RBF神经网络剖析
- 格式:ppt
- 大小:998.00 KB
- 文档页数:37
一、神经网络概述1.简介人工神经网络是模仿脑细胞结构和功能、脑神经结构以及思维处理问题等脑功能的信息处系统,它从模仿人脑智能的角度出发,探寻新的信息表示、存储和处理方式,这种神经网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的,它采用了与传统人工智能和信息处理技术完全不同的机理,克服了传统的基于逻辑符号的人工智能在处理直觉、非结有针对性化信息方面的缺陷,具有自适应、自组织和实时学习的特点,它通过预先提供的一批相互对应的输入和输出数据,分析掌握两者之间潜在的规律,最终根据这些规律,用新的输入数据来推算输出结果。
人工神经网络(ANN)学习对于训练数据中的错误健壮性很好,且已被成功地应用到很多领域,例如视觉场景分析、语音识别、机器人控制以及医学图像处理等。
人工神经网络2.人工神经网络的特点及功能人工神经网络具有以下几个突出的优点:(1)能充分逼近复杂的非线性关系。
只有当神经元对所有输入信号的综合处理结果超过某一个限值后才能输出一个信号。
(2)所有定量或定性的信息都等势分布贮存于网络内的各神经元,每个神经元及其连线只能表示一部分信息,因此当有节点断裂时也不影响总体运行效果,具有很强的鲁棒性和容错能力。
(3)采用并行分布处理方法,使得快速进行大量运算成为可能。
(4)可学习和自适应不知道或不确定的系统。
人工神经网络的特点和优越性,使其具有以下三个显著的功能:(1)具有自学习功能:这种功能在图像识别和处理以及未来预测方面表现得尤为明显。
自学习功能在未来预测方面也意义重大,随着人工神经网络的发展,未来它将在更多的领域,比如经济预测、市场预测、效益预测等等,发挥更好的作用。
(2)具有联想存储功能:人的大脑能够对一些相关的知识进行归类划分,进而具有联想的功能,当我们遇到一个人或者一件事情的时候,跟此人或者此事相关的一些信息会浮现在你的脑海,而人工神经网络则通过它的反馈网络,实现一些相关事物的联想。
RBF神经网络概述1 RBF神经网络的基本原理2 RBF神经网络的网络结构3 RBF神经网络的优点1 RBF神经网络的基本原理人工神经网络以其独特的信息处理能力在许多领域得到了成功的应用。
它不仅具有强大的非线性映射能力,而且具有自适应、自学习和容错性等,能够从大量的历史数据中进行聚类和学习,进而找到某些行为变化的规律。
径向基函数(RBF)神经网络是一种新颖有效的前馈式神经网络,它具有最佳逼近和全局最优的性能,同时训练方法快速易行,不存在局部最优问题,这些优点使得RBF网络在非线性时间序列预测中得到了广泛的应用。
1985年,Powell提出了多变量插值的径向基函数(Radial-Basis Function, RBF)方法。
1988年,Broomhead和Lowe首先将RBF应用于神经网络设计,构成了径向基函数神经网络,即RBF神经网络。
用径向基函数(RBF)作为隐单元的“基”构成隐含层空间,对输入矢量进行一次变换,将低维的模式输入数据变换到高维空间内,通过对隐单元输出的加权求和得到输出,这就是RBF网络的基本思想。
2 RBF神经网络的网络结构RBF网络是一种三层前向网络:第一层为输入层,由信号源节点组成。
第二层为隐含层,隐单元的变换函数是一种局部分布的非负非线性函数,他对中心点径向对称且衰减。
隐含层的单元数由所描述问题的需要确定。
