当前位置:文档之家› 非完整管井出水量计算的等效完整井法

非完整管井出水量计算的等效完整井法

非完整管井出水量计算的等效完整井法
非完整管井出水量计算的等效完整井法

管井设计涌水量计算

管井设计涌水量计算 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

乐享 管井设计涌水量计算 经营教育 乐享 2012-12-1 水文地质参数索引 a :含水层厚度,单位米(m); D g :过滤管外径(m); h :井中的水深,单位米(m); H :无压含水层厚度或承压含水层的水头高度或厚度,单位米(m); K :渗透系数,表示含水层的渗透性质,在达西公式中,水力坡度i=1时的渗透速度(表示地下水的运动状态、粘滞系数、含水层颗粒大 小、形状、排列);单位米/天(m/d); L :过滤管有效进水长度(m),宜按过滤管长度的85%计算; N :过滤管进水面层有效孔隙数,宜按过滤管面层孔隙率的50%计算;q n :单位出水量(m3/()); Q g :过滤管的进水能力(m3/s); Q :管井出水量,单位m3/d; Q1、Q2:抽水井稳定流出水量,单位m3/d; Q n :单井实测最大出水量,单位m3/d; 主要针对潜水及承压水稳定流完整井的理论及经验公式展开论述,并介绍了井群在不同地质条件下的布置及计算遵循的原则,最后介绍了洗井及单井出水量校核。最后利用4个Excel文件概括理论及经验公式,可代入抽水试验值分别计算管井单井出水量。

r1、r2:抽水井至观测孔距离,单位米(m); r :管井或抽水井的半径,单位米(m); R :影响半径,裘布衣公式中以抽水井为轴心的圆柱状含水层的半径(不以井的出水量、水位下降值的大小改变),表示井的补给能力;单位米(m); S1、S2:观测孔内水位降深,单位米(m); S1‘、S2’‘:观测孔内水位降深,单位米(m); S :水位降深,单位米(m); S n:相应Q n时的最大水位降深,单位米(m); T :导水系数,T=KM,单位m2/d; V g:允许过滤管进水流速,单位m/s,不得大于s; V j:允许井壁进水流速,单位m/s; 目录

用水量计算

一、用水量计算 1.现场施工用水量,按下式计算: 式中q 1——施工用水量(L/s ); K 1——未预计的施工用水系数(1.05~1.15); Q 1——年(季)度工程量或日工程量(以实物计量单位表示); N 1——施工用水定额; T 1——年(季)度有效作业日(d ); t ——每天工作班数(班); K 2——用水不均衡系数(现场施工用水取1.5)。 2.施工机械用水量,按下式计算: 式中q 2——机械用水量(L/s ); K 1——未预计的施工用水系数(1.05~1.15); Q 2——同一种机械台数(台); N 2——施工机械台班用水定额; K 3——施工机械用水不均衡系数(施工机械、运输机械取2.00,动力设备取1.05~1.10)。 3.施工现场生活用水量,按下式计算: 式中q 3——施工现场生活用水量(L/s ); P 1——施工现场高峰昼夜人数(人); N 3——施工现场生活用水定额(一般为20~60L/人·班,主要视当地气候而定); K 4——施工现场用水不均衡系数(施工现场生活用水取1.30~1.50); t ——每天工作班数(班)。 4.生活区生活用水量,按下式计算: 式中q 4——生活区生活用水量(L/s ); P 2——生活区居民人数(人); N 4——生活区昼夜全部生活用水定额,每一居民每昼夜为100~120L ; K 5——生活区用水不均衡系数(生活区生活用水取2.00~2.50); 5.消防用水量(q 5)。最小10 L/s ;施工现场在25ha 以内时,不大于15 L/s 。 6.总用水量(Q )计算: (1)当(q 1+q 2+q 3+q 4)≤q 5时,则Q= q 5+2 1(q 1+q 2+q 3+q 4) (2)当(q 1+q 2+q 3+q 4)>q 5时,则Q= q 1+q 2+q 3+q 4 (3)当工地面积小于5ha 而且q 1+q 2+q 3+q 4)<q 5时,则Q= q 5最后计算出的总用水量,还应

管井设计涌水量计算

11月整理 管井设计及出水量计算 稳定流完整井 / 吴成泽 2012-12-1 — 主要针对潜水及承压水稳定流完整井的理论及经验公式展开论述,并介绍了井群在不同地质条件下的布置及计算遵循的原则,最后介绍了洗井及单井出水量校核。最后利用4个Excel文件概括理论及经验公式,可代入抽水试验值分别计算管井单井出水量。

水文地质参数索引 a :含水层厚度,单位米(m); D g :过滤管外径(m); h :井中的水深,单位米(m); H :无压含水层厚度或承压含水层的水头高度或厚度,单位米(m);K :渗透系数,表示含水层的渗透性质,在达西公式中,水力坡度i=1时的渗透速度(表示地下水的运动状态、粘滞系数、含水 层颗粒大小、形状、排列);单位米/天(m/d); L :过滤管有效进水长度(m),宜按过滤管长度的85%计算; & N :过滤管进水面层有效孔隙数,宜按过滤管面层孔隙率的50%计算; q n :单位出水量(m3/()); Q g :过滤管的进水能力(m3/s); Q :管井出水量,单位m3/d; Q1、Q2:抽水井稳定流出水量,单位m3/d; Q n :单井实测最大出水量,单位m3/d; r1、r2:抽水井至观测孔距离,单位米(m); r :管井或抽水井的半径,单位米(m); ' R :影响半径,裘布衣公式中以抽水井为轴心的圆柱状含水层的半径(不以井的出水量、水位下降值的大小改变),表示井的补给能力;单位米(m); S1、S2:观测孔内水位降深,单位米(m); S1‘、S2’‘:观测孔内水位降深,单位米(m); S :水位降深,单位米(m); S n:相应Q n时的最大水位降深,单位米(m); T :导水系数,T=KM,单位m2/d; V g:允许过滤管进水流速,单位m/s,不得大于s; V j:允许井壁进水流速,单位m/s; %

