腰直角三角形ABC ,取一个锐角为45°的三角尺,把三角尺的直角顶点放在Rt △ABC 的斜边BC 的中点O 处,并使三角尺的一条直角边经过点A ,另一条直角边经过点B (图4-27(1)).将三角尺绕点O 按顺时针方向旋转一个角度,记三角尺的两腰A B ,AC 的交点分别为E ,F (图4-27(2)).在三角尺按图4-27所示的方式绕点O旋转的过程中,线段AE 与CF 的长度有什么关系?OE 与OF 的长度有什么关系?证明你的结论.解:AE =CF ,OE =OF .证明如下:连接AO ,在△AEO 和△CFO 中,∵△ABC 是等腰直角三角形,AO ⊥BC ,垂足为点O ,∴∠EAO =∠C =45°,AO =OC ,∠EOA =∠COF =90°-∠AOF ,∴△AEO ≌△CFO (ASA )∴AE =CF ,OE =OF .在例4中,△COF 能否由△AOE 旋转得到?其旋转中心是哪个点?旋转角是多少度? 解:△COF 能由△AOE 旋转得到,其旋转中心是点O ,旋转角是90°.三.课堂小结本节课旨在解决有关旋转的问题,学会应用旋转知识解决问题.。
八级下册数学科导学案主备人:审核组长:集体备课备注课型新课课题人教版数学八年级下册23.1.1 《图形的旋转》导学案一、学习目标:1、了解旋转及其旋转中心和旋转角的概念,了解旋转对应点的概念及其应用它们解决一些实际问题.2、通过复习平移、轴对称的有关概念及性质,从生活中的数学开始,经历观察,产生概念,应用概念解决一些实际问题.二、学习重难点:1.旋转及对应点的有关概念及其应用.2.从活生生的数学中抽出概念.三、预习感知1、把一个平面图形___着平面内某一点O_____一个角度,就叫做图形的旋转,点O叫做_________,转动的角叫做________。
因此,旋转的决定因素....是_________和_________。
2.钟表的分针匀速旋转一周需要60分.(1)指出它的旋转中心;(2)经过20分,分针旋转了_________度.3.如图,如果把钟表的指针看做三角形OAB,它绕O点按顺时针方向旋转得到△OEF,在这个旋转过程中:(1)旋转中心是______旋转角是__________(2)经过旋转,点A、B分别移动到_______4.如图:∆ABC是等边三角形,D是BC上一点,∆ABD经过旋转后到达∆ACE的位置。
(1)旋转中心是_______(2)旋转了_______度.(3)如果M是AB的中点,那么经过上述旋转后,点M转到了________________.四、合作探究1、旋转的有关概念阅读教材p.59“思考”与p.59练习1的内容,解决下列问题:(1)俄罗斯方块游戏中,图形经过平移和旋转后,可以将下面有些图填满,正好拼成长方形,下图中符合要求的是()A.①和② B.②和③ C.①和③ D.②和④观察教材P.59图23.1-2所示的风车图案,它可以看做是由其中一个梯形绕中心_____6次得到的。
如图⊿ABC旋转到⊿ADE的位置,其中的不动点_____叫做旋转中心,AB转动到AD所形成的角叫做_________,点B和点D叫做旋转的_______.。
图形的旋转学习目标1、掌握旋转的定义以及相关概念2、理解旋转的基本性质3、利用性质解决相关问题。
重点:旋转相关概念以及性质难点:利用性质解决相关问题一、自主学习(一)自主发现观察下列图形,回答问题.(1)上面情景中的转动现象,有什么共同的特征?(2)钟表的指针、秋千在转动过程中,其形状、大小、位置是否发生变化呢?归纳:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点称为旋转中心,转动的角称为旋转角。
旋转不改变图形的大小和形状。
注:旋转三要素①旋转方向②旋转中心③旋转角(二)旋转中对应点、对应角、对应线段1、找一找:请仔细观察此图,点A,线段AB,∠ABC分别转到了什么位置?那点B、点C线段AC、BC,∠ACB、∠BAC呢?对应点:A→______B→______C→______对应边:AB→_____BC→_____AC→_____对应角:∠A→____∠B→____∠C→____2、试一试:如图,△ABO绕点O旋转得到△CDO,则:旋转中心是________;旋转角是_________________;点B的对应点是________;线段OB的对应线段是________;线段CD的对应线段是________;∠AOB的对应角是________;∠B的对应角是________;△AOB的边OB的中点M的对应点在哪里?二、课内探究议一议:如图所示,如果把△ABC绕O点按逆时针方向旋转得到△DEF在这个旋转过程中:1、旋转中心是什么?旋转角是什么?在图形的旋转过程中,哪些发生了改变?哪些没有发生改变?2、经过旋转,点A,B,C分别移动到什么位置?分别连结对应点A、D与旋转中心O,量一量线段OA与线段OD,它们有什么关系?任意找一对对应点,量一下它们与旋转中心的连线段,你能发现什么规律?3、量一下∠AOD的度数,再任意找几对对应点,分别量一下对应点与旋转中心连线段的度数,你又能发现什么规律?旋转的基本特征:1、旋转不改变图形的大小和形状.2、任意一对对应点与旋转中心的连线所成的角度都是旋转角.3、对应点到旋转中心的距离相等三、师生活动、小组展示1、钟表的分针匀速旋转一周需要60分.(1)指出它的旋转中心;(2)经过20分,分针旋转了多少度?2、如图,△ABC是等边三角形,D是BC上一点,△ABD经过旋转后到达△ACE位置。
