基于ZEMAX的半导体激光准直仿真设计
- 格式:doc
- 大小:101.50 KB
- 文档页数:2
目录绪论 (2)第一章激光原理 (4)1.1激光的产生 (4)1.2激光的特点: (4)1.3激光的应用 (6)第二章高斯光束 (6)2.1、高斯光束的特性 (6)2.2、高斯光束的传播 (7)2.3、高斯光束的透镜变换 (9)2.4、高斯光束的聚焦和准直 (12)第三章ZEMAX软件介绍 (13)3.1ZEMAX简介: (13)3.2传统的镜头设计,和大多数成像系统; (14)3.3R AY T RACING的3种方式 (14)3.4软件界面介绍 (16)第五章结论 (23)Zmax关于激光高斯光束波形仿真绪论在时代发展的今天;激光作为目前应用领域不论是在工业切割还是在医学光子领域各种各样的场合越来越需要引进这种光源。
但由于激光具有单位面积能量高不易进行实物实验;还有就是各种光学元器件价格昂贵为了减少损失各种光学模拟软件应运而生。
光学模拟软件可以极大程度的还原真实的实验过程可以做各种各样的光路模拟波形仿真。
ZEMAX 是一套综合性的光学设计仿真软件,它将实际光学系统的设计概念、优化、分析、公差以及报表集成在一起。
ZEMAX 不只是透镜设计软件而已,更是全功能的光学设计分析软件,具有直观、功能强大、灵活、快速、容易使用等优点,与其他软件不同的是ZEMAX 的CAD 转档程序都是双向的,如IGES 、STEP 、SAT 等格式都可转入及转出。
而且ZEMAX可仿真Sequential 和Non-Sequential 的成像系统和非成像系统,ZEMAX 当前有:SE 及EE 两种版本。
Zmax作为一款光学模拟软件其具有上手容易功能强大基本可以满足光学设计的要求,目前市面上主要的光学辅助设计软件有■Zemax (光学设计软件)■TracePro(光学仿真软件)■ASAP(光学仿真软件)■LightTools(光学仿真软件)■CODEV (Optical Research Associates )■OSLO (Lambda光学设计软件)•ZEMAX 是将实际光学系统的设计概念、优化、分析、公差以及报表集成在一起的一套综合性的光学设计仿真软件。
基于zcmax的半导体激光准直和整形设计摘要半导体激光技术作为一种新兴的光学技术,在现代光电领域有着广泛的应用。
其中,半导体激光的准直和整形技术在现代制造业中有着重要的作用。
本文将介绍基于zcmax的半导体激光准直和整形设计的原理、方法和实现过程,以期为相关领域的研究和应用提供参考。
引言近年来,半导体激光技术逐渐得到了广泛的应用。
其中,半导体激光准直和整形技术在检测、制造、医学和通信等领域中都有重要的应用。
半导体激光的准直和整形技术可以产生高纵向和横向质量的光束,使得光束更加聚焦和定位。
本文将介绍基于zcmax的半导体激光准直和整形设计的原理、方法和实现过程。
半导体激光的准直和整形技术半导体激光的准直和整形技术是为了使光束的质量达到更高的水平,使其更加符合实际的应用场景而产生的技术。
其中,准直和整形是两个相关的概念,它们可以分别被认为是光束纵向质量和横向质量的调整。
半导体激光的准直技术半导体激光的准直技术是为了使光束的纵向质量更好而产生的技术。
准直主要包括长腔和短腔两种。
长腔准直可以通过实现自相关和外相关来实现。
自相关是指在反射式或折射式镜子的集中位置改变镜子的位置以实现的过程,而外相关则是指通过调整共振腔长度来实现的过程。
短腔准直可以通过施加电流而实现,这种方式可以产生更好的横向和纵向模式。
半导体激光的整形技术半导体激光的整形技术是为了使光束的横向质量更好而产生的技术。
整形技术主要包括相位控制、空间滤波和阵列整形。
其中,相位控制可以通过电区调制器来实现;空间滤波可以通过使用球面透镜和非线性水晶来实现;阵列整形可以通过阵列型耦合器和固化紫色迈来实现。
基于zcmax的半导体激光准直和整形设计zcmax是一个用于实现基于半导体激光的准直和整形技术的自动化设计工具。
它可以实现自动设计高纵向和横向质量的光束。
zcmax包含了两个主要的设计部分:准直和整形。
其中,准直部分实现了长腔和短腔两种准直方式,整形部分实现了相位控制、空间滤波和阵列整形。