管井降水计算方案

一、场地岩土工程情况 第①层杂填土,以粉土为主,混少量建筑垃圾和生活垃圾,呈稍湿、松散状态。该层厚度在~之间,层底标高在~之间。 第②层粉砂,黄褐色,颗粒矿物成分为长石、石英石,均粒结构,天然状态下呈稍湿,稍密状态。该层厚度在~之间,层底标高在~之间。 第③层粗砂,黄褐色,颗粒矿物成分为长石、石英石,颗粒级配较好,混少量砾,局部分布有粉质粘士薄夹层。天然状态下呈稍湿~饱和,中密状态。该层厚度在~之间,渗透系数为K=×10-2cm/s。 层细砂,黄褐色,颗粒矿物成分为长石、石英质,均粒结构,天然状第③ 1 态下呈稍湿~饱和,中密状态。该层以夹层或透镜体形式存在于第3层粗砂层中,该层厚度在~之间,层底标高在~之间,渗透系数为K=×10-3cm/s。 第④层粉砂,黄绿色,颗粒矿物成分为长石、石英质,均粒结构,局部分布有粉土、粉质粘土薄夹层。天然状态下呈饱和,中密状态。该层厚度在~之间,层底标高~之间,渗透系数为K=×10-3cm/s。 第⑤层粉质粘土,灰黑色,含云母,有光泽,略带腥臭味,含有机质,有机质含量为~%,无摇振反应,切口光滑,干强度中等,韧性中等。天然状态下呈可塑~软塑状态。该层中分布有粉砂、细砂及粉土薄夹层,局部含有薄层钙质胶结层。该层厚度在~之间,层底标高在~之间,渗透系数为K=×10-6cm/s。 地下水埋藏于自然地表下~,标高在~之间,属潜水。由于临近场地正在进行降水施工,水位受其影响,现场水位偏低,根据该区域的水文地质资料,该地下水年幅度变化在~米之间。 二、降水方案的选择 本工程地质条件主要为粉土、砂土。现场基坑深度为,根据该场地附近地区的已有降水经验,拟采用管井井点降水方案降低地下水位,即在基坑周围及坑内布设一定数量的管

涌水量计算案例

集水面积 集水面积是指流域分水线所包围的面积。集水面积大都先从地形图上定出分水线用求积仪或其它方法量算求得,计算单位为平方公里。如长江集水面积180万 分水线图 平方公里,黄河集水面积约75万平方公里。 地面分水线 地下分水线

计算:复核: 引文一: 4.3隧道涌水量预测 隧道区以根据地质调查结果分析,目前隧道涌水量暂按降水入渗法和地下径流模数法进行预测计算。等深孔水文地质试验参数出来后再按地下水动力法核算。 (1)大气降水入渗法 采用公式:Q=2.74 a W A(m'/d) 采用公式:Q=2.74 a W A(m3/d) a:降水入渗系数。全隧道地表为可溶岩,裂隙发育、岩溶化程度高。DK63+165至DK64+600段洞身大部处于石英砂页岩、炭质页岩夹煤系下,考虑到断层构造影响严 重,降水入渗系数a取值0.25 ;DK64+600至DK67+651隧道处岩溶强烈发育的可溶岩中,降水入渗系数a取值0.5。W:年平均降水量,本测区取1448mm

A:集水面积。 DK63+165 ?DK64+600 段:计算集水面积2.79km2; DK64+600?DK67+651 段;计算集水面积7.32 km2; 涌水量分别计算如下: Q=2.74 汉0.25江1448^.79 =2767(m'/d)?2800 (m3/d) Q=2.74 0.5 1448 7.32 =14521(m'/d)?14500 (m3/d) 两项合计Q 平常=2800+14500=17300(m7d) 考虑到岩溶区有暗河发育并构造发育,影响入渗系数的因素可能要大,DK64+600?DK67+651段雨季涌水量期倍增系数按3考虑,DK63+165?DK64+600段按系数2 考虑; 隧道雨季涌水量Q洪=2800X2+14500X3 =5600+4350009100 (m3/d) ( 2)地下径流模数法 Q=86.4X M X A M—地下径流模数(m/d ? Km) A—为隧道通过含水体的地下集水面积( Km2) 测区集水面积A=10.11 (Knn)(大致估算),地下水径流模数M枯=10.3( 升/秒?平方公里)(依据都匀幅《区域水文地质普查报告》)则: Q 枯= M 枯X A =86.4 X10.3X 10.11 =9000 ( m3/d ) 考虑到岩溶区有暗河发育并构造发育,其雨季涌水量期倍增系数按 3 考虑 隧道雨季涌水量Q洪=9000X3 3 =27000( m3/d)

井点降水涌水量计算

按照初定方案,本工程除埋深较深段使用拖拉管施工外,剩余大部分需使用井点降水大开挖施工。按照设计及规范初步设计沟槽底宽 1.5m,沟槽深按照最大挖深设计取4m,开挖沟槽边坡按照1:1,基坑横剖面图如附图。经地质勘探,天然地面属耕植土,其下为粉质粘土( <=-4m),淤泥质粉质粘土(<=- 7.14m)、淤泥质粉质粘土夹粉砂,底部为泥岩,基本都属于透水层。地下水位标高为- 0.5m 采用轻型井点降水施工。 1 井点布设根据工程地质及施工状况,轻型井点采用沟槽两侧单排布设,为是总 管接 近地下水位,井点管布设于已挖好的路床底。总管距沟槽开挖线边缘1m,总管长度L=50X 2=100(m) 水位降低值 S=4 (m) 采用一级轻型井点,井点管的埋设深度(总管平台面至井点管下口,不包括滤管) H 2>=H1 +h+IL= 4.0+ 0.5+ 0.1 x 5.75= 5.1(m) 采用6m长的井点管,直径50mm,滤管长1m。井点管外露地面

