数字电路各种门路
- 格式:doc
- 大小:565.00 KB
- 文档页数:10
数字逻辑门电路数字逻辑门电路是现代电子技术领域中重要的基础概念。
它们是通过组合逻辑来实现逻辑运算的电子元件。
本文将介绍数字逻辑门电路的基本概念、常见的逻辑门类型以及它们在计算机和电子设备中的应用。
一、基本概念数字逻辑门电路由逻辑门组成,逻辑门是指一种通过输入信号产生输出信号的电子电路。
在数字电子系统中,逻辑门能够根据输入信号的逻辑值(通常为1或0)产生相应的输出信号。
常见的逻辑门类型有与门(AND)、或门(OR)、非门(NOT)以及异或门(XOR)等。
与门(AND)是一种具有两个或多个输入端口和一个输出端口的逻辑门。
仅当所有输入端口的信号均为高电平时,输出端口才为高电平;否则,输出端口为低电平。
与门的符号通常是将输入端口以及输出端口连接的圆点和直线图形。
或门(OR)是一种具有两个或多个输入端口和一个输出端口的逻辑门。
只要有一个或多个输入端口的信号为高电平,输出端口就为高电平;只有所有输入端口的信号均为低电平时,输出端口才为低电平。
或门的符号通常是将输入端口以及输出端口连接的弧线和直线图形。
非门(NOT)是一种具有一个输入端口和一个输出端口的逻辑门。
当输入信号为高电平时,输出信号为低电平;当输入信号为低电平时,输出信号为高电平。
非门的符号通常是一个小圆圈加一个小三角形。
异或门(XOR)是一种具有两个输入端口和一个输出端口的逻辑门。
只有当输入端口的信号不全为1或不全为0时,输出端口才为高电平;否则,输出端口为低电平。
异或门的符号通常是将两个相连的弧线和直线图形。
二、常见逻辑门组合在数字电子系统中,不仅可以单独使用各种逻辑门,还可以通过多个逻辑门的组合构建出更为复杂的逻辑电路。
以下是一些常见的逻辑门组合。
1. 与非门(NAND):是将与门的输出信号输入到非门中的一种组合。
当与门的输出信号为低电平时,非门的输出信号为高电平;当与门的输出信号为高电平时,非门的输出信号为低电平。
与非门因其功能的广泛应用而变得非常重要。
基本门电路的知识点基本门电路是数字电子电路中最基础的部分,它们可以实现逻辑功能并处理数字信号。
本文将逐步介绍基本门电路的知识点,包括与门、或门、非门和异或门。
1.与门(AND Gate):与门是最简单的基本门电路之一,它有两个或更多个输入,并且仅当所有输入都为高电平时,输出才为高电平。
与门可以用逻辑符号“&”表示,也可以用真值表表示。
逻辑符号:A B 输出0 0 00 1 01 0 01 1 12.或门(OR Gate):或门也是常见的基本门电路,它也有两个或更多个输入,但是只要有一个或多个输入为高电平,输出就为高电平。
或门可以用逻辑符号“|”表示,也可以用真值表表示。
逻辑符号:A B 输出0 0 00 1 11 0 11 1 13.非门(NOT Gate):非门是最简单的基本门电路,它只有一个输入,并将输入信号进行反转。
也就是说,如果输入为高电平,输出为低电平;如果输入为低电平,输出为高电平。
非门可以用逻辑符号“!”表示,也可以用真值表表示。
逻辑符号:输入输出0 11 04.异或门(XOR Gate):异或门是常用的基本门电路之一,它有两个输入,并且只有在两个输入不同时,输出才为高电平。
异或门可以用逻辑符号“^”表示,也可以用真值表表示。
逻辑符号:A B 输出0 0 00 1 11 0 11 1 0除了以上介绍的基本门电路,还有其他一些常见的门电路,如与非门(NAND Gate)、或非门(NOR Gate)和异或非门(XNOR Gate)。
它们都是基于与门、或门、非门和异或门进行组合和连接而成的。
最后,基本门电路的知识是数字电子电路设计的基础,它们被广泛应用于计算机、通信和电子设备中。
理解基本门电路的工作原理对于深入学习和应用数字电子电路是至关重要的。
希望本文能够帮助读者对基本门电路有更清晰的认识。