用ZEMAX设计简易LED准直镜一. 初始解的构建1. 为了简单采用此透镜由三部分构成:A. 全反射部分,B. 折射部分,C.切除部分(这一部分在设计时也可以不考虑,可以在设计完成后再加入)图中光束分两个部分, 一部分为折射部分,另一部分为全反射部分, 可以看出,折射部分光束为三段,全反射部分光束分为四段,由于是平行光出射, 所以在优化时只要考虑第三段就可以了.初始数据:1) 几何体部分TIR部分是一个非球面透镜,中间部分是一个标准透镜(有曲率和圆锥系数),切除部分是一个圆柱体;注意中间的透镜部分的材料为空气,因为它相当于也是被切除掉的.2) 光源部分我们用SOURCE RAY做为光源, 这样可以NSRA来进行优化; 光源的生成与操作数的建立按如下的MACRO可以自动生成:steps=90incr=90/steps #max angle is 90 degreepi = 4*ATAN(1)dr = pi/180startobj=4For i,0,steps,1angle = i*incroo=i+startobjInsertObject 1,ooSetNSCProperty 1,oo,0,0,"NSC_SRAY" # surface,object,code,face,value SetNSCProperty 1,oo,3,0,2 # source inside of object 2 SetNSCPosition 1,oo,4,angleSetNSCParameter 1,oo,1,1 #layout raysSetNSCParameter 1,oo,2,1 #analysis raystar = 0opr = i+1InsertMFO oprsetoperand opr, 11, "NSRA"setoperand opr, 3, oo # src#setoperand opr, 6, 3 # seg#setoperand opr, 9, 1 # weightsetoperand opr, 7, 5 # y coordinatesetoperand opr, 8, tar # tarNextupdate我们每隔一度产生一条光线,最终的结果如下, 从图中可以看出,光线都不是平行的. 这里注意要调整参数保证所有光线都大概的按预期的方向会聚!!二. 优化经过上面的准备工作,这时我们就可以优化了, 当然那几个物体的相对位置需要用PICKUP来约束, 这里不就详细说明了.初步优化的结果如下:可以再调整一下透镜的口径, 再优化一次. 可以看出, 透镜的口径是在增加的, 并且其底部是一直往左移的. 最终会达到一个比较平衡的状态;到这里优化工作就已经完成了. 我们可以对这三个部分进行一个布尔操作得到我们想要的透镜!三. 最终模型的建立和模拟1) 布尔操作后的结果2) 模拟,将所有的SOURCE RAY都删除, 我们用SOURCE RECTANGLE来代替LED, 大小取1*1, COSINE EXPONENT 取1.0来做为朗伯发光体, 把DECTOR 设置到1010MM处, 模拟1M处的光斑, DETECTOR的大小设为500*5003) 模拟结果:A. 光斑B. 发散角以上是一个简单的准直镜的构建. 采用ZEAMX的优化算法结果特定的建模完成该设计, 当然还可能存在诸多不足之处,但此思路可供参考. 也可以设计相似的透镜或变型.。
基于Zemax的半导体激光准直和整形设计作者:陆兵兵来源:《科技视界》2015年第17期【摘要】通过对半导体激光光束特性进行分析,依据费马原理和非球面方程理论,对半导体激光准直系统进行数学建模,设计了利用两片式非球面透镜准直系统,并在zemax软件中进行了仿真,最后完成指标,具有良好的效果。
【关键词】Zemax;准直;非球面0 引言半导体激光器因其体积小、重量轻、阈值电流低等特点已被广泛应用于材料加工、激光通信、信号处理、医疗、军事等相关领域。
但由于半导体激光有源层在横向和侧向的尺寸不一样,导致出射光束发散角较大且不均匀,严重影响了能量的传播和后续的测量过程。
一般常用的激光准直的方法有圆柱透镜法、非球面柱镜法、光纤耦合法、渐变折射率透镜法和液体透镜法等。
本文主要介绍利用两片非球面柱透镜的方法进行激光准直,并在zamax软件中进行仿真,同时提出一种对点光源整形为线光源的方法。
1 半导体激光光束特性半导体激光的发光原理是基于受激光发射,满足粒子数翻转和阈值条件,模式可分为空间模和纵模。
因为在横向和侧向的尺寸不一样,导致的衍射效应叠加的结果也不一样,最后形成输出光束为椭圆高斯的光束。