0.2m,埋入土中 5 . 8 m (不包括滤管)大于 5.2m,符合埋深要求。按无压非完整井环形井点系统计算。 2).基坑涌水量计算 按无压非完整井环形点系统涌水量计算公式(式1—23)进行计算Q= 先求出H、K、R、x0 值。 H: 有效带深度H= 1.85(S,+L) s'=-6 0.2- 1.0= 4.8m 求得H: H= 1.85(s,+L)= 1.85( 4.8+ 1.0)= 10.73(m) 由于HO

10.73(m) K: 渗透系数,经实测K= 0.4m/d R: 抽水影响半径R=(m) xO:基坑假想半径,x0 = (m) 将以上数值代入公式得基坑涌水量Q:Q=( m3/d )

矿井涌水量的计算与评述 钱学溥

矿井涌水量的计算与评述 钱学溥 (国土资源部,北京 100812) 摘要:文章讨论了矿井涌水量的勘查、计算、精度级别、允许误差和有效数字。文章推荐了反求影响半径、作图法求解矿井涌水量的方法。 关键词:矿井涌水量;勘查;计算;精度级别;允许误差;有效数字 根据1998年国务院“三定方案”的规定,地下水由水利部门统一管理。水利部2005年发布了技术文件SL/Z 322-2005《建设项目水资源论证导则(试行)》。该技术文件6.7款规定,地下水资源包括地下水、地热水、天然矿泉水和矿坑排水。6.1.2款规定,计算的地下水资源量要认定它的精度级别。我们认为,认定计算的矿井涌水量的级别和允许误差,不仅是水利部门要求编写《建设项目水资源论证》的需要,而且有利于设计部门的使用。在发生经济纠纷的情况下,也有利于报告提交单位和报告评审机构为自己进行客观的申辩。下面,围绕这一问题,对矿井涌水量的勘查、计算、精度级别、允许误差和有效数字等方面,作一些论述和讨论。 1 矿井涌水量与水文地质勘查 矿井涌水量比较大,要求计算的矿井涌水量精度就比较高,也就需要投入比较多的水文地质勘查研究工作。表1,可以作为部署水文地质工作的参考。 表 1 矿井涌水量与水文地质勘查 Table 1 Mine inflow and hydrogeological exploration

注:○1多年生产的矿山是指:开采水平不变、开采面积基本不变的多年生产的矿山,如即将闭坑或是即将破产的矿山,即是这种多年生产的矿山。○2多孔抽水试验,是指带观测孔的一个抽水主孔的抽水试验,持续抽水几天。○3群孔抽水试验是指带观测孔的多个抽水主孔的抽水试验,其抽水总量,一般要达到计算矿井涌水量的1/3~3/4,持续抽水几十天。○4利用地下水动力学计算公式,计算矿井涌水量,就属于解析法的范畴。大井法、集水廊道法就是常用的解析法。○5数理统计包括一元线性回归、多元线性回归、逐步回归、系统理论分析、频率计算等(参考钱学溥,娘子关泉水流量几种回归分析的比较,《工程勘察》1983第4期,中国建筑工业出版社)。可以把水位抽降、巷道开拓面积、矿产产量、降水量等作为自变量,把矿井涌水量作为因变量。○6数值法也就是计算机模拟,是通过利用计算机模拟地下水流场的变化,计算矿井涌水量的一种方法。○7常用的大井法、集水廊道法等解析法计算矿井涌水量,只考虑了含水层的导水性,没有考虑地下水的补给量。因此,只有进行了解析法和水均衡的计算,用地下水的补给量验证解析法计算的结果,计算的矿井涌水量的精度才能达到C 级。 2 稳定流、非稳定流公式应用的主要条件 2.1一般报告采用的解析解大井法、集水廊道法,是基于稳定流理论推导的地下水动力学计算公式。它要求地下水有比较充分的补给条件,要求在该水平开采的几年到几十年内,矿井排水计算的地下水影响半径边界上的水头高度,永远稳定在计算采用的高度上。 2.2基于非稳定流理论推导的地下水动力学计算公式,恰恰相反,它的使用条件是地下水没有补给,含水层分布无限,地下水影响半径不断向外扩大。 2.3由于采用大井法、集水廊道法,一般都没有考虑地下水补给量的问题,因此,计算的结果可能有较大的误差,它的精度一般只有D级。

(完整word版)大口井出水量计算

大口井的出水量计算 大口井出水量计算有理论公式和经验公式等方法。经验公式与管井计算时相似。以下仅介绍应用理论公式计算大口井出水量的方法。 因大口井有井壁进水,井底进水或井壁井底同时进水等方式,所以大口井出水量计算不仅随水文地质条件而异,还与其进水方式有关。 1.从井壁进水的大口井 可按完整式管井出水量计算公式(7-2)和式(7-3)式进行 计算。 2.井底进水的大口井 对无压含水层的大口井,当井底至含水层底板距离大于或等于井 的半径(T ≥r )时,按巴布希金(Бабущкин.В.Д)公式计算(见图7-21) )4H R 185lg .11(T r 2r KS 2Q 0++=ππ (7-40) 式中Q ——井的出水量,m 3/d ; S 0——出水量为Q 时,井的水位降落值,m ; K ——渗透系数,m/d ; R ——影响半径,m ; H ——含水层厚度,m ; T ——含水层底板到井底的距离,m ; r ——井的半径,m 。 承压含水层的大口井也可应用上式计算,将公式中的T 、H 均替换成承压含水层厚度即可。 当含水层很厚(T ≥8r )时,可用福尔希海默(F O rchheimer ,P.)公式计算: Q=AKS 0r (7-41) 式中A ——系数,当井底为平底时,A=4;当井底为球形对,A =2π;其余符号与上 式同相。 3.井壁井底同时进水的大口井 可用出水量叠加方法进行计算。对于无压含水层 (图7-22),井的出水量等于无压含水层井壁进水的大口井的出水量和承压含水层中的井底进水的大口井出水量的总和: ])4H R 185lg .11(T r 22r r R 3lg .2S 2h [KS Q 00+++-=ππ (7-42) 式中符号如图7-22所示,其余与前同。 r T S 0 H R r T S 0 H R h 图7-21 无压含水层中井底进水的大口井计算简图 图7-22 无压含水层中井底井壁进水大口井计算简

