工程热力学第7章 水蒸汽
- 格式:ppt
- 大小:432.00 KB
- 文档页数:35
第七章水蒸气Water Vapor 本章问题引导:⏹水蒸气可看作理想气体吗?⏹水蒸气是如何产生的?⏹水蒸气的参数如何确定?⏹水蒸气的过程如何计算?7-1 水蒸气的基本概念18世纪人类发明蒸气机,当时蒸气是唯一工质,目前水蒸气仍是火力发电、核电、供暖等的工质。
优点: 容易获得,便宜,无毒,化学性质稳定,膨胀性能好,传热性能好,对环境友好。
在空气中水蒸气含量极小,分压力很低,可当作理想气体,但当离液态不远或有相变,水蒸气一般应作实际气体处理,水蒸气的基本概念1、汽化——液体转变为气体的过程液化——蒸气或气体转变为液体的过程蒸发——液体表面在任何温度进行的缓慢汽化过程2、饱和状态(Saturation state)—汽化和液化达到动态平衡共存的状态饱和温度与饱和压力3. 临界点4.三相线凝固时体积膨胀物质的p-v-T曲面⏹一定的饱和温度总是对应着一定的饱和压力;一定的饱和压力也总是对应着一定的饱和温度⏹饱和温度愈高,饱和压力也愈高饱和温度T s 饱和压力ps一一对应Tspsp s=1.01325bar T s =100 ℃青藏高原p s=0.6bar T s =85.95 ℃高压锅p s=1.6barT s =113.32 ℃Saturation state水cr o cr3cr 22.064MPa647.14K (373.99C)m 0.003106kgp T v ===水的临界点参数饱和液线与饱和汽线的交点气液两相共存的p max ,Tmax临界点水的三相点tp tp 611.2Pa, 273.16Kp T ==t < t s t = t s t = tst = t s t > t s未饱和水饱和水湿饱和蒸汽干饱和蒸汽过热蒸汽预热汽化过热7-2 水定压加热汽化过程水定压加热汽化过程的p -v图及T-s图一点临界点Critical point 两线饱和蒸汽线饱和水线三区液汽液共存汽五态未饱和水饱和水湿饱和蒸汽干饱和蒸汽过热蒸汽7-3 水和水蒸气的状态参数⏹水和水蒸气的状态参数包括p 、v 、T 、h 、s 、u 等,其中h 、s 、u 常需要确定的是它们的变化量。
第七章水蒸汽水蒸汽是人类在热力发动机中最早应用的工质,虽然后来也应用其他的工质,但是由于水蒸汽易于获得,价格低廉、无污染等优点,至今仍然是工业上广泛使用的工质。
水蒸汽在某些条件下可以当做理想气体来处理,例如空气中的水蒸汽,内燃机燃气中的水蒸汽等,由于水蒸气的分压力比较低或者温度较高,当做理想气体来处理不会有太大的偏差,但是大多数情况下我们使用的水蒸汽离液态不远,分子间的作用力和分子本身的体积不可忽略,因此不能当做理想气体来处理。
水蒸汽的热力性质比理想气体复杂的多,不能用简单的公式来计算,在工程计算中,不能单纯的利用数学方法计算,而是采用查取图表的方式来解决,这些图表是理论分析与实验相结合的方法,得出水蒸汽热力性质的复杂公式,由计算结果经过实验验证编制而成的。
本章主要介绍水蒸汽产生的一般原理,水蒸汽参数的确定,水蒸汽图表的结构和应用,计算水蒸汽在热力过程中传递的功和热量。
7.1 水的相变及相图一、饱和温度和饱和压力液体分子和气体分子一样处于紊乱的热运动中,当液体分子处于一个能够承受一定压力的容器中时,随时有液体表面附近的动能较大的分子克服表面张力扩散到上部空间,同时,上部空间的蒸汽分子也会与液面碰撞而回到液面,凝成液体。
这就是气化(蒸发)与液化(凝结)的过程。
气化时,分子带走了液体的能量,液体内分子的平均动能减小,气化速度降低,要维持气化的持续进行,就需要加热来提供热量。
可见,气化速度取决于液体的温度。
液化过程取决于上部蒸汽分子的压力,蒸汽分子越多,蒸汽压力也就越大,与液面碰撞的几率越大。
气化与液化到一定程度时会达到动态平衡,此时的状态称为饱和状态。
上部的蒸汽称为饱和蒸汽,饱和蒸汽的压力称为饱和压力,下部液体称为饱和液体,温度叫做饱和温度。
饱和温度和饱和压力一一对应。
若温度变化,气化速度会发生变化,会达到新的平衡状态。
饱和蒸汽的特点是,在一定容积下,不能再含有更多的蒸汽,如果再有蒸汽加入,就必定有一部分蒸汽凝结,饱和蒸汽致命由此而来。