本文讨论的是小功率半导体激光器,因为它的发光面尺寸较小,近似用基模高斯分布来分析,输出光束的光强分布可用下面的公式给出:2 非球面准直透镜组设计2.1 非球面方程介绍Z(r)为非球面的凹陷度;r为非球面的孔径半径,r2=x2+y2(若只考虑YOZ平面的话,x可以为零);c为曲率半径的倒数;k为圆锥系数。
2.2 非球面方程参数确定横向在光学设计中也可以理解为子午方向上,即YOZ平面,如下图所示。
在准直设计中会给出目标光斑大小y以及透镜折射率n,这样?琢■、y、n已知,计算得到,再代入式(6)~(8)中求出横向非球面透镜的参数。
侧向的柱透镜的非球面方程系数可通过上面过程同样可以得到。
3 软件仿真与整形系统介绍3.1 参数计算3.2 zemax仿真及结果对比在非序列模式下对光源建模可以用软件里面自带的Source Diode,然后设置它的子午方向和弧矢方向的发散角,两个柱透镜的建模可以使用软件里面集成的Biconic Lens,然后根据本章计算得到的参数输入到相应的位置中,再在透镜后的位置放置Detector面,最后对半导体激光光线进行追迹,用接收面积为60mm*60mm的接收面在距离光源50mm、100mm和200mm 处分别采集光斑图样,并与没有加准直透镜的系统进行比较。
用ZEMAX设计简易LED准直镜一. 初始解的构建1. 为了简单采用此透镜由三部分构成:A. 全反射部分,B. 折射部分,C.切除部分(这一部分在设计时也可以不考虑,可以在设计完成后再加入)图中光束分两个部分, 一部分为折射部分,另一部分为全反射部分, 可以看出,折射部分光束为三段,全反射部分光束分为四段,由于是平行光出射, 所以在优化时只要考虑第三段就可以了.初始数据:1) 几何体部分TIR部分是一个非球面透镜,中间部分是一个标准透镜(有曲率和圆锥系数),切除部分是一个圆柱体;注意中间的透镜部分的材料为空气,因为它相当于也是被切除掉的.2) 光源部分我们用SOURCE RAY做为光源, 这样可以NSRA来进行优化; 光源的生成与操作数的建立按如下的MACRO可以自动生成:steps=90incr=90/steps #max angle is 90 degreepi = 4*ATAN(1)dr = pi/180startobj=4For i,0,steps,1angle = i*incroo=i+startobjInsertObject 1,ooSetNSCProperty 1,oo,0,0,"NSC_SRAY" # surface,object,code,face,value SetNSCProperty 1,oo,3,0,2 # source inside of object 2 SetNSCPosition 1,oo,4,angleSetNSCParameter 1,oo,1,1 #layout raysSetNSCParameter 1,oo,2,1 #analysis raystar = 0opr = i+1InsertMFO oprsetoperand opr, 11, "NSRA"setoperand opr, 3, oo # src#setoperand opr, 6, 3 # seg#setoperand opr, 9, 1 # weightsetoperand opr, 7, 5 # y coordinatesetoperand opr, 8, tar # tarNextupdate我们每隔一度产生一条光线,最终的结果如下, 从图中可以看出,光线都不是平行的. 这里注意要调整参数保证所有光线都大概的按预期的方向会聚!!二. 优化经过上面的准备工作,这时我们就可以优化了, 当然那几个物体的相对位置需要用PICKUP来约束, 这里不就详细说明了.初步优化的结果如下:可以再调整一下透镜的口径, 再优化一次. 可以看出, 透镜的口径是在增加的, 并且其底部是一直往左移的. 最终会达到一个比较平衡的状态;到这里优化工作就已经完成了. 我们可以对这三个部分进行一个布尔操作得到我们想要的透镜!三. 最终模型的建立和模拟1) 布尔操作后的结果2) 模拟,将所有的SOURCE RAY都删除, 我们用SOURCE RECTANGLE来代替LED, 大小取1*1, COSINE EXPONENT 取1.0来做为朗伯发光体, 把DECTOR 设置到1010MM 处, 模拟1M处的光斑, DETECTOR的大小设为500*5003) 模拟结果:A. 光斑B. 发散角以上是一个简单的准直镜的构建. 采用ZEAMX的优化算法结果特定的建模完成该设计, 当然还可能存在诸多不足之处,但此思路可供参考. 也可以设计相似的透镜或变型.。