管井降水计算书

管井降水计算书 一、水文地质资料 二、计算依据及参考资料 该计算书计算主要依据为国家行业标准《建筑基坑支护技术规范》(JGJ 120-99),同时参阅了《建筑施工手册》(第四版)和姚天强等编写的《基坑降水手册》。 三、计算过程 1、基坑总涌水量计算: 根据基坑边界条件选用以下公式计算: 基坑降水示意图 Q=(2H-S)*S/(lgR-lgr0) Q为基坑涌水量; k为渗透系数(m/d):取综合渗透系数10m/d H为含水层厚度(m):主要为细砂层以上取 R为降水井影响半径(m):根据施工经验取15m r 0为基坑范围的引用半径(m):r =(r1+r2r+r3+r4+…+rn)1/n 降水干扰井 群分别至基坑中心点的距离; S为基坑水位降深(m):

D为基坑开挖深度(m):取 d 为地下静水位埋深(m):取 w sw为基坑中心处水位与基坑设计开挖面的距离(m):取 通过以上计算可得基坑总涌水量为2672m3。 2、降水井深度确定: 降水井深度按下式: H W =H1+ H2 + H3 + H4 + H5 + H6 H W—降水井深度(m); H1—基坑深度(m);(取) H2—降水水位距离基坑底要求的深度(m);(取) H3—iy0;i为水力坡度,在降水井分布范围内宜为1/10—1/15,y0为降水井分布范围内基坑等效半径;(计算得,取) H1—降水期间水位变幅(m);(取) H2—降水井过滤器工作长度(m);(取) H W—沉砂管工作长度(m);(取) 根据上式计算得:降水井深度为 3、降水井数量确定: 单井出水量计算: q = (l′d)/a*24 降水井数量计算: q为单井允许最大进水量(m3/d); d为过滤器外径(mm):取400mm l′为过滤器进水部分长度(m)(过滤器进水部分有效长度取); a为与含水层渗透系数有关的经验系数(根据渗透系数5—15m/d,含水层厚度≤20m,取100)

涌水量计算

第三节、隧道洞室涌水量预测 一、水文地质参数计算 为取得计算洞室涌水量的水文地质参数,进行钻孔提(抽)水试验,利用提水试验和抽水试验结果,采用地下水动力学方法及相关计算公式,大部分按潜水非完整井计算出提水的渗透系数K 抽水,另外根据提水后的恢复水位与时间的关系,即s~t 关系计算出恢复的渗透系数K 恢复 ,并参照当地岩性的渗透系数K , 将该三种方法求得的渗透系数K 值并结合钻探过程中冲洗液的消耗量,岩体的破碎性、岩性的矿物组成及充填胶结情况,给定一个建议的渗透系数K 值。求得水文地质参数, 其提水时K 值计算公式如下: K= 2 2) lg (lg 733.0h H r R Q --ω 其中:K ——渗透系数(m/d )。 Q ——出水量(m 3/d )。 R ——影响半径(此值根据《工程地质手册》第二版表9-3-12查得) r ω——钻孔半径(m )。 H ——自然情况下潜水含水层的厚度(m )。 h ——抽水稳定时含水层的厚度(m )。 恢复水位计算渗透系数K 值公式如下: ()2 12 ln 25.3S S t r H r K ωω+= (完整井) 其中:K ——渗透系数(m/d )。 r ω——钻孔半径(m )。 H ——自然情况下潜水含水层的厚度(m )。 S 1——抽水稳定时的水位降深(m )。 S 2——地下水恢复时间t 后水位距离静止水位的深度(m )。 t ——水位从S 1恢复到S 2的时间(d )。 具体计算过程及计算结果见附表5:钻孔提(抽)水试验渗透系数(恢复水位)计算成果表。 二、洞室涌水量的估算方法 (一)、洞室涌水量的补给来源 为了更准确预测隧道洞室涌水量,通过野外水文地质调绘,并分析洞室地下水的补给来源,含水岩性的空间分布、富水性,结合钻孔对地下深处地质情况的揭露,参考物探测井成果,我们认为隧道洞室涌水量的补给来源由以下几部分组成: a .洞室影响范围内汇集的大气降水渗漏补给量; b .洞室附近地下水的补给量(包含隧道上行线、下行线间含水层的静储量及洞室两侧地下水的侧向补给量); c .地表水流过洞室上方时的渗入补给量; d .地表水通过节理裂隙、断层破碎带给洞室的侧向补给量; e .断层破碎带导入洞室的地下水量。 (二)、洞室涌水量的估算方法 根据以上对洞室涌水量补给来源的分析,结合隧址区工程地质、水文地质条件及隧址区气候、大气降雨等特征,本次计算我们按隧道开挖正常涌水量及特大暴雨、地表水沿断层或溶洞导入洞室等极端特殊情况下极端涌水量两种情况考虑。 1、正常涌水量 正常涌水量的计算我们选择以下的计算方法: (1)大气降水入渗法:

