数据仓库实践系列课程(1)——数据仓库基本概念资料
- 格式:pptx
- 大小:3.64 MB
- 文档页数:80
数据仓库的基本概念随着信息技术的不断发展和应用,数据已经成为企业管理和决策的重要资源。
在日常运营中,企业需要大量的数据来支持业务流程和决策,但这些数据通常被分散在不同的系统和部门中,难以实现统一的管理和利用。
为了解决这一问题,数据仓库应运而生。
数据仓库是一种专门用于存储和管理企业数据的系统,它可以将来自不同数据源的数据进行集成和转换,形成一致的数据模型,并提供灵活的查询和分析功能,帮助企业更好地理解业务状况和趋势,为决策提供支持。
数据仓库的基本结构数据仓库通常由三个主要组件组成:数据源、数据转换和数据存储。
数据源是指企业内部或外部的各种数据来源,包括关系型数据库、文件系统、数据仓库、云存储等。
数据源的数据需要经过抽取、清洗、转换等操作,才能被存储到数据仓库中。
数据转换是指将数据源中的数据进行规范化、整合和转换,以满足数据仓库的数据模型和数据质量要求。
数据转换通常包括数据清洗、数据转换、数据集成等过程,其中数据清洗是最为重要的一环,它可以帮助企业清除数据中的噪声、冗余和错误,提高数据质量。
数据存储是指将经过转换后的数据存储到数据仓库中,以供后续的查询和分析。
数据存储通常采用多维数据模型,将数据按照不同的维度进行组织和存储,以提高查询效率和灵活性。
数据存储的核心是数据仓库服务器,它可以支持多种查询方式和分析工具,如OLAP、数据挖掘、报表等。
数据仓库的特点数据仓库具有以下几个特点:1. 面向主题:数据仓库是以主题为中心进行建模和存储的,每个主题都包含一组相关的数据,如销售、库存、客户等。
这种面向主题的设计可以帮助企业更好地理解业务,提高决策效率。
2. 集成性:数据仓库可以将来自不同数据源的数据进行集成和转换,形成一致的数据模型。
这种集成性可以帮助企业消除数据孤岛,实现数据一致性和完整性。
3. 非易失性:数据仓库中的数据是不可修改的,一旦存储到数据仓库中,就不能再进行修改或删除。
这种非易失性可以保证数据的可追溯性和数据安全性。
数据仓库:介绍数据仓库的基本概念、特点和设计引言在当今信息时代,数据的重要性不言而喻。
随着企业和组织的迅速发展,数据量的不断增长,有效地管理和分析数据变得至关重要。
为此,数据仓库作为一种集成和存储大量数据的解决方案被广泛应用。
本文将介绍数据仓库的基本概念、特点和设计,帮助读者更好地了解和应用数据仓库。
第一部分:基本概念H1: 什么是数据仓库?数据仓库可以被理解为一种集成和存储多源、多结构、大容量数据的系统。
它是一个专门用于支持决策分析和业务智能的数据平台。
数据仓库通过把分散的数据整合到一个统一的存储中,提供了一个一致、准确、可靠的数据来源,以便进行各种分析和报告。
H2: 数据仓库的功能数据仓库的主要功能是数据整合、数据存储和数据分析。
数据整合包括从不同的数据源中提取数据,并进行清洗、转换和集成,以保证数据的一致性和准确性。
数据存储是指将整合的数据持久化到数据仓库中,提供高性能的数据访问和查询。
数据分析是数据仓库的核心功能,它可以通过各种分析工具和技术,帮助用户深入挖掘数据,探索数据之间的关联和模式,发现潜在的业务机会和问题。
H3: 数据仓库的架构数据仓库的架构包括数据源层、数据集成层、数据存储层和数据使用层。
数据源层是指各种数据源,如关系数据库、文件、日志等。
数据集成层是负责将数据源中的数据提取、清洗和转换,以满足数据仓库的需求。
数据存储层是指存储整合后的数据的位置,通常采用关系数据库。
数据使用层包括数据访问接口和报表工具,用于用户对数据进行分析和报告。
第二部分:特点和优势H1: 数据仓库的特点数据仓库具有以下几个特点:1.面向主题:数据仓库根据业务需求,将数据组织成主题,提供便于分析的数据模型。
2.集成性:数据仓库整合了不同来源的数据,消除了数据冗余和不一致性。
3.非易失性:数据仓库中的数据一般是只读的,不会因为操作或事务而发生变化。