《半导体激光器准直物镜设计》
一、已知条件
充分掌握工程光学的理论和典型光路的基础上,利用像差理论进行简单光路的光学参数计算和设计,并利用Zemax光学设计软件进行仿真和参数优化,达到理论和实际应用相结合。
二、设计要求
灵活运用工程光学课程重所讲授的内容,进行近轴光路的计算,设定初始光学参数;熟悉Zemax光学设计软件的基本功能和用法,并进行简单光路的模拟和优化。
设计要求:采用双胶合(Doublet)结构,D/f=1/3,通光口径D:5 mm
半视场角:0°设计波长:0.656um
计算:系统焦距f,后焦距(BFL)
半导体激光器准直物镜设计(双胶合结构)参数
三、要完成的任务
1、根据设计要求完成参数的计算,并利用Zemax软件进行参数的优化,最终得到半导体激光器准直物镜的设计参数,以及相应物镜结构与光线追迹图。
2、撰写设计说明书,封皮统一,正文格式规范,用A4纸打印装订。
基于ZEMAX的半导体激光器匀光设计
基于ZEMAX的半导体激光器匀光设计
黄珊1,邓磊敏2,杨焕1,段军2*
【摘要】摘要:为了满足半导体激光器能量均匀化的应用需求,基于ZEMAX光学设计软件设计了一套光束整形匀光系统。
采用非球面镜与倒置柱面镜望远系统的透镜组合对单模半导体激光器进行准直,得到近似高斯圆光斑;在推导了基模高斯强度分布的匀光投影半径的基础上,利用ZEMAX优化得到两个非球面镜组成的匀光透镜组,在一定范围内可获得能量均匀度达96%以上的圆光斑。
同时,实现了一个大功率半导体激光器光纤耦合模块的能量匀化设计,满足对能量匀化要求较高的应用。
结果表明,该研究为半导体激光器能量均匀化的应用提供了有效方法。
【期刊名称】激光技术
【年(卷),期】2014(000)004
【总页数】5
【关键词】关键词:光学设计;光束匀化;ZEMAX;半导体激光器
引言
半导体激光器(laser diode,LD)由于具有电光转换效率高、输出功率大、体积小、寿命长、可靠性好以及价格低廉等优点,被广泛应用于照明、医疗、材料加工等诸多领域[1]。
然而,半导体激光器光束质量较差,远场光斑分布呈椭圆高斯型,且存在本征象散。
在激光焊接、熔覆及表面热处理等应用中,能量分布不均易导致材料局部温度过高而影响材料的性能[2];在光催化领域研究中,紫外激光光源因其一系列优点受到重视,利用能量均匀分布的紫外半导体激光器光源能得到均匀的催化效果;在半导体激光治疗仪的广泛应用中,输出能。
基于ZEMAX的半导体激光器非球面准直透镜设计杜彬彬;高文宏;李江澜;石云波;徐美芳;赵鹏飞;王艳红【摘要】为了解决半导体激光器出射光束发散角大的问题,根据几何光学原理,分别针对半导体激光器弧矢和子午方向的不同发散角度建立数学模型,设计出了在两个相互垂直的方向上具有不同非球面面型的非球面透镜,并在ZEMAX光学设计软件中进行了仿真.经非球面准直透镜准直之后,半导体激光器快慢轴方向的发散角分别从35°和7.5°压缩到了1.8 mrad和0.84 mrad,在距离光源10 m处接收面上的总光功率为0.497W,光能利用率高达99.4%.结果表明,在相互垂直的方向上具有不同面型的非球面准直透镜对半导体激光器的准直具有良好的效果.【期刊名称】《激光与红外》【年(卷),期】2013(043)012【总页数】5页(P1384-1388)【关键词】半导体激光器;非球面透镜;ZEMAX;准直【作者】杜彬彬;高文宏;李江澜;石云波;徐美芳;赵鹏飞;王艳红【作者单位】中北大学电子测试技术国家重点实验室,山西太原030051;中北大学电子测试技术国家重点实验室,山西太原030051;中北大学电子测试技术国家重点实验室,山西太原030051;中北大学电子测试技术国家重点实验室,山西太原030051;中北大学电子测试技术国家重点实验室,山西太原030051;中北大学电子测试技术国家重点实验室,山西太原030051;中北大学电子测试技术国家重点实验室,山西太原030051【正文语种】中文【中图分类】TN2481 引言半导体激光器(Laser diode,LD)具有体积小、成本低、波长范围宽、易于集成等优点,已被广泛应用于医疗、军事、材料加工、激光模拟、光信息处理以及生命科学研究等领域[1-3]。