用水量计算方法

1 服务人数小于等于表3.6.1中数值的室外给水管段,其住宅应按本规范第、条计算管段流量。居住小区内配套的文体、餐饮娱乐、商铺及市场等设施应按本规范第条和第条的规定计算节点流量; 表3.6.1 居住小区室外给水管道设计流量计算人数 注:1 当居住小区内含多种住宅类别及户内Ng不同时,可采用加权平均法计算; 2 表内数据可用内插法。 2 服务人数大于表3.6.1中数值的给水干管,住宅应按本规范第条的规定计算最大时用水量为管段流量。居住小区内配套的文体、餐饮娱乐、商铺及市场等设施的生活给水设计流量,应按本规范第条计算最大时用水量为节点流量; 3 居住小区内配套的文教、医疗保健、社区管理等设施,以及绿化和景观用水、道路及广场洒水、公共设施用水等,均以平均时用水量计算节点流量。 注:凡不属于小区配套的公共建筑均应另计。

3.6.1A 公共建筑区的给水管道应按本规范第条计算管段流量和按第条计算管段节点流量。 3.6.1B 小区的给水引入管的设计流量,应符合下列要求: 1 小区给水引入管的设计流量应按本规范第3.6.1、3.6.1A条的规定计算,并应考虑未预计水量和管网漏失量; 2 不少于两条引入管的小区室外环状给水管网,当其中一条发生故障时,其余的引入管应能保证不小于70%的流量; 3 当小区室外给水管网为支状布置时,小区引入管的管径不应小于室外给水干管的管径; 4 小区环状管道宜管径相同。

3.6.3 建筑物的给水引入管的设计流量,应符合下列要求: 1 当建筑物内的生活用水全部由室外管网直接供水时,应取建筑物内的生活用水设计秒流量; 2 当建筑物内的生活用水全部自行加压供给时,引入管的设计流量应为贮水调节池的设计补水量。设计补水量不宜大于建筑物最高日最大时用水量,且不得小于建筑物最高日平均时用水量; 3 当建筑物内的生活用水既有室外管网直接供水、又有自行加压供水时,应按本条第1、2款计算设计流量后,将两者叠加作为引入管的设计流量。 3.6.4 住宅建筑的生活给水管道的设计秒流量,应按下列步骤和方法计算: (3.6.4-1) 1 根据住宅配置的卫生器具给水当量、使用人数、用水定额、使用时数及小时变化系数, 可按式(3.6.4-1)计算出最大用水时卫生器具给水当量平均出流概率: 式中: uo——生活给水管道的最大用水时卫生器具给水当量平均出流概率(%);qo——最高用水日的用水定额,按本规范表3.1.9取用;

矿井涌水量的计算

三、地下水动力学法 地下水动力学法的理论依据是地下水运动的线性渗透定律,即达西定律。根据这个原理和具体的水文地质条件,可选择不同的公式计算矿井井简的浦水量。 (一)垂直井筒涌水量的计算 1.潜水完整井涌水量计算 所谓潜水完整井是指开凿在潜水含水层中,井打穿含水层到隔水层底板的井筒 22 1.366lg lg H h Q K R r -=- 因为 h=H-S 所以 (2)1.366lg lg H S S Q K R r -=- 在井筒掘凿时,井筒中式不允许积水的,因此h=0,或者说S=H,这时, 2 1.366lg lg H Q K R r =- 式中 Q ——井筒涌水量(m3/d ) K ——含水层渗透系数(m/d ) H ——含水层厚度 h ——井中出水地段高度 S ——水位降低值 R ——影响半径 r ——井筒半径 2.承压水完整井涌水量计算 承压水完整井是指开凿在承压含水层中,并全部揭露含水层的井筒 ()2.73lg lg M H h Q K R r -=-或 2.73lg lg MS Q K R r =- 3.完整潜水承压井涌水量计算 当井筒穿过承压含水层水位下降很大,降到隔水顶板以下时,井筒附近变为无压水,这种情况称为潜水承压井 22(2)1.366lg lg HM M h Q K R r --=- 上述公式同样适用于钻孔涌水量计算 如果抽水试验是在井筒检查孔中进行,用钻孔涌水量可按下式换算成井筒涌水量 112122 lg lg lg lg R r Q Q R r -=- (二)水平尽道涌水量的预剐方法 计算水平巷道涌水量时,同样可将巷道看成为水平集水于程。因此,可利用地卞水向水平集水工程运动的公式计算。

用水量计算方法

用水量计算 3.6.1 居住小区的室外给水管道的设计流量应根据管段服务人数、用水定额及卫生器具设置标准等因素确定,并应符合下列规定: 1 服务人数小于等于表3.6.1中数值的室外给水管段,其住宅应按本规范第、条计算管段流量。居住小区内配套的文体、餐饮娱乐、商铺及市场等设施应按本规范第条和第条的规定计算节点流量; 表3.6.1 居住小区室外给水管道设计流量计算人数 注:1 当居住小区内含多种住宅类别及户内Ng不同时,可采用加权平均法计算; 2 表内数据可用内插法。 2 服务人数大于表3.6.1中数值的给水干管,住宅应按本规范第条的规定计算最大时用水量为管段流量。居住小区内配套的文体、餐饮娱乐、商铺及市场等设施的生活给水设计流量,应按本规范第条计算最大时用水量为节点流量; 3 居住小区内配套的文教、医疗保健、社区管理等设施,以及绿化和景观用水、道路及广场洒水、公共设施用水等,均以平均时用水量计算节点流量。 注:凡不属于小区配套的公共建筑均应另计。

3.6.1A 公共建筑区的给水管道应按本规范第条计算管段流量和按第条计算管段节点流量。 3.6.1B 小区的给水引入管的设计流量,应符合下列要求: 1 小区给水引入管的设计流量应按本规范第3.6.1、3.6.1A条的规定计算,并应考虑未预计水量和管网漏失量; 2 不少于两条引入管的小区室外环状给水管网,当其中一条发生故障时,其余的引入管应能保证不小于70%的流量;