《图形的旋转(二)》导学案一、教学目标1. 知识与技能:理解旋转的基本性质,掌握图形旋转的三要素(旋转中心、旋转方向、旋转角度),能利用旋转的性质作图,并解决相关问题。
2. 过程与方法:通过观察、操作、思考和探究,培养学生的空间想象能力和逻辑思维能力。
3. 情感态度价值观:激发学生对数学的兴趣,培养学生的合作意识和创新精神。
二、教学重点与难点重点:旋转的基本性质,图形旋转的三要素。
难点:旋转的性质在实际问题中的应用。
三、教学过程1. 导入新课通过简单的旋转实验,引导学生回顾上节课所学的旋转知识,为新课的学习做好铺垫。
2. 自主探究(1)让学生观察图形旋转前后的变化,引导学生发现旋转的三要素:旋转中心、旋转方向、旋转角度。
(2)让学生尝试利用旋转的三要素进行作图,加深对旋转性质的理解。
3. 合作交流将学生分成小组,每组选定一个组长,组织学生进行合作交流,讨论以下问题:(1)如何判断一个图形是否发生了旋转?(2)如何确定旋转中心、旋转方向和旋转角度?(3)如何利用旋转的性质解决实际问题?4. 课堂讲解根据学生的讨论情况,教师进行讲解,重点强调旋转的基本性质和图形旋转的三要素,同时解答学生在探究过程中遇到的问题。
5. 课堂练习布置一些与旋转相关的练习题,让学生独立完成,巩固所学知识。
6. 课堂小结对本节课所学内容进行总结,强调旋转的基本性质和图形旋转的三要素,以及在实际问题中的应用。
7. 课后作业布置一些与旋转相关的作业题,让学生在课后独立完成,加深对旋转知识的理解。
四、教学反思在教学过程中,要注意关注学生的学习情况,及时调整教学策略,确保学生对旋转知识的掌握。
同时,要注重培养学生的合作意识和创新精神,激发学生对数学的兴趣。
通过本节课的学习,学生能够掌握旋转的基本性质,图形旋转的三要素,并能够利用旋转的性质解决实际问题。
在今后的教学中,教师要继续关注学生的需求,提高教学质量,为学生的数学学习奠定坚实的基础。
23.1 图形的旋转导学案
备课时间:5.21 上课时间:5.24 主备人:杨本喜
学习目标:
掌握旋转的有关概念及性质;
通过观察、操作、交流、归纳等过程,培养学生观察能力、探究问题的能力以及与人合作交流的能力。
教学过程
(一)创设情景,引入新知
观察下列图片:
(1)时钟上的秒针在不停的转动;
(2)大风车的转动;
(3)飞速转动的电风扇叶片;
这些情景中的转动现象,有什么共同特征?
(二)探索新知,形成概念
1.建立旋转的概念
(1)试一试,请同学们尝试用自己的语言来描述以下旋转.
问题:单摆上小球的
转动由位置A转到
B,它绕着哪一个点
转动?沿着什么方
向(顺时针或逆时针
)?转动了多少角度
?
图1:在同一平面内,点A绕着定点
O旋转某一角度得到点B;
图2:在同一平面内,线段AB绕着定点O旋转某一角度得到线段CD;
旋转定义:像这样,把一个图形绕着某一点O转动一个角度的图形变换叫做
旋转(rotation).点O叫做旋转中心,转动的角叫做旋转角。
旋转的三个要素
:_____、_____、_____。
情景问题:①请同学们观察图3,点A,线段AB,∠ABC分别转到了什么位
置?
②请找出图3中其他的对应点、对应线段、对应角,并指出旋
转中心和旋转角度。
2.应用旋转的概念解决问题
(1)如图,△ABO绕点O旋转得到△CDO,则:
点B的对应点是点_____;
线段OB的对应线段是线段______;
线段AB的对应线段是线段______;
∠A的对应角是______;
∠B的对应角是______;
旋转中心是点______;
旋转的角是 ______ 。
(2)如图,如果正方形CDEF与正方形ABCD是一边重合的两个正方形,那么正
方形CDEF能否看成是正方形ABCD旋转得到?如果能,请指出旋转中心、旋抽象出点的旋转
·
O
A
B
C
D
(图2)
(3)如图,香港特别行政区区旗中央的紫荆花图案由5个相同的花瓣组成,它是由
其中的一瓣经过几次旋转得到的? 旋转角∠AOB多少度?你知道∠COD等于
多少度吗?
(三)实践操作,再探新知
做一做:
如图,在硬纸板上,挖出一个三角形ABC
一个小洞O
纸。
先在纸上描出这个挖掉的三角形图案
(△ABC),然后围绕旋转中心转动硬纸板,再
描出这个挖掉的三角形(△DEF),移开硬
纸板。
1.从我们看到的旋转现象以及你所完成的实验中,你认为旋转主要因素是什
么?
2.在图形的旋转过程中,哪些发生了改变?哪些没有发生改变?
3.你能通过度量角的方法得出旋转角度吗?你准备度量哪个角?
(四)巩固新知,形成技能
1.如图,如果把钟表的指针看做四边形AOBC,它绕O点旋转得到四边形DOEF.
在这个旋转过程中:
(1)旋转中心是什么?
(2)经过旋转,点A、B分别移动到什么位置?
(3)旋转角是什么?
(4)AO与DO的长有什么关系?BO与EO呢?
(5)∠AOD与∠BOE有什么大小关系?
2.如图,正方形ABCD中,E是AD上一点,将△CDE
逆时针旋转后得到△CBM.如连结EM,那么△
CEM是怎样的三角形?
3.如图:P是等边∆ABC内的一点,把∆ABP通过旋转分别得到∆BQC
和∆ACR,
(1)指出旋转中心、旋转方向和旋转角度?
(2)∆ACR是否可以直接通过把∆BQC旋转得到?
C
A B
D
E
M
C
F
A
R
P
B
Q
C。