LF炉精炼渣的组成及冶金性能的分析
- 格式:doc
- 大小:35.00 KB
- 文档页数:4
浅析LF炉脱硫精炼渣【摘要】随着现代科学技术和工业的发展,对钢材质量(如纯净度)要求越来越高,用普通炼钢炉冶炼出来的钢水已经难以满足其质量的要求。
另外,连铸技术的发展,对钢水的成分、温度和气体的含量等也提出了更严格的要求。
于是就产生了各种将初炼钢水进行炉外精炼的方法。
LF精炼法是其中最常用的一种。
本文对LF法中常用的几种脱硫渣系(如CaO- CaF2、CaO-Al2O3、CaO-Al2O3-CaF2、BaO-MgO-Al2O3-SiO2)的组成及其冶金功能等进行研究与探讨,对精炼渣的发展前景和方向作出展望,为以后精炼渣的开发研究提供了依据和参考。
【关键词】LF精炼渣;脱硫;碱度LF法就是在非氧化性气氛下,通过电弧加热、造高碱度还原渣,进行钢液的脱氧、脱硫、合金化等冶金反应,以精炼钢液。
钢包底部的吹氩搅拌,使钢液与所造的精炼渣充分接触,强化精炼反应,有效去除杂质,促进钢液温度和合金成分的均匀化,为连铸提供温度、成分准确均匀的钢水,协调炼钢与连铸的节奏。
LF合成渣精炼可以更好完成脱硫、脱氧、去除夹杂的任务,从而得到纯净钢水。
1、LF法的精炼原理LF法的工作原理:钢包到站后,将钢包移到精炼工位,加入合成渣料,降下石墨电极插入熔渣中对钢水进行埋弧加热,补偿精炼过程中的温降,同时进行底吹氩搅拌。
LF精炼法通过强化热力学和动力学条件,使钢液在短时间内得到高度净化和均匀。
造白渣进行钢水精炼,可生产超低硫钢和低氧钢。
因此,白渣精炼是LF炉工艺操作的核心,也是提高钢水纯净度的重要保证。
白渣精炼的工艺要点是:①挡渣出钢,控制下渣量小于5kg·t-1钢;②钢包渣改质(一般采用Al2O3-CaO-SiO2系炉渣),控制钢包渣碱度大于2.5~3,渣中W(FeO+MnO)含量小于1.0~3.0%;③保持熔渣良好的流动性和较高的渣温,确保脱硫、脱氧效果;④控制LF炉内为还原性气氛,避免炉渣再次氧化;⑤适当搅拌,避免钢液面裸露,并保证熔池内具有较高的传质速度。
造渣1、LF精炼渣的功能组成LF精炼渣的基本功能:深脱硫;深脱氧、起泡埋弧;去非金属夹杂,净化钢液;改变夹杂物形态;防止钢液二次氧化和保温。
精炼渣的成分及作用:CaO:调整渣碱度及脱硫;SiO2:调整渣碱度及黏度;Al2O3:调整三元渣系处于低熔点位置;CaCO3:脱硫剂、发泡剂;MgCO3、BaCO3、NaCO3:脱硫剂、发泡剂、助熔剂;Al:强脱氧剂;Si-Fe:脱氧剂;CaC2、SiC、C:脱氧剂及发泡剂;CaF2:助熔、调黏度。
在炉外精炼过程中,通过合理地造渣,可以达到脱硫、脱氧、脱磷甚至脱氮的目的;可以吸收钢中的夹杂物;可以控制夹杂物形态;可以形成泡沬渣淹没电弧,提高热效率,减少耐火材料侵蚀。
2、LF炉溶渣的泡沬化LF炉用3根电极加热,为了减少高温电弧对炉衬耐火材料和炉盖的辐射所引起的热损失和侵蚀,要进行埋弧操作。
为使电极能稳定埋在渣中,需调整基础渣以达到良好的发泡性能,使炉渣能发泡并保持较长的埋弧时间。
但是在精炼条件下,由于钢水已经进行了深度不同的脱氧操作,钢中的碳和氧含量都较低,不会产生大量的气体,要形成泡沬渣有一定的困难,因此要加入一定数量的发泡剂,如碳酸盐、碳化物、碳粉等,使炉渣发泡。