数字电路的基本单元一、数字电路基本单元概述1. 逻辑门- 与门(AND Gate)- 逻辑功能:当所有输入为高电平(逻辑1)时,输出才为高电平;只要有一个输入为低电平(逻辑0),输出就是低电平。
其逻辑表达式为Y = A· B(对于两个输入A和B的情况)。
在电路符号上,与门有多个输入引脚和一个输出引脚,常用的电路符号是一个长方形,输入在左边,输出在右边,中间有一个“&”符号表示与逻辑。
- 或门(OR Gate)- 逻辑功能:只要有一个输入为高电平,输出就为高电平;只有当所有输入都为低电平时,输出才为低电平。
逻辑表达式为Y=A + B(对于两个输入A和B的情况)。
电路符号也是长方形,输入在左,输出在右,中间有一个“≥1”的符号表示或逻辑。
- 非门(NOT Gate)- 逻辑功能:实现输入电平的取反操作,输入为高电平则输出为低电平,输入为低电平则输出为高电平。
逻辑表达式为Y=¯A。
电路符号是一个三角形,在三角形的输入端或者输出端有一个小圆圈,表示取反操作。
- 与非门(NAND Gate)- 逻辑功能:先进行与运算,然后再对结果取反。
逻辑表达式为Y=¯A· B。
与非门的电路符号是在与门符号的基础上,在输出端加上一个小圆圈,表示取反。
- 或非门(NOR Gate)- 逻辑功能:先进行或运算,然后再取反。
逻辑表达式为Y = ¯A + B。
或非门的电路符号是在或门符号的基础上,在输出端加上一个小圆圈。
- 异或门(XOR Gate)- 逻辑功能:当两个输入电平不同时,输出为高电平;当两个输入电平相同时,输出为低电平。
逻辑表达式为Y=A⊕ B = A·¯B+¯A· B。
异或门的电路符号是一个长方形,中间有一个“=1”的符号。
- 同或门(XNOR Gate)- 逻辑功能:与异或门相反,当两个输入电平相同时,输出为高电平;当两个输入电平不同时,输出为低电平。
电子工程数字电路设计(知识点)数字电路设计是电子工程的重要内容,涉及到数字信号的处理和控制。
在电子工程领域中,数字电路是一类电路系统,用于处理和控制数字信号,并实现各种功能。
本文将介绍数字电路设计的知识点,包括逻辑门、组合逻辑电路和时序逻辑电路。
一、逻辑门逻辑门是数字电路设计的基础组成部分,用于处理和操作数字信号。
在数字电路中常见的逻辑门有与门(AND)、或门(OR)、非门(NOT)以及它们的组合形式(如与非门、或非门)。
1. 与门(AND)与门是最基本的逻辑门之一,其输出信号仅在所有输入信号均为高电平时才输出高电平。
与门的符号为“&&”。
2. 或门(OR)或门是另一个常见的逻辑门,其输出信号仅在任一输入信号为高电平时即输出高电平。
或门的符号为“||”。
3. 非门(NOT)非门是最简单的逻辑门,其输出信号与输入信号相反。
非门的符号为“!”。
二、组合逻辑电路组合逻辑电路是由逻辑门组成的电路,根据输入信号的不同组合产生不同的输出信号。
组合逻辑电路的输出仅与当前输入信号有关,而与过去的输入信号或时序无关。
1. 译码器译码器是一种常见的组合逻辑电路,用于将一组输入信号转换为对应的输出信号。
常见的译码器有二进制译码器和十进制译码器等。
2. 多路选择器多路选择器是另一种常见的组合逻辑电路,用于根据选择信号选择不同的输入信号输出。
多路选择器的输出信号与选择信号相关。
三、时序逻辑电路时序逻辑电路是由触发器和组合逻辑电路组成的电路系统,其输出信号不仅与当前输入信号相关,还与过去的输入信号和时序有关。
1. 触发器触发器是时序逻辑电路的基本组成单元,用于存储和延时信号。
常见的触发器有D触发器、JK触发器和T触发器等。
2. 计数器计数器是一种常见的时序逻辑电路,用于计数和记录输入脉冲的数量。
计数器可以分为正向计数器和逆向计数器。
四、应用场景数字电路设计在现代电子工程中具有广泛的应用。
以下是一些常见的应用场景:1. 中央处理器(CPU)中央处理器是计算机的核心部件,其中包含了大量的数字电路设计。
数字电子技术——门电路3.1 概述1. 门电路是用以实现逻辑关系的电子电路,与基本逻辑关系相对应。