3 当小区室外给水管网为支状布置时,小区引入管的管径不应小于室外给水干管的管径; 4 小区环状管道宜管径相同。 3.6.3 建筑物的给水引入管的设计流量,应符合下列要求: 1 当建筑物内的生活用水全部由室外管网直接供水时,应取建筑物内的生活用水设计秒流量; 2 当建筑物内的生活用水全部自行加压供给时,引入管的设计流量应为贮水调节池的设计补水量。设计补水量不宜大于建筑物最高日最大时用水量,且不得小于建筑物最高日平均时用水量; 3 当建筑物内的生活用水既有室外管网直接供水、又有自行加压供水时,应按本条第1、2款计算设计流量后,将两者叠加作为引入管的设计流量。 3.6.4 住宅建筑的生活给水管道的设计秒流量,应按下列步骤和方法计算: (3.6.4-1)

隧道涌水量预算

隧道涌水量预测 准确预测隧道涌水量一直是国内外隧道建设的难点,目前尚无成熟的方法。为了使我们的预测尽可能接近实际,进行了大量的水文地质调查与测试,采集了较丰富的数据,拟采用多种方法进行预测。考虑各段含水带渗透系数的差异,采取分段预测隧道涌水量。并根据水文地质条件选用三种不同方法(公式)分别计算,以便比较。 8.2.1 竖井比拟法 裂隙网络具分段独立性,含水体上、下部均有隔水边界。设单个竖井居各段裂隙发育系统之中,完全可以达到疏干目的。又因在不同地段内均有代表性抽水试验孔,按钻孔涌水量曲线方程推求各段隧道底板的涌水量,然后比拟成竖井涌水量,将会较为接近实际。 本次根据ZK28-3、ZK29-1、CZK53-1、CZK53-2抽水试验Q~S曲线曲线方程下推预测涌水量如下表8.2.1: 隧道涌水量预测(一)表8.2.1

8.2.2 地下水动力学法 考虑隧道在长期排水的情况下,位于无限厚的潜水含水带中,按有限含水厚度计算涌水量。采用潜水非完整式水平巷道公式: Q =] ) (2)(4cos )(4ln[kS )(22121212 2 212 1R R R R лb R R лb R H R H kb +-++ + 式中:H 1=H 2 R 1=R 2 Q —预测涌水量(m 3/d ); H —由隧道路肩起算的含水层厚度(m ); R —隧道排水影响宽度(m ); b —隧道宽度(m ); S —降深(m ); k —隧道围岩渗透系数(m/d )。 隧道涌水量预测(二) 表8.2.2

8.2.3 降水入渗系数法 采用的计算公式为: Q=2.74×α×ω×A 其中:Q—计算涌水量(m3/d); α—入渗系数; ω—年降水量(mm); A—隧道集水面积(k㎡)。 中条山大部分基岩裸露,地表裂隙发育,有利于大气降水入渗。但地形陡峭,大气降水易排走不易补给地下水,冲沟地段地势低平有利地下水入渗,根据有关经验数据,中条山混合花岗片麻岩和片岩地区的综合入渗系数取0.20。 Q=2.74×0.20×600×3.08=1013(m3/d)

用单位出水量计算渗透系数

第一章 用单位出水量计算渗透系数的可行性研究概况 在铁路建设中,为了提高预测生产井出水量的精度,同时不使用观测孔,又节省勘探费用和缩短勘探周期。本文在搜集国内外关于单孔抽水试验计算渗透系数的理论公式和经验公式,重点分析裘布依公式的基本假定和适用范围,找出影响传统计算方法精度的主要因素,结合铁路一般供水站用水量较小的特点,寻求单孔抽水试验计算水文地质参数简单可行的新方法。 该方法主要根据勘探孔的抽水试验资料,建立Q —S 抛物线方程,用数值方法求算S=1m 时的单位出水量q 值,然后求算渗透系数K 值,再代入裘布依公式中求算引用补给半径R 值。在计算过程当中,使用了数理统计方法。此外,还使用了基姆公式,以便解决只做一次水位降深时求算S=1m 时的近似单位出水量q 值。从而用小口径(≤146mm )勘探试验孔的水文地质参数K ,R 值,预测大口径(>146mm )生产井(大口井、管井、结合井、干扰井、渗渠即水平集水管)等的出水量。 第二章 渗透系数和影响半径传统计算公式与存在问题 第一节 裘布依公式的假设条件和使用范围 自1863年法国水力学家裘布依提出潜水井和承压水井公式以来历经百余年, 至今仍然被广泛使用着。实践证明,该公式诞生以来,在指导人类开发地下水资源方面起到了举足轻重的作用,促进了社会进步并获得了经济效益。但是长期以来在使该公式时,由于种种原因,常常忽视了该公式的适用范围和条件,因而造成系列误差,影响了渗透系数和引用补给半径的计算成果。 一?裘布依公式 1,承压水完整孔 r R MS Q K ln 2π= (2-1) 2,潜水完整孔 r R h H Q K ln )2 2-= (π (2-2) 式中 K —含水层渗透系数(m/d ); Q —钻孔出水量 (m 3/d); S —水位降深(m ); M —承压含水层厚度(m ); H —天然情况下潜水含水层厚度 (m ); h —潜水含水层在抽水试验时的孔内剩余厚度(m ); R —含水层半径,即应用补给半径(m ); r —过滤管半径(m )。