影响熔渣发泡效果的主要因素分析(1)熔渣碱度。
熔渣碱度低时发泡效果较好。
(2)基础渣中ω(CaF2)。
实验结果表明:CaF2是表面活性物质,适当配加一定量的萤石,渣容易起泡。
ω(CaF2)=8%时,熔渣发泡效果最好。
但当CaF2过高时,熔渣黏度降低,这不利于泡沬渣的稳定,使发泡持续时间减少。
因此,ω(CaF2)不宜超过10%。
3、白渣精炼(1)白渣精炼,一般采用CaO- SiO2- Al2O3系炉渣,控制渣中ω(FeO+MnO)≤1.0%,保持熔渣良好的流动性和较高的渣温,保证脱硫、脱氧效果。
(2)适当搅拌,避免钢液裸露,并保证熔池内具有较高的传质速度。
总之,LF炉造渣要求“快”、“白”、“稳”、“快”就要在较短时间内造出白渣,处理周期一定,白渣形成越早,精炼时间越长,精炼效果越好;“白”就是要求ω(FeO+MnO)降到1.0%以下,形成强还原性炉渣;“稳”有两方面含义,一是炉与炉之间渣子的性质要稳,不能时好时坏;二是同一炉次的白渣造好后,要保持渣中ω(FeO+MnO)≤1.0%,提高精炼效果。
精炼渣系综述一、目前常用的精炼渣渣系迄今为止,人们已经研究了很多种精炼渣渣系,其中应用最为广泛的要数Ca0基合成渣,这是由于Ca0自身具有很强的脱硫能力,而且其原料非常丰富,价格低廉。
Ca0基渣系有以下几种:①Ca0-CaF2渣系Ca0-CaF2渣系在1500℃下的硫容量可以高达0.03,具有很强的脱氧、脱硫能力,其硫容量在二元渣系中是最高的。
在Ca0-CaF2渣系中,CaF2的主要作用是改善渣的流动性,降低渣的熔点,增大脱硫产物的扩散速度,改善脱硫动力学条件。
成渣中Ca0与CaF2的比例要适当,比值若过高,则渣中Ca0含量较高,使合成渣熔点过高,流动性较差,从而影响精炼效果;比值过低,则渣中CaF2含量较高,对Ca0起了稀释作用,不利于脱硫。
但是由于在这种渣系中CaF2含量相对较高,对炉衬侵蚀严重,同时这种渣系粘度较小,不利于埋弧操作,导致电弧对包衬的辐射侵蚀。
此外CaF2还会与渣中其它组元反应,生成含氟气体对污染环境。
②Ca0-A1203-CaF2渣系Oguch S等人测定了Ca0-A1203-CaF2渣系在1550℃时的硫含量,结果表明,渣中的硫含量主要取决于Ca0/A1203的大小,而CaF2含量对其影响很小。
当Ca0/A1203的比值增加,lgKs(渣中硫含量)显著增加。
由于原料中不可避免会带入部分Si02,因而Cad-Al203-CaF2渣系实际上为Ca0-A1203-CaF2-Si02四元渣系。
对该渣系进行研究后得出w ( Ca0 ) /w (Si02)大于0.15后,脱硫效果比较理想。
③Ca0-A1203-Mg0-Si02渣系Ca0-Si02-Mg0-A1203渣系是当前应用最为广泛也最常见的精炼渣系。
实验研究表明当R<3.0时,随着碱度增加,LS随之增加,而当R>3.0时,若再继续增加碱度R反而下降。
提高渣中Ca0的含量,可以显著降低钢中的硫含量,但当(Ca0%) >60%后,由于Ca0含量过高,增大了炉渣粘度,使流动性变差,脱硫效果反而会降低,不利于脱硫。
LF炉精炼研究总结LF炉精炼是一种常用于金属冶炼的技术,主要用于提炼和精炼各种金属。