但由于其自身量子阱波导结构的限制,半导体激光器出射光束存在不对称的较大发散角、输出光束不均衡、存在固有像散等缺点,尤其在大功率半导体激光器阵列的集成应用中,由于半导体激光器单管发散角太大,造成了严重的光能量损失,大大降低了耦合效率。
基于ZEMAX的多光束半导体激光器光纤耦合设计刘畅;别光【摘要】基于ZEMAX模拟了一组多光束半导体激光器的光纤耦合模块,采用14支波长为808 nm的输出功率为60 W的线列阵激光二极管作为耦合光源,采用偏振技术实现多光路的合束,最终耦合进入芯径400μm , NA为0.22的光纤中,最终输出功率超800 W ,耦合效率达97%,实现了高效耦合,并对光纤对接过程中的耦合效率进行了分析.%The paper simulate the actual situation of fiber coupling of multiple beam semiconductor based on ZEMAX, using fourteen pieces of mini-bar that its output power is 60W are arranged in two stack arrays as laser source by po-larization multiplexing. The beam could be coupled into the fiber of 400μm core di ameter with 0.22 numerical aperture. The output power is more than 800W and the coupling efficiency is about 97%. It is analysed that the system coupling efficiency can be affected by alignment error of fiber and optical elements.【期刊名称】《长春理工大学学报(自然科学版)》【年(卷),期】2015(038)005【总页数】4页(P22-25)【关键词】ZEMAX;偏振合束;耦合效率;误差分析【作者】刘畅;别光【作者单位】长春中国光学科学技术馆,长春 130117;长春中国光学科学技术馆,长春 130117【正文语种】中文【中图分类】TN248随着“超晶格”概念的出现,低维物理理论以及MBE、MOCVD等外延新工艺技术的发展,量子阱结构半导体激光器由此产生,这使得大输出功率的半导体激光器开始了它的实用化之路,如在民用方面的光通信、激光存储、激光打印机、激光测量、激光光谱以及泵浦光源等;在军用方面的激光武器、激光制导、激光引信等[1-3]。
用ZEMAX设计简易LED准直镜一. 初始解的构建1. 为了简单采用此透镜由三部分构成:A. 全反射部分,B. 折射部分,C.切除部分(这一部分在设计时也可以不考虑,可以在设计完成后再加入)图中光束分两个部分, 一部分为折射部分,另一部分为全反射部分, 可以看出,折射部分光束为三段,全反射部分光束分为四段,由于是平行光出射, 所以在优化时只要考虑第三段就可以了.初始数据:1) 几何体部分TIR部分是一个非球面透镜,中间部分是一个标准透镜(有曲率和圆锥系数),切除部分是一个圆柱体;注意中间的透镜部分的材料为空气,因为它相当于也是被切除掉的.2) 光源部分我们用SOURCE RAY做为光源, 这样可以NSRA来进行优化; 光源的生成与操作数的建立按如下的MACRO可以自动生成:steps=90incr=90/steps #max angle is 90 degreepi = 4*ATAN(1)dr = pi/180startobj=4For i,0,steps,1angle = i*incroo=i+startobjInsertObject 1,ooSetNSCProperty 1,oo,0,0,"NSC_SRAY" # surface,object,code,face,value SetNSCProperty 1,oo,3,0,2 # source inside of object 2 SetNSCPosition 1,oo,4,angleSetNSCParameter 1,oo,1,1 #layout raysSetNSCParameter 1,oo,2,1 #analysis raystar = 0opr = i+1InsertMFO oprsetoperand opr, 11, "NSRA"setoperand opr, 3, oo # src#setoperand opr, 6, 3 # seg#setoperand opr, 9, 1 # weightsetoperand opr, 7, 5 # y coordinatesetoperand opr, 8, tar # tarNextupdate我们每隔一度产生一条光线,最终的结果如下, 从图中可以看出,光线都不是平行的. 