门电路主要有:与门、或门、与非门、或非门、异或门等。
2. 高低电平高电平:数字电路中较高电平代数值的范围。
低电平:数字电路中较低电平代数值的范围。
3. 正负逻辑正逻辑:用高电平代表1、低点平代表0。
在数字电路中,一般采用正逻辑系统。
负逻辑:用高电平代表0、低点平代表1。
图14. 集成电路IC(Integrated Circuits):将元、器件制作在同一硅片上,以实现电路的某些功能。
SSI(Small-Scale Integration):£ 10个门电路。
MSI(Medium-Scale Integration):10~100个门电路。
LSI(Large-Scale Integration):1000~10000个门电路。
VLSI(Very Large-Scale Integration):³ 10000个门电路。
3.2 半导体二极管门电路图2二极管加正向电压时导通,伏安特性很陡、压降很小(硅管为0.7V,锗管为0.3V),可以近似看作是一个闭合的开关。
二极管加反向电压时截止,反向电流很小(nA级),可以近似看作是一个断开的开关。
把uD<UT=0.5V看成是硅二极管的截止条件。
图3在低速脉冲电路中,二极管开关由接通到断开,或由断开到接通所需要的转换时间通常是可以忽略的。
然而在数字电路中,二极管开关经常工作在高速通断状态。
由于PN结中存储电荷的存在,二极管开关状态的转换不能瞬间完成,需经历一个过程。
tre=ts+tf 叫做反向恢复时间。
该现象说明,二极管在输入负跳变电压作用下,开始仍然是导通的,只有经过一段反向恢复时间tre之后,才能进入截止状态。
由于tre的存在,限制了二极管的开关速度。
图4图53.3 CMOS门电路MOS门电路:以MOS管作为开关元件构成的门电路。
MOS门电路,尤其是CMOS门电路具有制造工艺简单、集成度高、抗干扰能力强、功耗低、价格便宜等优点,得到了十分迅速的发展。
数字电路基础概述数字电路是计算机科学和电子工程领域的基础知识之一。
本文将对数字电路的概念、基本组成部分和应用进行简要介绍。
一、概述数字电路是处理离散信号的电路系统。
与模拟电路不同,数字电路中的信号仅能表示两种状态,通常用0和1表示,分别代表低电平和高电平。
数字电路主要用于实现逻辑运算、数据存储和信号处理等功能。
二、基本组成部分1. 逻辑门逻辑门是数字电路中最基本的构建单元,可以实现基本的布尔逻辑运算。
常见的逻辑门包括与门、或门、非门、异或门等。
通过逻辑门的组合和连接,可以构建出复杂的数字电路。
2. 编码器和解码器编码器和解码器是数字电路中的重要组件,用于将一种表示方式转换为另一种表示方式。
编码器将多个输入信号转换为较少的输出信号,解码器则将少量的输入信号转换为多个输出信号。
3. 多路选择器和复用器多路选择器和复用器也是数字电路中常见的组件,用于在多个输入信号中选择一个或多个进行处理。
多路选择器根据选择信号的不同,将相应的输入信号输出,而复用器则根据控制信号的不同,将一个或多个输入信号发送到相应的输出端口。
4. 触发器和寄存器触发器和寄存器是数字电路中的存储元件,用于存储和传输数据。
触发器可以存储一个位(0或1),而寄存器可以存储多个位,通常用于实现数据缓存和暂存器等功能。
三、应用数字电路广泛应用于各个领域,尤其是计算机科学和电子工程领域。
以下是数字电路的几个典型应用:1. 计算机内部数字电路在计算机内部发挥着重要作用。
例如,中央处理器(CPU)中的算术逻辑单元(ALU)利用数字电路实现各种算术和逻辑运算,存储器中的存储单元(比特)利用触发器和寄存器来存储数据。
2. 数据通信数字电路在数据通信领域具有重要作用。
数字通信系统中,数字电路用于编码和解码信号,保证数据的正确传输。
调制解调器(调制解调器)就是一个典型的数字电路设备,它将数字数据转换为模拟信号以在传输过程中传播。
3. 控制系统数字电路在控制系统中发挥关键作用。