在过去的几十年里,LF炉精炼技术已经成为金属冶炼行业的重要环节,对于提高产品质量和降低能源消耗都起到了积极的作用。
在本文中,我将对LF炉精炼研究的主要成果进行总结。
首先,LF炉精炼技术的研究主要集中在以下几个方面:1.氧化剂的选择和使用:氧化剂是LF炉中的重要组成部分,它可以帮助将杂质氧化为易挥发或易溶解的形式,从而达到精炼的目的。
研究人员通过改变氧化剂的种类和添加量,探索了不同金属的氧化反应规律,从而提高了炉内氧化反应的效率和精确性。
2.温度和压力控制:温度和压力是LF炉精炼的关键参数,对炉内反应的速率和效果有着重要影响。
研究人员通过控制炉内的温度和压力,调整反应的进行,从而达到理想的精炼效果。
同时,他们还研究了温度和压力对不同金属精炼的影响规律,为实际工业生产提供了参考依据。
3.炉渣的优化:炉渣在LF炉精炼过程中起着重要的作用,可以吸附和吸收冶炼过程中产生的杂质。
研究人员通过改变炉渣的成分和添加剂,提高了炉渣的吸附和吸收能力,加速了金属冶炼的速度和质量。
4.炉底处理技术:炉底处于精炼过程的最底部,是杂质积聚和堵塞的主要区域。
研究人员通过改进炉底的结构和设计,增加了炉底的清理效果和使用寿命,减少了炉底处理的时间和成本。
以上是LF炉精炼技术的主要研究成果,它们在金属冶炼领域中得到了广泛应用和认可。
然而,目前仍存在一些问题和挑战需要进一步研究。
首先,LF炉精炼技术的研究主要集中在铁合金的精炼上,而对于其他金属的精炼研究相对较少,需要进一步拓展研究范围。
此外,研究人员还可以探索不同金属之间相互作用的规律,以提高多金属冶炼的效率和产品质量。
其次,LF炉精炼技术在能源消耗方面仍有待改进。
虽然研究人员已经通过优化炉渣和控制温度等手段降低了能源消耗,但仍需要进一步研究如何提高能源利用率,减少炉内能量的浪费。
最后,随着环境保护意识的提高,金属冶炼行业也面临越来越严格的环保要求。
LF炉品种钢工艺实践及精炼效果分析LF炉品种钢工艺实践及精炼效果分析摘要:介绍川威集团公司LF炉设备概况及冶金工艺流程,根据精炼过程脱硫反应热力学计算分析了脱硫效果。
对低硫管线钢X52的冶炼造渣工艺和实际生产情况进行阐述,讨论了进一步开发利用LF炉冶金功能问题。
关键词:LF炉;精炼效果;造渣工艺;热力学;低硫炉外精炼技术能使传统炼钢法难以生产的许多高质量钢种、各种特殊用途钢都可以以非常经济的方法大量生产,并使钢内气体含量、夹杂物含量与形态、成分偏差等影响质量的因素均达到前所未有的水平,进而大大改善了钢的化学与机械性能,取得巨大的经济效益,发展极为迅速,而其中,LF炉由于工艺流程简便,精炼成本相对较低,已成为开发品种、提高质量的主要精炼设备之一。
国内大量厂家采用转炉-LF炉-连铸的生产工艺路线,但发挥LF炉精炼作用的却不多,仅用其均匀成分和升温。
威钢结合自身生产工艺实际,采用合理控制精炼周期、快速造白渣、精确调整成份等手段,在较短的时间内使LF 炉充分发挥其精炼效果,钢材实物质量达到国内先进水平,有效的实现了“转炉-LF炉-连铸”低成本生产优质钢的新生产模式。
本文介绍了威钢LF 炉设备概况及主要冶金工艺,对精炼过程渣金脱硫反应热力学进行了计算与效果分析,对低硫管线钢X52的冶炼造渣工艺、实际生产情况进行了阐述。