这里注意要调整参数保证所有光线都大概的按预期的方向会聚!!二. 优化经过上面的准备工作,这时我们就可以优化了, 当然那几个物体的相对位置需要用PICKUP来约束, 这里不就详细说明了.初步优化的结果如下:可以再调整一下透镜的口径, 再优化一次. 可以看出, 透镜的口径是在增加的, 并且其底部是一直往左移的. 最终会达到一个比较平衡的状态;到这里优化工作就已经完成了. 我们可以对这三个部分进行一个布尔操作得到我们想要的透镜!三. 最终模型的建立和模拟1) 布尔操作后的结果2) 模拟,将所有的SOURCE RAY都删除, 我们用SOURCE RECTANGLE来代替LED, 大小取1*1, COSINE EXPONENT 取1.0来做为朗伯发光体, 把DECTOR 设置到1010MM处, 模拟1M处的光斑, DETECTOR的大小设为500*5003) 模拟结果:A. 光斑B. 发散角以上是一个简单的准直镜的构建. 采用ZEAMX的优化算法结果特定的建模完成该设计, 当然还可能存在诸多不足之处,但此思路可供参考. 也可以设计相似的透镜或变型.。
引言
半导体激光器( laser diode,LD) 以其体积小效率高易于集成可高速直接调制等优点,被广泛用于激光雷达激光测量激光照明激光制导激光打印以及高密度信息记录与读取等领域。
但是半导体激光器发射的激光光束具有在垂直和平行于结平面两个方向发散角不同光斑形状不规则( 如一般是椭圆型或长条型) 存在固有像散等缺点,这使得半导体激光3 维扫描成像雷达的测程测距精度大大受影响,为了适用于远距离空间激光测距,必须对半导体激光发散光束进行准直。
作者主要采用椭圆面柱透镜,对905nm 的半导体激光做准直整形处理,使得激光的发散角尽可能的小,接收物体表面的激光光斑尽可能的小,而且规则,从而达到提高测程和测距精度的目的。
1.理论分析及计算
采用OSARM 公司的型号为SPL LL90 _3 的半导体激光器查看使用说明书得到: SPL LL90_3 型号的半导体激光器在弧矢( 平行于结平面) 方向上的发散
角= 15°,在子午( 垂直于结平面) 方向上的发散角= 30°,整个激光器的峰值功率为70W半导体激光器有源区只有约0. 1 m ~0. 2 m 的厚度,可以近似看作沿慢轴方向的线光源根据半导体激光束两个方向的发散角不同的特点,采用两个互相垂直的柱透镜组分别对两个方向的光束进行准直,选用的两个柱面镜面型为椭圆面如图
1 所示,半导体激光器发出的子午光线先经过母线平行于激光束慢轴方向的柱透镜后变成准平行光束( 平行光束不可能实现) 由于第
2 个柱透镜M2对于子午光线的发散角无影响,可看作平板玻璃图2 显示弧矢光线经过第1 个透镜M1 时,光束会发生偏移,但不会影响光束的发散角,在经过第 2 个柱透镜时,弧矢光也同样得到准直,输出准平行光。
如有侵权请联系告知删除,感谢你们的配合!。
Zemax激光设计1. 简介Zemax是一种用于光学设计和仿真的软件,可用于激光器系统的设计和优化。
本文将介绍如何使用Zemax进行激光设计,并讨论一些常见的激光设计问题和解决方案。
2. Zemax激光器模拟Zemax可以模拟激光系统中的光束传播、反射、折射和衍射等光学过程。
使用Zemax进行激光器模拟的一般步骤如下:1.创建系统:使用Zemax的系统编辑器创建一个光学系统,包括激光器和光学元件。
可以在系统中添加光源、透镜、反射镜、隔离器、偏振器等。
2.设置光源:选择合适的光源类型,并设置光源的参数,如波长、功率、光斑大小等。
可以根据实际需求选择不同的光源模型,如高斯光源、平面波光源等。
3.设计光路:通过添加透镜、镜片、反射镜等元件,设计出完整的光学路径。
可以对这些元件进行参数调整和优化,以达到所需的光束形状和品质。