第三层为输出层,网络的输出是隐单元输出的线性加权。
RBF网络的输入空间到隐含层空间的变换是非线性的,而从隐含层空间到输出层空间的变换是线性。
不失一般性,假定输出层只有一个隐单元,令网络的训练样本对为,其中为训练样本的输入,为训练样本的期望输出,对应的实际输出为;基函数为第个隐单元的输出为基函数的中心;为第个隐单元与输出单元之间的权值。
单输出的RBF网络的拓扑图如图1所示:图1RBF网络的拓扑图当网络输入训练样本时,网络的实际输出为:(1)通常使用的RBF有:高斯函数、多二次函数(multiquadric function)、逆多二次函数、薄板样条函数等。
径向基函数(RBF)神经⽹络RBF⽹络能够逼近任意的⾮线性函数,可以处理系统内的难以解析的规律性,具有良好的泛化能⼒,并有很快的学习收敛速度,已成功应⽤于⾮线性函数逼近、时间序列分析、数据分类、模式识别、信息处理、图像处理、系统建模、控制和故障诊断等。
简单说明⼀下为什么RBF⽹络学习收敛得⽐较快。
当⽹络的⼀个或多个可调参数(权值或阈值)对任何⼀个输出都有影响时,这样的⽹络称为全局逼近⽹络。
由于对于每次输⼊,⽹络上的每⼀个权值都要调整,从⽽导致全局逼近⽹络的学习速度很慢。
BP⽹络就是⼀个典型的例⼦。
如果对于输⼊空间的某个局部区域只有少数⼏个连接权值影响输出,则该⽹络称为局部逼近⽹络。
常见的局部逼近⽹络有RBF⽹络、⼩脑模型(CMAC)⽹络、B样条⽹络等。
径向基函数解决插值问题完全内插法要求插值函数经过每个样本点,即。
样本点总共有P个。
RBF的⽅法是要选择P个基函数,每个基函数对应⼀个训练数据,各基函数形式为,由于距离是径向同性的,因此称为径向基函数。
||X-X p||表⽰差向量的模,或者叫2范数。
基于为径向基函数的插值函数为:输⼊X是个m维的向量,样本容量为P,P>m。
可以看到输⼊数据点X p是径向基函数φp的中⼼。
隐藏层的作⽤是把向量从低维m映射到⾼维P,低维线性不可分的情况到⾼维就线性可分了。
将插值条件代⼊:写成向量的形式为,显然Φ是个规模这P对称矩阵,且与X的维度⽆关,当Φ可逆时,有。
对于⼀⼤类函数,当输⼊的X各不相同时,Φ就是可逆的。
下⾯的⼏个函数就属于这“⼀⼤类”函数:1)Gauss(⾼斯)函数2)Reflected Sigmoidal(反常S型)函数3)Inverse multiquadrics(拟多⼆次)函数σ称为径向基函数的扩展常数,它反应了函数图像的宽度,σ越⼩,宽度越窄,函数越具有选择性。
完全内插存在⼀些问题:1)插值曲⾯必须经过所有样本点,当样本中包含噪声时,神经⽹络将拟合出⼀个错误的曲⾯,从⽽使泛化能⼒下降。
rbf神经网络原理RBF(RadialBasisFunction)神经网络是一种广泛应用的人工神经网络,它以其准确性和高精度被广泛应用于多种领域,其中有建模预测、模式识别和控制系统等。
本文首先介绍了RBF神经网络的基本原理,然后介绍了其优势及模式识别应用,最后重点介绍了其在控制系统研究中的应用。
RBF神经网络的原理是在一个给定的期望输出集合中,通过学习总结出一组带有可调整参数的基函数分布,以此来进行近似。
它的本质是一个二次形式的最小二乘函数:E(w)=∑i{p[i]-yd[i]^2}+∑jε{wj*hj(x)}其中p[i]是第i个观测点的期望输出,hj(x)是第j个基函数,wj是它的参数,yd[i]是第i个点的实际输出值。
基函数通常用高斯函数形式,其参数会在学习过程中不断调整,使得建模能够准确拟合实际数据。