管井降水计算书

1、基坑总涌水量计算: 基坑降水示意图 根据基坑边界条件选用以下公式计算: Q=πk(2H-S d )S d /ln(1+R/r o )=π5(2×ln(1+= Q为基坑涌水量; k为渗透系数(m/d); H为含水层厚度(m); R为降水井影响半径(m); r 为基坑等效半径(m); S d 为基坑水位降深(m); S d =(D-d w )+S D为基坑开挖深度(m); d w 为地下静水位埋深(m); S为基坑中心处水位与基坑设计开挖面的距离(m); 通过以上计算可得基坑总涌水量为。 2、降水井数量确定: 单井出水量计算: q 0=120πr s lk1/3 降水井数量计算: n=q q 为单井出水能力(m3/d); r s 为过滤器半径(m); l为过滤器进水部分长度(m); k为含水层渗透系数(m/d)。 通过计算得井点管数量为4个。 3、过滤器长度计算 群井抽水时,各井点单井过滤器进水长度按下式验算: y >l y 0=[k×(lgR -lg(nr n-1r w )/n]1/2

l为过滤器进水长度; r 为基坑等效半径; r w 为管井半径; H为潜水含水层厚度; R 为基坑等效半径与降水井影响半径之和; R 0=R+r R为降水井影响半径; 通过以上计算,取过滤器长度为。 4、基坑中心水位降深计算: S 1=H-(H2-q/(πk)×Σln(R/(2r sin((2j-1)π/2n)))) S 1 为基坑中心处地下水位降深; q=πk(2H-S w ) S w /(ln(R/r w )+Σ(ln(R/(2r sin(jπ/n))))) q为按干扰井群计算的降水井单井流量(m3/d),按下式计算: S w = H 1 +s-d w +r o ×i =+根据计算得S 1 = >= S d =,故该井点布置方案满足施工降水 要求!

降雨入渗法涌水量计算

二、涌水量的预测 拟采用大气降水渗入量法对隧道进行涌水量计算 1.大气降水渗入法(DK291+028-DK292+150段) Q = 2.74*α*W*A Q—采用大气降水渗入法计算的隧道涌水量(m3/d) α—入渗系数 W—年降雨量(mm) A—集水面积(km2) 参数的选用: α—入渗系数选用0.16; W—隧址多年平均降雨量为508.7m,最大年降雨量为1496.88mm(月平均最大降雨量×12)。 A—集水面积:根据1:10000地形平面图,含水岩组分布面积圈定为0.33km2 最大涌水量为:Q= 2.74*α*W*A = 2.74*0.16*1496.88*0.33= 216.56(m3/d),平均每延米每天涌水量为:0.19(m3/m.d)。 正常涌水量为:Q= 2.74*α*W*A= 2.74*0.16*508.7*0.33=73.59(m3/d),平均每延米每天涌水量为:0.07(m3/m.d)。 2. 大气降水渗入法(DK292+150-DK293+440段) Q = 2.74*α*W*A Q—采用大气降水渗入法计算的隧道涌水量(m3/d) α—入渗系数

W—年降雨量(mm) A—集水面积(km2) 参数的选用: α—入渗系数选用0.18; W—隧址多年平均降雨量为508.7m,最大年降雨量为1496.88mm(月平均最大降雨量×12)。 A—集水面积:根据1:10000地形平面图,含水岩组分布面积圈定为0.79km2 最大涌水量为:Q= 2.74*α*W*A = 2.74*0.18*1496.88*0.79= 583.23(m3/d),平均每延米每天涌水量为:0.45(m3/m.d)。 正常涌水量为:Q= 2.74*α*W*A = 2.74*0.18*508.7*0.79= 198.2(m3/d),平均每延米每天涌水量为:0.15(m3/m.d)。 3.大气降水渗入法(DK293+440- DK293+870段) Q = 2.74*α*W*A Q—采用大气降水渗入法计算的隧道涌水量(m3/d) α—入渗系数 W—年降雨量(mm) A—集水面积(km2) 参数的选用: α—入渗系数选用0.12; W—隧址多年平均降雨量为508.7mm,最大年降雨量为1496.88mm(月平均最大降雨量×12)。 A—集水面积:根据1:10000地形平面图,含水岩组分布面积圈定为0.25km2

管井设计涌水量计算

管井设计涌水量计算内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

乐享 管井设计涌水量计算 经营教育 乐享 2012-12-1 水文地质参数索引 a :含水层厚度,单位米(m); D g :过滤管外径(m); h :井中的水深,单位米(m); H :无压含水层厚度或承压含水层的水头高度或厚度,单位米(m); K :渗透系数,表示含水层的渗透性质,在达西公式中,水力坡度i=1时的渗透速度(表示地下水的运动状态、粘滞系数、含水层颗粒大小、形状、排列);单位米/天(m/d); L :过滤管有效进水长度(m),宜按过滤管长度的85%计算; N :过滤管进水面层有效孔隙数,宜按过滤管面层孔隙率的50%计算; q n :单位出水量(m3/(d.m)); Q g :过滤管的进水能力(m3/s); Q :管井出水量,单位m3/d; Q 1、Q 2 :抽水井稳定流出水量,单位m3/d; Q n :单井实测最大出水量,单位m3/d; 主要针对潜水及承压水稳定流完整井的理论及经验公式展开论述,并介绍了井群在不同地质条件下的布置及计算遵循的原则,最后介绍了洗井及单井出水量校核。最后利用4个Excel文件概括理论及经验公式,可代入抽水试验值分别计算管井单井出水量。

r 1、r 2 :抽水井至观测孔距离,单位米(m); r :管井或抽水井的半径,单位米(m); R :影响半径,裘布衣公式中以抽水井为轴心的圆柱状含水层的半径(不以井的出水量、水位下降值的大小改变),表示井的补给能力;单位米(m); S 1、S 2 :观测孔内水位降深,单位米(m); S 1‘、S 2 ’‘:观测孔内水位降深,单位米(m); S :水位降深,单位米(m); S n :相应Q n 时的最大水位降深,单位米(m); T :导水系数,T=KM,单位m2/d; V g :允许过滤管进水流速,单位m/s,不得大于0.03m/s; V j :允许井壁进水流速,单位m/s; 目录

水量计算问题

河南理工大学2011年数学建模竞赛论文答卷编号(竞赛组委会填写): 题目编号:( A、B、C、D、E之一) 论文题目: 水量计算问题 参赛队员信息(必填):

封二 答卷编号(竞赛组委会填写): 评阅情况(学校评阅专家填写):评阅1. 评阅2. 评阅3.