4.分析结果:使用Zemax的分析工具,对模拟结果进行评估和优化。
例如,可以计算光束直径、聚焦度、能量分布等参数,并根据需要调整光学元件的位置和参数。
5.优化设计:根据实验结果和需求,对光学系统进行进一步的优化。
可以使用Zemax的优化工具,自动搜索最佳的光学参数组合。
3. 激光设计中的常见问题与解决方案3.1 光束修形在激光器设计中,常常需要将初始光束修形为所需的光束形状,如高斯光束、束腰等。
Zemax提供了优化工具,可以通过调整透镜和镜片的参数,使光束达到最佳形状和品质。
3.2 光路对齐光路对齐是指调整光学元件的位置和方向,以使光束尽可能准确地通过系统。
Zemax提供了光路径追踪和反射衍射分析工具,可以帮助用户找到最佳的光学元件位置和角度。
3.3 聚焦和能量分布在激光器设计中,聚焦度和能量分布是两个重要的参数。
Zemax可以计算和优化光束的聚焦度和能量分布,帮助用户实现所需的聚焦效果和能量分布。
3.4 光损耗分析光损耗是指光束在激光系统中发生的能量损失。
Zemax可以模拟光束的传输和反射、透射过程,计算光损耗,并帮助用户找到降低光损耗的方法。
半导体激光准直仪设计
范宁;杨林华;史瑞良
【期刊名称】《航天器环境工程》
【年(卷),期】2006(023)001
【摘要】根据KM6太阳模拟器光学装校系统的技术要求,文章提出了半导体激光器输出光束的两套准直方案.分别介绍了这两套技术方案的原理,并进行了比较,决定采用在激光器前加前准直光学系统的方案.介绍了准直光学系统的设计,并对所设计的光学镜头进行了像质分析;设计了与光学系统相配套的机械结构,给出了激光光束的准直性分析.结果表明:自行设计的半导体激光准直仪,技术指标明显优于市场上可提供的光束发散角为5~8 mrad的半导体激光准直仪.为KM6太阳模拟器光学系统装校工作顺利进行提供了保证.
【总页数】5页(P51-55)
【作者】范宁;杨林华;史瑞良
【作者单位】北京卫星环境工程研究所,北京,100094;北京卫星环境工程研究所,北京,100094;北京卫星环境工程研究所,北京,100094
【正文语种】中文
【中图分类】TN248.4
【相关文献】
1.基于ZEMAX的半导体激光准直仿真设计 [J], 陈国;赵长明;纪荣祎;李鲲;罗雄;白羽
2.基于Zemax的半导体激光准直和整形设计 [J], 陆兵兵
3.激光准直仪的设计性物理实验 [J], 黄水平;胡德敬
4.半导体激光准直仪及其激光束漂移补偿研究 [J], 胡新和;杨博雄
5.基于半导体激光光纤组件的激光准直仪 [J], 冯其波;刘依真;张斌;崔建英
因版权原因,仅展示原文概要,查看原文内容请购买。
引言
半导体激光器( laser diode,LD) 以其体积小效率高易于集成可高速直接调制等优点,被广泛用于激光雷达激光测量激光照明激光制导激光打印以及高密度信息记录与读取等领域。
但是半导体激光器发射的激光光束具有在垂直和平行于结平面两个方向发散角不同光斑形状不规则( 如一般是椭圆型或长条型) 存在固有像散等缺点,这使得半导体激光3 维扫描成像雷达的测程测距精度大大受影响,为了适用于远距离空间激光测距,必须对半导体激光发散光束进行准直。
作者主要采用椭圆面柱透镜,对905nm 的半导体激光做准直整形处理,使得激光的发散角尽可能的小,接收物体表面的激光光斑尽可能的小,而且规则,从而达到提高测程和测距精度的目的。
1.理论分析及计算
采用OSARM 公司的型号为SPL LL90 _3 的半导体激光器查看使用说明书得到: SPL LL90_3 型号的半导体激光器在弧矢( 平行于结平面) 方向上的发散
角= 15°,在子午( 垂直于结平面) 方向上的发散角= 30°,整个激光器的峰值功率为70W半导体激光器有源区只有约0. 1 m ~0. 2 m 的厚度,可以近似看作沿慢轴方向的线光源根据半导体激光束两个方向的发散角不同的特点,采用两个互相垂直的柱透镜组分别对两个方向的光束进行准直,选用的两个柱面镜面型为椭圆面如图
1 所示,半导体激光器发出的子午光线先经过母线平行于激光束慢轴方向的柱透镜后变成准平行光束( 平行光束不可能实现) 由于第
2 个柱透镜M2对于子午光线的发散角无影响,可看作平板玻璃图2 显示弧矢光线经过第1 个透镜M1 时,光束会发生偏移,但不会影响光束的发散角,在经过第 2 个柱透镜时,弧矢光也同样得到准直,输出准平行光。
如有侵权请联系告知删除,感谢你们的配合!。