1 LF炉设备概况及主要精炼工艺流程1.1 LF炉设备概况钢包公称容量:70 t转炉平均出钢量:62 t钢包净空:600 mmLF炉变压器容量:12 000 kVA一次电压:35 kV二次电压:285~165V 13级有载电压二次电流:27 169 A升温速度:3~7℃/min电极直径:600 mm1.2 LF炉精炼工艺流程及周期控制1.2.1 工艺流程到精炼站→加第一批渣料、脱氧剂→送电7min→取样、测温→加第二批渣料、脱氧剂→送电10~15 min→取样、测温、调整成分→升温至合格温度、氧含量→出站钙处理→连铸。
LF工艺操作LF 是一种拥有电弧加热装置的炉外精炼方法,于1971年由日本特殊钢公司提出,它也被叫做钢包加热炉。
LF主体是一个带有底吹氩的钢包,来自转炉或电炉的钢液(无渣)注入到该钢包内,然后钢包被吊车吊运到钢包车上,运往LF处理工位。
在水冷炉盖下方提供三相电极,盖上水冷炉盖,加入高碱度的复合渣,然后通电,那么常压下即可达到埋弧加热的效果。
由于LF处理方法提供电弧加热、复合渣精炼,吹氩搅拌和合金微调等功能,因此LF精炼可达到以下冶金目的:1)通过还原气氛中高碱度复合渣的精炼,LF有很高的脱硫和脱氧能力,钢液中硫含量和溶解氧可降低到20PPm以下,此外夹杂物也可有效的去除。
2) 钢液电弧加热调整钢液温度,加速复合渣熔化;3) 底吹氩方式达到钢液成分和温度的混匀;4) 依靠自动加料系统对钢液进行成分微调。
加热过程转炉出钢1) 钢包条件钢包应当干净,不附带任何残余炉渣;此外,换包周期不能多于4小时,否则钢包必须烘烤加热到1000-1200℃。
钢包内残余钢液或炉渣会引起钢包温降,失去的热量需LF处理补偿,这些因素在LF电脑模型中都需要考虑进去。
2) 挡渣转炉出钢需要进行挡渣,众所周知转炉顶吹终点,钢液中存在一定含量的溶解氧,它与渣中氧保持平衡。
渣中FeO 和 P2O5含量很高。
当还原剂加入钢包钢液中溶解氧含量降低,钢渣间的氧平衡被打破,渣中 FeO 含量减小。
因为炉渣的氧化性降低,发生回磷现象。
因此为了阻止钢液回磷和保证稳定的LF加热过程,转炉出钢要求挡渣。
3)合金和造渣剂的添加为保证钢液成分,出钢过程中需加入合金和还原剂。
LF加热过程钢包精炼工艺包括几个过程,彼此间相互关联。
对于不同钢种,加热操作不尽相同,且处理过程参数均有相关的标准计算模型。
步骤A:搅拌当钢包抵达LF处理位,接通自动快换接头向钢包提供氩气,根据钢种选择不同的吹氩模式。
a) 吹氩量: 150~300Nl/min步骤B:混匀依据钢种提供不同的混匀方法a) 吹氩量: 300~600Nl/minb) 还原剂:硅铁,铝丸不同混匀模式中,还原剂用量是一定的 (~TS).这个步骤分为两个加热阶段,第一阶段持续1分钟,加热速度越慢越好,温度上升大约3℃/mi n,这是起弧阶段。