摘要 本文通过设计构造辐射井的地下水降落曲线的数学公式,来建立辐射井水量的计算模型。 针对问题一: 根据辐射管在水平布置上的对称性,可将问题简化为对一扇形域的水流运动的研究。又结合题中相关数据,分析辐射管在含水层中对地下水降落曲线、地下水渗透范围的影响情况,得到辐射管汇集水量的大小与降落曲线高度近似呈正比例关系。分析实测的辐射井降落曲线资料得出地下水降落曲线高度x T 与距离x 之间近似呈自然对数的函数关系,构建地下水降落曲线的函数关系式,并将观测井取得的相关数据代入进行验证,证明了函数的可行性。 针对问题二: 结合题中相关数据,分析辐射管在含水层中对地下水降落曲线、地下水渗透范围的影响情况,将沿辐射井横剖面上的地下水降落曲线近似为高度的平均直线;可知集水井井壁、辐射管端点外侧流进水量占总水量的很小比例,可只计算沿垂直方向流入辐射管的水量。按照降落曲线的函数式,采用积分法得到沿辐射管全程的平均高度,再结合平均高度T 对应的水平距R 、剖面矩形宽度b 、局部 阻抗系数φ以及集水管的汇流强度公式 x p x x T H k q φ-=,即可得到辐射井出水量。 针对问题三: 根据问题一二中建立的模型进行数据处理。在问题一种利用附件一中所给的数据,得出参数α、0T ,然后将其代入公式中,得出相应的结果,再与实际测量的数据进行比较,判断误差大小,进行评价;问题二中计算出相应的参数变量 T b 、 T d 、 T ?T ,然后通过计算公式得出?的值,再代入求出对应时间的n Q ,比较实际 测量数并分析。 关键字: 汇流强度 局部阻抗系数 降落曲线弯曲率 单管流量

降水井计算

降水井计算 Prepared on 22 November 2020

基坑降水计算书 一、基坑涌水量计算 1、原始条件: 计算模型:此井点系统为潜水非完整井,采用基坑外降水。 2、井点管距边坑距离为1.5m ,滤管长度取1.0m ,直径40mm ,配有配套抽水设备;渗透系数(根据勘察报告提供室内渗透系数结合当地经验取值)(m/d )。 3、基坑涌水量计算书 基坑开挖深度6.00m ,基坑面积约为9738m 2。 (1)基坑中心处要求降低水位深度S ,取降水后地下水位位于坑底以下1.0m ,则有S=+=7.00m (2)含水层厚度H ’=16m (3)影响半径0R 基坑等效半径080.69r m = = (4)基坑涌水量()()3 002'1.366298.81lg H S S m Q k d R r -==?? ??? 二、降水井数量计算 1、根据《工程地质手册》公式验算每根井点的允许最大进水量 2、井点管的数量 经验算,34眼水井管出水量基本能满足基坑总涌水量的要求! 三、降水井深度计算 降水井深度可以按照以下公式确定: 式中: H 1=6.00m (基坑深度) H 2=1.0m (降低水位距离基底要求) H 3=2.0m (水力坡度) H 4=2.0m (水位变化幅度) H 5=1.0m (过滤器长度) H 6=1.0m (沉淀管长度) 根据计算,综合考虑现场条件,又由于降水持续时间长,井内必产生沉砂,因此降水井深度取13米,疏干井深度取14米。 20米。 四、补充方案 1、考虑场地南侧有明水影响,降水井加密布设。沿基坑周边布置32口降水井,井深13米,另在坑内布置20口14米深疏干井。 2、基坑集水井、电梯坑等处由于开挖较深,可布设轻型井点辅助降水。 3、降水过程中,若该设计方案中降水井不能满足基坑总涌水量,可增设降水井。

用水量计算

用水量计算
3.6.1 居住小区的室外给水管道的设计流量应根据管段服务人数、 用水定额及卫 生器具设置标准等因素确定,并应符合下列规定: 1 服务人数小于等于表 3.6.1 中数值的室外给水管段,其住宅应按本规范第 3.6.3、3.6.4 条计算管段流量。居住小区内配套的文体、餐饮娱乐、商铺及市场 等设施应按本规范第 3.6.5 条和第 3.6.6 条的规定计算节点流量; 表 3.6.1 居住小区室外给水管道设计流量计算人数 每户 Ng 3 4 5 6 7 8 9 10
qokh 350 400 450 500 550 600 650 700
10200 9100 8200 7400 6700 6100 5600 5200
9600 8700 7900 7200 6700 6100 5700 5300
8900 8100 7500 6900 6400 6000 5600 5200
8200 7600 7100 6600 6200 5800 5400 5100
7600 7100 6650 6250 5900 5550 5250 4950
— 6650 6250 5900 5600 5300 5000 4800
— — 5900 5600 5350 5050 4800 4600
— — — 5350 5100 4850 4650 4450
注:1 当居住小区内含多种住宅类别及户内 Ng 不同时,可采用加权平均法计 算; 2 表内数据可用内插法。 2 服务人数大于表 3.6.1 中数值的给水干管,住宅应按本规范第 3.1.9 条的规定 计算最大时用水量为管段流量。居住小区内配套的文体、餐饮娱乐、商铺及市场 等设施的生活给水设计流量,应按本规范第 3.1.10 条计算最大时用水量为节点 流量; 3 居住小区内配套的文教、 医疗保健、 社区管理等设施, 以及绿化和景观用水、 道路及广场洒水、公共设施用水等,均以平均时用水量计算节点流量。

相关主题
文本预览
相关文档 最新文档