RBF神经网络的优势在于其具有可解释性、快速学习速度、无局部极小点和可扩展性等特点,即其可以有效解决复杂的系统建模和控制问题。
在模式识别方面,由于RBF神经网络具有很高的识别精度,它被广泛用于语音识别、图像分类等复杂任务。
例如,一些研究者使用RBF神经网络来识别人脸图像,以及基于光学字符识别的文本翻译系统,其准确率高达99%。
另外,RBF神经网络也被广泛用于控制系统领域,其中包括机器人控制、动力系统控制及非线性系统的鲁棒控制和稳定控制等。
例如,研究者使用RBF神经网络设计了一种可用于机器人末端重力补偿的非线性控制器,提高了机器人对负载变化的响应效果。
总而言之,RBF神经网络具有可解释性、快速学习速度、无局部极小点和可扩展性等优势,广泛应用于各种领域,如模式识别、控制系统设计等。
通过RBF神经网络可以更好地解决复杂的实际问题,具有极大的应用价值。
1.RBF 的泛化能力在多个方面都优于BP 网络, 但是在解决具有相同精度要求的问题时, BP 网络的结构要比RBF 网络简单。
??2.RBF 网络的逼近精度要明显高于BP 网络,它几乎能实现完全逼近, 而且设计起来极其方便, 网络可以自动增加神经元直到满足精度要求为止。
但是在训练样本增多时,RBF 网络的隐层神经元数远远高于前者, 使得RBF 网络的复杂度大增加, 结构过于庞大, 从而运算量也有所增加。
??3.RBF神经网络是一种性能优良的前馈型神经网络,RBF网络可以任意精度逼近任意的非线性函数,且具有全局逼近能力,从根本上解决了BP网络的局部最优问题,而且拓扑结构紧凑,结构参数可实现分离学习,收敛速度快。
4.他们的结构是完全不一样的。
BP是通过不断的调整神经元的权值来逼近最小误差的。
其方法一般是梯度下降。
RBF是一种前馈型的神经网络,也就是说他不是通过不停的调整权值来逼近最小误差的,的激励函数是一般是高斯函数和BP的S型函数不一样,高斯函数是通过对输入与函数中心点的距离来算权重的。
5.bp神经网络学习速率是固定的,因此网络的收敛速度慢,需要较长的训练时间。
对于一些复杂问题,BP算法需要的训练时间可能非常长,这主要是由于学习速率太小造成的。
而rbf神经网络是种高效的前馈式网络,它具有其他前向网络所不具有的最佳逼近性能和全局最优特性,并且结构简单,训练速度快。
6. BP网络用于函数逼近时,权值的调节采用的是负梯度下降法,这种调节权值的方法有它的局限性,既存在着收敛速度慢和局部极小等缺点。
而径向基神经网络在逼近能力、分类能力和学习速度等方面均优于BO网络。
从理论上,RBF网络和BP网络一样可近似任何的连续非线形函数,两者的主要差别在于各使用不同的作用函数,BP网络中的隐层节点使用的是Sigmoid函数,其函数值在输入空间中无限大的范围内为非零值,而RBF网络的作用函数则是局部的。
7. RBF神经网络与BP神经网络的比较RBF神经网络与BP神经网络都是非线性多层前向网络,它们都是通用逼近器。
RBF神经网络在股价预测中的应用RBF神经网络在股价预测中的应用引言股票市场的波动性和不确定性一直是投资者面临的难题。
准确预测股票价格的能力对于投资者和交易者来说至关重要。
近年来,人工神经网络(Artificial Neural Network,ANN)作为一种有效的预测工具,得到了广泛的关注和应用。
其中,径向基函数神经网络(Radial Basis Function Neural Networks,RBFNNs)通过其独特的优势,在股价预测领域表现出良好的效果。