LF炉精炼渣的组成及冶金性能的分析冉锐摘要: 钢水炉外精炼是当前国内外炼钢工业的前沿新技术.随着纯净钢生产技术的进步和连铸技术的发展,以及降低生产成本的要求,炉外精炼工艺与(略).日本、欧美等先进的钢铁生产国家,炉外精炼比超过90%,其中真空精炼比超过50%,有些钢厂已经达到100%.钢水炉外精炼是高技术含量新产品的质量保证基础,是现代炼钢生产流程与产品高质量水平的标志.各种炉外精炼设备的冶金功能主要包括:熔池搅拌功能,(略)和温度,保证钢材质量均匀;提纯精炼功能,通过钢渣反应、真空冶炼以及喷射冶金等方法,去除钢中S、P、C、N、H(略)质和夹杂物,提高钢水纯净度;钢水升温和控温功能,对钢水实现成分微调;生产调节功能(略)连铸生产.介绍了几种常见的炉外精炼工艺:LF、RH、VD与VOD和CAS和气体搅拌等精炼工艺的特点. 从埋弧渣的物理性能和化学成分入手,探索其熔化性能,脱硫脱氧能力等物化性能,研究埋弧渣的成分和其发泡效果. 埋弧基渣的储泡能力与炉渣的物理化学性能有关,炉渣的物理性能指炉渣的密度,粘度,表面张力.关键字: 钢水炉外精炼.纯净钢.泡沫渣.脱硫.前言随着社会经济的高速发展,对钢铁产品的要求也越来越高,比如与传统板坯相比,薄板坯连铸的结晶器热流大,在弯月面附近处的凝固坯壳产生较高的表面张力,往往导致形成纵向表面裂纹。
尤其是碳含量在0065%~0.15%范围内时,凝固过程中形成单向奥氏体的温度愈高,铸态钢奥氏体晶粒就愈大,钢的塑性就愈低,就愈易产生表面裂纹。
为此应尽量避开这一碳含量区域。
如果生产冷轧带卷,必须有高质量的钢水,尤其对原料的要求很高;若电炉炼钢,应加海绵铁并使用优质废钢;对铝和氮的要求也很严格,以避免氮化铝的析出,脆化奥氏体晶界面,使连铸坯出现角横裂或振痕处的横裂。
而国外许多大型钢铁企业都非常重视LF炉精炼工艺的改进,值得我们国家的钢铁企业学习借鉴.炉外精炼技术的特点与功能炉外精炼是指在钢包中进行冶炼的过程,是将真空处理、吹氩搅拌、加热控温、喂线喷粉、微合金化等技术以不同形式组合起来,出钢前尽量除去氧化渣,在钢包内重新造还原渣,保持包内还原性气氛。
炉外精炼的目的是降低钢中的C、P、S、O、H、N、等元素在钢中的含量,以免产生偏析、白点、大颗粒夹杂物,降低钢的抗拉强度、韧性、疲劳强度、抗裂性等性能。
这些工作只有在精炼炉上进行,其特点与功能如下:1)可以改变冶金反应条件。
炼钢中脱氧、脱碳、脱气的反应产物为气体,精炼可以在真空条件下进行,有利于反应的正向进行,通常工作压力≥50Pa,适于对钢液脱气。
2)可以加快熔池的传质速度。
液相传质速度决定冶金反应速度的快慢,精炼过程采用多种搅拌形式(气体搅拌、电磁搅拌、机械搅拌)使系统内的熔体产生流动,加速熔体内传热、传质的过程,达到混合均匀的目的。
3)可以增大渣钢反应的面积。
各种精炼设备均有搅拌装置,搅拌过程中可以使钢渣乳化,合金、钢渣随气泡上浮过程中发生熔化、熔解、聚合反应,通常1吨钢液的渣钢反应面积为0.8~1.3mm2,当渣量为原来的6%时,钢渣乳化后形成半径为0.3mm的渣滴,反应界面会增大1000倍。
微合金化、变性处理就是利用这个原理提高精炼效果。
4)可以在电炉(转炉)和连铸之间起到缓冲作用,精炼炉具有灵活性,使作业时间、温度控制较为协调,与连铸形成更加通畅的生产流程。
3 炉外精炼技术在生产中的应用目前得到公认并被广泛应用的炉外精炼方法有:LF法、RH 法、VOD法。
3.1 LF法(钢包精炼炉法)它是1971年由日本大同钢公司发明的,用电弧加热,包底吹氩搅拌。
3.1.1 工艺优点1)电弧加热热效率高,升温幅度大,控温准确度可达±5℃;2)具备搅拌和合金化的功能,吹氩搅拌易于实现窄范围合金成份控制,提高产品的稳定性;3)设备投资少,精炼成本低,适合生产超低硫钢、超低氧钢。