基本门电路知识点总结门电路是数字电路中的基本组成单元,用于实现逻辑运算。
门电路的种类包括与门、或门、非门、异或门等,它们可以组合在一起构成更复杂的逻辑功能。
在数字电路中,门电路是构建计算机和其他数字系统的基础。
因此,掌握门电路的原理和使用方法对于理解数字电路的工作原理非常重要。
本文将对门电路的基本知识点进行总结,包括门电路的种类、逻辑代数、真值表、卡诺图等内容,并且介绍了门电路的应用领域以及未来发展方向。
1. 门电路的种类门电路是用于进行逻辑运算的电路,它利用输入信号来产生输出信号,实现逻辑功能。
常见的门电路包括与门、或门、非门、异或门等。
其中,与门实现逻辑与运算,只有当所有输入都为高电平时输出才为高电平;或门实现逻辑或运算,只要有一个输入为高电平输出就为高电平;非门实现逻辑非运算,对输入进行取反操作;异或门实现逻辑异或运算,只有当输入的两个信号不相同时输出为高电平。
除了这些基本的门电路外,还有其他的门电路,如与非门、或非门、同或门等,它们可以组合在一起实现更复杂的逻辑功能。
2. 逻辑代数逻辑代数是研究逻辑运算的代数理论,它在门电路的设计和分析中扮演着重要的角色。
逻辑代数中的基本运算包括逻辑与、逻辑或、逻辑非等,它们分别对应着与门、或门、非门的逻辑功能。
逻辑代数还有一些常见的定理,如分配律、结合律、德摩根定律等,这些定理可以帮助简化逻辑表达式。
通过逻辑代数的方法,可以将逻辑电路的设计和分析转化为代数运算,从而方便人们理解和应用门电路。
3. 真值表真值表是用于描述逻辑电路的输入和输出之间的关系的表格。
真值表列出了所有可能的输入组合以及对应的输出,通过真值表可以直观地了解逻辑电路的工作原理。
例如,对于一个与门电路,真值表列出了两个输入的所有可能组合以及对应的输出,通过真值表可以看出只有当两个输入都为高电平时输出才为高电平。
真值表是逻辑电路设计和分析的重要工具,它可以帮助人们快速地理解逻辑电路的功能。
数电逻辑门电路逻辑门电路是数字电路中常见的一种电路结构,用于处理不同的逻辑运算和控制信号。
逻辑门电路通常由不同类型的逻辑门组成,如与门、或门、非门、异或门等。
在这篇文章中,我们将介绍几种常见的逻辑门电路以及它们的应用。
1. 与门电路与门电路是最基本的逻辑门之一,其功能是将两个输入信号进行逻辑与运算,输出结果为如果两个输入信号同时为高电平时输出高电平,否则输出低电平。
与门电路通常用于逻辑运算和控制信号的处理,比如电脑中的逻辑电路、开关控制等。
2. 或门电路或门电路是另一种常见的逻辑门,其功能是将两个输入信号进行逻辑或运算,输出结果为如果任一输入信号为高电平时输出高电平,否则输出低电平。
或门电路也广泛应用于逻辑运算和控制信号处理中,例如电脑中的逻辑电路、开关控制等。
3. 非门电路非门电路是一种单输入单输出的逻辑门,其功能是将输入信号取反输出,即如果输入信号为高电平则输出低电平,如果输入信号为低电平则输出高电平。
非门电路通常用于信号反转、逻辑反相等应用。
4. 异或门电路异或门电路是一种常见的逻辑门,其功能是将两个输入信号进行逻辑异或运算,输出结果为如果两个输入信号不相同则输出高电平,否则输出低电平。
异或门电路在数字电路设计中经常被使用,例如数据的误码检测、加法器电路等。
以上是几种常见的逻辑门电路,下面我们将介绍一个简单的逻辑门电路示例:4位全加器电路。
4位全加器电路是由4个异或门、3个与门和1个或门组成的逻辑电路,用于实现4位二进制数的加法运算。
该电路的原理是将两个4位二进制数相加,得到和输出以及进位输出。
当输入信号为A3-A0、B3-B0时,输出信号为S3-S0代表和值,C代表进位位。
在4位全加器电路中,每个异或门接收两个输入信号A和B,输出一个异或运算结果;每个与门接收三个输入信号A、B和C_in,输出一个与运算结果;一个或门接收四个输入信号S0-S3,输出一个或运算结果。
将这些逻辑门按照接线图正确连接,就可以实现全加器电路的功能。
公式
1.Cmos传输门
反之,导通2.