本文将分析RBF神经网络在股价预测中的应用,并探讨其优势和不足之处。
一、RBF神经网络概述1. RBFNNs的基本原理RBF神经网络是一种前馈式神经网络,主要由三层组成:输入层、隐藏层和输出层。
其中,隐藏层采用径向基函数作为激活函数,而不是常见的Sigmoid或ReLU激活函数。
径向基函数通常用于处理非线性问题,如高斯函数。
RBF神经网络通过学习数据集中的模式,找到输入与输出之间的关系,从而实现对股价的预测。
2. RBFNNs的优势(1)非线性建模能力:RBF神经网络可以捕捉股票价格中的非线性关系,更准确地预测股价的变化。
(2)适应性学习能力:RBF神经网络具有自适应学习能力,可以对新的数据进行快速学习和适应,提高预测的准确性。
(3)高泛化能力:RBF神经网络可以有效地处理噪声和异常值,提高股价预测模型的稳定性和鲁棒性。
二、RBF神经网络在股价预测中的应用1. 数据预处理RBF神经网络在应用于股价预测前,需要对原始数据进行处理。
常用的数据预处理方法包括数据平滑、特征提取和数据归一化,以提高模型的可靠性和稳定性。
2. 模型训练RBF神经网络的训练主要包括两个步骤:网络初始化和权重优化。
网络初始化通常采用随机分布方式,通过随机选择隐藏层节点和初始化节点权重来建立初始模型。
然后,通过最小化损失函数(如均方误差)来优化权重,以提高模型的拟合能力。
RBF(径向基)神经⽹络 只要模型是⼀层⼀层的,并使⽤AD/BP算法,就能称作 BP神经⽹络。
RBF 神经⽹络是其中⼀个特例。
本⽂主要包括以下内容:什么是径向基函数RBF神经⽹络RBF神经⽹络的学习问题RBF神经⽹络与BP神经⽹络的区别RBF神经⽹络与SVM的区别为什么⾼斯核函数就是映射到⾼维区间前馈⽹络、递归⽹络和反馈⽹络完全内插法⼀、什么是径向基函数 1985年,Powell提出了多变量插值的径向基函数(RBF)⽅法。
径向基函数是⼀个取值仅仅依赖于离原点距离的实值函数,也就是Φ(x)=Φ(‖x‖),或者还可以是到任意⼀点c的距离,c点称为中⼼点,也就是Φ(x,c)=Φ(‖x-c‖)。
任意⼀个满⾜Φ(x)=Φ(‖x‖)特性的函数Φ都叫做径向基函数,标准的⼀般使⽤欧⽒距离(也叫做欧式径向基函数),尽管其他距离函数也是可以的。
最常⽤的径向基函数是⾼斯核函数 ,形式为 k(||x-xc||)=exp{- ||x-xc||^2/(2*σ)^2) } 其中x_c为核函数中⼼,σ为函数的宽度参数 , 控制了函数的径向作⽤范围。
⼆、RBF神经⽹络 RBF神将⽹络是⼀种三层神经⽹络,其包括输⼊层、隐层、输出层。
从输⼊空间到隐层空间的变换是⾮线性的,⽽从隐层空间到输出层空间变换是线性的。
流图如下: RBF⽹络的基本思想是:⽤RBF作为隐单元的“基”构成隐含层空间,这样就可以将输⼊⽮量直接映射到隐空间,⽽不需要通过权连接。
当RBF的中⼼点确定以后,这种映射关系也就确定了。
⽽隐含层空间到输出空间的映射是线性的,即⽹络的输出是隐单元输出的线性加权和,此处的权即为⽹络可调参数。
其中,隐含层的作⽤是把向量从低维度的p映射到⾼维度的h,这样低维度线性不可分的情况到⾼维度就可以变得线性可分了,主要就是核函数的思想。
这样,⽹络由输⼊到输出的映射是⾮线性的,⽽⽹络输出对可调参数⽽⾔却⼜是线性的。
⽹络的权就可由线性⽅程组直接解出,从⽽⼤⼤加快学习速度并避免局部极⼩问题。