3.1.2 LF法的生产工艺要点1)加热与控温LF采用电弧加热,热效率高,钢水平均升温1℃耗电0.5~0.8kW·h,LF升温速度决定于供电比功率(kVA/t),而供电的比功率又决定于钢包耐火材料的熔损指数。
因采用埋弧泡沫渣技术,可减少电弧的热辐射损失,提高热效率10%~15%,终点温度的精确度≤±5℃。
2)采用白渣精炼工艺。
下渣量控制在≤5kg/t,一般采用Al2O3-CaO-SiO2系炉渣,包渣碱度R≥3,以避免炉渣再氧化。
吹氩搅拌时避免钢液裸露。
3)合金微调与窄成份范围控制。
据试验报道,使用合金芯线技术可提高金属回收率,齿轮钢中钛的回收率平均达到87.9%,硼的回收率达64.3%,钢包喂碳线回收率高达90%,ZG30CrMnMoRE 喂稀土线稀土回收率达到68%,高的回收率可实现窄成份控制。
3.1.3 LF法在生产实践中的应用2000年6月,鞍钢第一炼钢厂新建的连铸车间正式投产,精炼设备由两座LF钢包精炼炉,年处理钢水200万t;一座VD钢水真空处理装置,年处理钢水80万t组成。
LF炉最大升温速度为4℃,LF炉平均处理周期≤28min;处理效果:平均[H]≤0.0002%;最低[H]≤0.0001%。
我国现有家重轨生产厂(攀钢、包钢、鞍钢和武钢)生产典型的工艺路线如下:LD→LF→VD→WF→CC,钢包吊到LF处理线的钢包车上后,由人工接通钢包底吹氩的快速接头,根据要求的钢水成分及温度确定物料的投入量(含喂丝)重轨钢含碳量较高,因而增碳显得很重要,转炉出钢时钢水含碳量控制为0.2%~0.3%(wt),炉后增碳至0.60%~0.65%(wt),在LF炉处理时再增0.10%~0.15%(wt)个碳至标准成份的中上限,经VD处理后即可达到钢种成分要求。
3.2 RH法(真空循环脱气法)这种方法是1958年西德发明的,其基本原理是利用气泡将钢水不断的提升到真空室内进行脱气、脱碳,然后回流到钢包中。
3.2.1 RH法的优点1)反应速度快。
真空脱气周期短,一般10分钟可以完成脱气操作,5分种能完成合金化及温度均匀化,可与转炉配合使用。
2)反应效率高。
钢水直接在真空室内反应,钢中可达到[H]≤1.0×10-6,[N]≤25×10-6,[C]≤10×10-6,的超纯净钢。
3)可进行吹氧脱碳和二次燃烧热补偿,减少精炼过程的温降。
3.2.2 RH法工艺参数1)RH循环量。
循环量是指单位时间内通过上升管或下降管的钢水量,单位是t/min。
有关资料给出的计算公式为: Q=0.002×Du1.5·G0.33,式中:Q———循环流量,t/min;Du———上升管直径,cm;G———上升管内氩气流量,L/min。
2)循环因数。
他是指在RH处理过程中通过真空室的钢水与处理量之比,其公式为:μ=w·t/v 式中:μ———循环因数,次;w———循环量,t/min;t———循环时间,min;v———钢包容量,t。
3)供氧强度与含碳量的关系。
向RH内吹氧可以提高脱碳速度,即RH-OB法。
当[C]/[O]>0.66时钢包内氧的传质速度决定脱碳速度,其计算公式为:QO2=27.3×Q·[C]式中:QO2———氧气强度,Nm3/min;Q———钢水循环量,t/min;[C]———含碳量,Nm3/t。