4.完整性:数据仓库保持历史数据的完整性,记录了过去的业务活动和状态变化。
数据仓库基本概念数据仓库是一个面向主题、集成、时间可变、非易失性的数据集合,用于支持管理决策。
它是企业级数据中心的核心,是利用数据分析为业务提供支持的重要工具。
数据仓库的设计基于业务需求,是为支持企业决策而构建的。
它集中存储企业各个方面的数据,并提供了快速、易用、灵活的数据检索方式。
数据仓库的设计目标是能够提供一种有质量、一致、准确的数据集,从而为企业决策提供最好的支持。
数据仓库具有以下基本特征:1. 面向主题:数据仓库是面向业务主题的,而不是面向应用或部门,它在数据结构、数据格式等方面与应用系统、各部门内部的数据是分开的。
2. 集成性:数据仓库整合了来自于不同系统、不同部门的数据,通过ETL过程,实现数据的提取、转换和加载,从而产生一个一致、标准、统一的数据集。
3. 时间可变性:数据仓库是为了支持历史性数据的查询和分析而构建的,它记录了数据的历史变化情况,存储了历史数据版本,方便用户进行历史数据的回溯和分析。
4. 非易失性:数据仓库中的数据是不易失的,它要求有一定的容错机制和备份策略,以保证数据的安全性和可靠性。
5. 决策支持:数据仓库是为了支持决策而构建的,它提供了各种查询、统计和分析功能,方便用户进行数据的挖掘和分析,支持用户做出更加准确、科学、有效的决策。
数据仓库的设计过程一般包括需求分析、数据建模、ETL开发、数据仓库实现和维护。
在需求分析阶段,要明确业务目标和业务需求,确定数据仓库的主题和范围。
在数据建模阶段,要根据需求分析结果,进行数据建模和数据字典的设计,构建数据仓库的物理架构和逻辑架构。
在ETL开发阶段,要开发ETL过程,进行数据提取、转换和加载。
在实现和维护阶段,要进行数据管理、数据质量控制、数据安全管理和性能优化等工作。
在数据仓库的实现过程中,还可以采用数据仓库的架构、数据挖掘技术和数据可视化技术等手段,增强数据仓库的功能和应用价值。
综上所述,数据仓库是企业重要的决策支持工具,是面向主题、集成、时间可变、非易失性的数据集合。
数据仓库基本概念⼀、度量、指标、指标器度量和维度构成OLAP的主要概念,对于在事实表或者⼀个多维⽴⽅体⾥⾯存放的数值型的、连续的字段,就是度量。
这符合上⾯的意思,有标准,⼀个度量字段肯定是统⼀单位,例如元、户数。
如果⼀个度量字段,其中的度量值可能是欧元⼜有可能是美元,那这个度量没法汇总。
在OLAP中还有计算度量的说法,⽤⼀个总费⽤除以⽤户数,得到每户平均费⽤。
但这究竟还算不算度量了呢?这已经不是原本意义上的度量了,只是为了称呼⽅便⽽已。
这就得说到指标,英⽂的Metric。
在绩效管理软件⾥⾯,通常是有这个概念的。
其定义可表述为"它是表⽰某种相对程度的值"。
区别于度量概念,那是⼀种绝对值,尺⼦量出来的结果,汇总出来的数量等。
⽽指标⾄少需要两个度量之间的计算才能得到,例如ARPU,⽤收⼊⽐上⽤户数,例如收⼊增长率,⽤本⽉收⼊⽐上上⽉收⼊。
当然可能指标的计算还需要两个以上的度量。
⽽Indicator的字⾯意思为指⽰器,在KPI中,最后⼀个I就是它,但是⽤中⽂称呼它的时候,总是叫"关键绩效指标",⽽没有叫做"指标器",也就造成⼀些混乱。
我们⾝边充当指⽰器的有:红绿灯,提醒⾏⼈车辆是否等待或通⾏;监控室⾥的警报灯,提醒哪⼉出现异常;汽车仪表盘,提醒驾驶员油是否⾜够,速度如何。
它们起到的作⽤是传递⼀种宏观的信息,促使⼈的下⼀步⾏动。
红灯停绿灯⾏;看到警报亮起要赶紧派⼈查看。
⽬前常见的企业绩效管理软件中,仪表盘(有的地⽅称作驾驶舱)的展⽰界⾯也是必不可少,正是⽤这种直观⽽⽐较有象征性的指⽰器反映企业运营状况。
可以设想提出KPI的初衷,是希望企业通过⼀些粗略(⾮细节)的信息(⽽⾮数据)来为下⼀步的决策作出依据。
导致不同的决策⾏为必定是离散的输⼊,最简单的就是⼀个开关,是或不是(例如警报灯)。
如果说度量和指标是定量话,指⽰器就是⼀种定性的。
然⽽,这些系统中的KPI并⾮完全上⾯提到的指⽰器,很多系统建设称为度量系统或是指标系统。