OC门
A。
B同时为高电平时,T5才导通,Y1输出低电平,Y1=(A*B)’
4. 优先编码器
S’为选通输入端,只有当s’=0时编码器正常工作,
当YS’=0时,表示电路无编码输入,但电路工作正常
当YE'=0时,表示电路有编码输入,而且电路工作正常。
5.
与上差不多P173页
6. 二进制编码器
S1,S2’,S3'为使能端
S为控制端,S=1时进行译码工作,S=0时禁止译码,输出全为1.P175页
7。
二-十进制译码器为74HC42
8.数据选择器
S1用于数据选择器的扩展9
10.
4位超进位加法器74LS283
11.
数值比较器的扩展.
13
CLK=0时Q保持;CLK=0,S=0,R=0时保持;CLK=0,S=1,R=0时Q置1; CLK=0,S=0,R=1时Q置0;CLK=0,S=1,R=1时Q不定;
SD’,RD’是置位端
12
或非门与非门
14。
15
16.边沿触发器p230页
17第六章
18。
移位寄存器
双向移位寄存器74LS194A的扩展
19。
同步二进制计数器
当RD'=1.LD'=0时,电路工作在同步预置数状态,
左图主要看74LS161的芯片形状同步十六进制加/减计数器
CLKD减计数脉冲,CLKU加计数脉冲。
八种逻辑门电路1. 逻辑门简介逻辑门是数字电路中的基本组成部分,它通过对电信号的逻辑运算来实现特定的功能。
逻辑门包括与门、或门、非门、与非门、或非门、异或门、同或门和与或非门。
本文将逐一介绍这八种逻辑门电路的原理和应用。
2. 与门(AND Gate)与门是最基本的逻辑门之一,它的输出信号为1的条件是所有输入信号都为1,否则输出信号为0。
与门电路通常由两个输入端和一个输出端组成。
当且仅当两个输入信号同时为1时,输出信号才为1。
3. 或门(OR Gate)或门是另一种常见的逻辑门,它的输出信号为1的条件是至少有一个输入信号为1,否则输出信号为0。
或门电路通常由两个或多个输入端和一个输出端组成。
当任意一个输入信号为1时,输出信号即为1。
4. 非门(NOT Gate)非门是最简单的逻辑门,它只有一个输入和一个输出。
非门的输出信号与输入信号相反。
当输入信号为1时,输出信号为0;当输入信号为0时,输出信号为1。
非门通常用于翻转信号的逻辑状态。
5. 与非门(NAND Gate)与非门是由与门和非门组成的复合逻辑门。
与非门的输出信号与与门的输出信号相反。
当且仅当所有输入信号都为1时,与非门的输出信号为0;其他情况下,输出信号都为1。
与非门可用于实现各种逻辑功能。
6. 或非门(NOR Gate)或非门是由或门和非门组成的复合逻辑门。
或非门的输出信号与或门的输出信号相反。
当且仅当所有输入信号都为0时,或非门的输出信号为1;其他情况下,输出信号都为0。
或非门常用于逻辑计算、控制和存储等领域。
7. 异或门(XOR Gate)异或门是一种有两个或多个输入端和一个输出端的逻辑门。
异或门的输出信号为1的条件是输入信号中只有一个信号为1,其他信号为0;否则输出信号为0。
异或门在数字电路中有广泛的应用,例如数据比较、错误检测和纠正等。
8. 同或门(XNOR Gate)同或门与异或门相似,不同之处在于同或门的输出信号与异或门的输出信号相反。