3.2.3 RH法在生产实践中的应用日本的山阳钢厂将LF与RH配合生产轴承钢形成EF-LF-RH-CC轴承钢生产线,钢中总氧量达到5.8×10-6。
LF-RH法首先利用LF炉将钢水升温,利用LF搅拌和渣精炼功能进行还原精炼,是钢水脱硫和预脱氧,然后将钢水送入RH中进行脱氢和二次脱氧。
经过这样处理大大的提高了钢水的清洁度,同时钢水的温度达到连铸需要的温度。
宝钢炉外精炼设备有RH-OB、钢包喷粉装置、CAS精炼装置,RH-OB的冶炼效果较理想,脱氢率为50%~70%,脱氮率为20%~40%,一般情况下,经RH-OB处理后[H]≤2.5×10-6,[C]≤30×10-6,去除钢中非金属夹杂物一般能达到70%,钢中总氧量≤25×10-6,而且在RH中合金处理可以提高合金的收得率和控制的精确度,[C]、[Si]、[Mn]的控制精度能达到±0.01%,铝的精确度可达到1.5×10-3,取得了较好的炉外精炼效果。
3.3 VOD法(真空罐内钢包吹氧除气法)3.3.1 VOD的特点VOD法是1965年西德首先开发应用的,它是将钢包放入真空罐内从顶部的氧枪向钢包内吹氧脱碳,同时从钢包底部向上吹氩搅拌。
此方法适合生产超低碳不锈钢,达到保铬去碳的目的,可与转炉配合使用。
他的优点是实现了低碳不锈钢冶炼的必要的热力学和动力学的条件-高温、真空、搅拌。
3.3.2 VOD法在生产实践中的应用20世纪90年代初,上海大隆铸锻厂从德国莱宝(leybold)公司进口1台15tVODC的关键设备和技术软件。
采用电炉初炼钢水经VODC炉外精炼的工艺方法,精炼了超低碳不锈钢、中低合金钢和碳钢,取得了很好的冶金效果,钢中非金属夹杂物减少,氢含量小于3×10-6氧含量小于6.5×10-6,不锈钢中铬回收率达98%~99%,精炼后的钢具有十分优越的性能。
VODC精炼工艺成熟,控制容易,适应中小型钢厂和铸钢厂的多钢种、小吨位精炼生产需要,对发展铸钢行业的精炼生产会起到很大积极作用,具有广阔的发展前景10。
抚顺特殊钢有限公司有30tVOD炉,采用EAF+VOD技术精炼不锈钢,可使[H]≤2.58×10-6,T[O]≤41.9×10-6,铬回收率达到99.5%,脱硫率64.2%,精炼高碳铬轴承钢T[O]≤12.13×10-6 。
4 发展炉外精炼技术需解决的问题及发展方向炉外精炼技术已经应用40年,对提高钢的纯净度、精确控制成分含量及细化组织结构等方面都起了重要作用,使冶炼成本大幅降低,同时提高了钢的品质和性能。
但在发展的过程中也出现了一些问题,有待于解决,使这项技术更加完美。
1)实现炉外精炼工艺的智能化控制,根据来料钢水的各种技术参数,利用信息技术,制定最佳的精炼工艺方案,并通过计算机控制各精炼工序。
精炼工位配备快速分析设备,实现数据网络化,减少热停等待时间。
2)炉外处理设备将实现“多功能化”。
在水钢精炼设备中将渣洗精炼、真空冶金、搅拌工艺以及加热控温功能全部组合起来,实现精炼,以满足超纯净钢生产的社会需求。
3)开发高纯度、高密度、高强度的优质碱性耐火材料,以适应不同精炼炉的需要,注重产品质量的稳定性。
耐火材料的使用条件应尽可能与炉渣相适应,最大限度地降低侵蚀速度。
要根据精炼设备的实际情况形成不同层次的配套材料,研究开发保温和修补技术,提高炉衬的使用寿命。