八种逻辑门电路逻辑门电路是由逻辑门组成的电路,用于实现数字电路中的逻辑运算。
常见的逻辑门有八种,分别是与门、或门、非门、异或门、与非门、或非门、同或门和三态门。
1. 与门(AND Gate)与门是一种基本的逻辑门,其输出信号只有在所有输入信号均为高电平时才为高电平。
其符号为“&”,代表“且”的意思。
与门通常用于实现多个条件同时满足时才执行某项操作的功能。
2. 或门(OR Gate)或门也是一种基本的逻辑门,其输出信号只要有一个输入信号为高电平时就为高电平。
其符号为“|”,代表“或”的意思。
或门通常用于实现多个条件中任意一个满足时就执行某项操作的功能。
3. 非门(NOT Gate)非门也称反相器,其输出信号与输入信号相反,即当输入信号为高电平时,输出信号为低电平;当输入信号为低电平时,输出信号为高电平。
其符号为“~”,代表“非”的意思。
4. 异或门(XOR Gate)异或门是一种特殊的逻辑运算,其输出信号只有在两个输入信号不同时才为高电平。
其符号为“⊕”,代表“异或”的意思。
异或门通常用于实现某些特殊的运算,如加密和校验等。
5. 与非门(NAND Gate)与非门是一种由与门和非门组成的复合逻辑门,其输出信号只有在所有输入信号均为高电平时才为低电平,否则为高电平。
其符号为“&”,上方加一个小圆圈表示非的意思。
6. 或非门(NOR Gate)或非门是一种由或门和非门组成的复合逻辑门,其输出信号只有在所有输入信号均为低电平时才为高电平,否则为低电平。
其符号为“|”,上方加一个小圆圈表示非的意思。
7. 同或门(XNOR Gate)同或门是一种由异或门和非门组成的复合逻辑门,其输出信号只有在两个输入信号相同时才为高电平,否则为低电平。
其符号为“⊕”,上方加一个小圆圈表示非的意思。
8. 三态门(Tri-state Buffer)三态门是一种特殊的逻辑器件,其输出端可以处于三种状态之一:高电平、低电平、高阻态。
公式
1.Cmos传输门
反之,导通2.
OC门
A.B同时为高电平时,T5才导通,Y1输出低电平,Y1=(A*B)’
4. 优先编码器
S’为选通输入端,只有当s’=0时编码器正常工作,
当YS’=0时,表示电路无编码输入,但电路工作正常
当YE’=0时,表示电路有编码输入,而且电路工作正常。
5.
与上差不多P173页
6. 二进制编码器
S1,S2’,S3’为使能端
S为控制端,S=1时进行译码工作,S=0时禁止译码,输出全为1。
P175页
7.二—十进制译码器为74HC42
8.数据选择器
S1用于数据选择器的扩展9
10.
4位超进位加法器74LS283
11.
数值比较器的扩展。
13
CLK=0时Q保持;CLK=0,S=0,R=0时保持;CLK=0,S=1,R=0时Q置1;CLK=0,S=0,R=1时Q置0;CLK=0,S=1,R=1时Q不定;
SD’,RD’是置位端
12
或非门与非门
14.
15
16.边沿触发器p230页
17第六章
18.移位寄存器
双向移位寄存器74LS194A的扩展
19. 同步二进制计数器
当RD’=1.LD’=0时,电路工作在同步预置数状态,
左图主要看74LS161的芯片形状同步十六进制加/减计数器
CLKD减计数脉冲,CLKU加计数脉冲。