第7章 水 蒸 汽例1:容积为0.63m 的密闭容器内盛有压力为3.6bar 的干饱和蒸汽,问蒸汽的质量为多少,若对蒸汽进行冷却,当压力降低到2bar 时,问蒸汽的干度为多少,冷却过程中由蒸汽向外传出的热量为多少 解:查以压力为序的饱和蒸汽表得:1p =3.6bar 时,"1v =0.51056kg m /3 "1h =2733.8kJ /kg蒸汽质量 m=V/"1v =1.1752kg查饱和蒸汽表得:2p =2bar 时,'2v =0.0010608kg m /3 "2v =0.88592kg m /3 '2h =504.7kJ /kg''2h =2706.9kJ /kg在冷却过程中,工质的容积、质量不变,故冷却前干饱和蒸汽的比容等于冷却后湿蒸汽的比容即: "1v =2x v或"1v =''22'22)1(v x v x +- 由于"1v ≈''22v x=≈"2"12v v x 0.5763 取蒸汽为闭系,由闭系能量方程 w u q +∆=由于是定容放热过程,故0=w所以 1212u u u q -=∆=而u =h -pv 故)()("11"1222v p h v p h q x x ---= 其中:2x h =''22'22)1(h x h x +-=1773.8kJ /kg则 3.878-=q kJ /kgQ=mq=1.1752⨯(-878.3) =-1032.2kJ例2:1p =50bar C t 01400=的蒸汽进入汽轮机绝热膨胀至2p =0.04bar 。
设环境温度C t 0020=求:(1)若过程是可逆的,1kg 蒸汽所做的膨胀功及技术功各为多少。
(2)若汽轮机的相对内效率为0.88时,其作功能力损失为多少 解:用h -s 图确定初、终参数初态参数:1p =50bar C t 01400=时,1h =3197kJ /kg 1v =0.058kg m /31s =6.65kJ /kgK则1111v p h u -==2907 kJ /kg6.65kJ /kgK终态参数:若不考虑损失,蒸汽做可逆绝热膨胀,即沿定熵线膨胀至2p =0.04bar ,此过程在h-s 图上用一垂直线表示,查得2h =2020 kJ /kg 2v =0.058kg m /3 2s =1s =6.65kJ /kgK2222v p h u -==1914 kJ /kg膨胀功及技术功:21u u w -==2907-1914=993 kJ /kg21h h w t -==3197-2020=1177 kJ /kg2)由于损失存在,故该汽轮机实际完成功量为t ri t w w η='=0.88⨯1177=1036 kJ /kg此不可逆过程在h-s 图上用虚线表示,膨胀过程的终点状态可以这样推算,按题意'21'h h w t -=,则'12't w h h -==3197-1036=2161 kJ /kg这样利用两个参数'2p =0.04bar 和'2h =2161 kJ /kg ,即可确定实际过程终点的状态,并在h-s 图上查得'2s =7.12kJ /kgK ,故不可逆过程熵产为22's s s g -=∆=7.12-6.65=0.47kJ /kgK作功能力损失)(00g f s s T s T w ∆+∆=∆=∆因绝热过程0=∆f s则kg kJ s T w g /7.13747.0)20273(0=⨯+=∆=∆例3:0.1kg 水盛于一绝热的刚性容器中,工质的压力的0.3Mpa ,干度为0.763。
工程热力学水蒸气的热力性质和过程水蒸气的热力性质和过程是工程热力学中的重要内容,涉及到水蒸气的热力性质、热力过程和水蒸气循环过程等方面。
下面将从水蒸气的热力性质、热力过程和水蒸气循环过程三个方面进行详细介绍,以期更好地了解工程热力学中的水蒸气。
首先,水蒸气的热力性质。
水蒸气是一种理想气体,因此可以采用理想气体状态方程描述其热力性质。
根据理想气体状态方程,水蒸气的体积与压力、温度之间满足以下关系:PV=mRT,其中P是水蒸气的压力,V是体积,m是物质的量,R是气体常数,T是温度。
此外,根据水蒸气的物性数据,可以得到水蒸气的比容、比焓、比熵、比内能等热力性质的计算公式。
其次,水蒸气的热力过程。
热力过程是指物体在一定条件下发生的热态变化过程。
对于水蒸气而言,常见的热力过程有等温过程、等焓过程、等熵过程和绝热过程等。
等温过程是指水蒸气在恒温条件下的热力变化过程,其内能变化为零,熵的变化为常数。
等焓过程是指水蒸气在等焓条件下的热力变化过程,其焓变化为零,温度和熵的变化为常数。
等熵过程是指水蒸气在等熵条件下的热力变化过程,其熵变化为零,温度和焓的变化为常数。
绝热过程是指水蒸气在绝热条件下的热力变化过程,其熵的变化为零,温度和焓的变化均不为常数。
最后是水蒸气循环过程。
水蒸气循环是工程热力学中常用的能量转换循环,广泛应用于电力、化工、航空等工业领域。
常见的水蒸气循环包括朗肯循环、卡诺循环和布雷顿循环等。
朗肯循环是一种理想化的热力循环,由四个连续的基本过程组成:等压加热、等熵膨胀、等压冷凝和等熵压缩。
卡诺循环是一种热力效率最高的循环,由两个等温过程和两个绝热过程组成。
布雷顿循环是一种常用的蒸汽动力循环,由蒸汽锅炉、蒸汽涡轮机和冷凝器等设备组成。
综上所述,水蒸气的热力性质和过程是工程热力学中的重要内容,涉及到水蒸气的热力性质、热力过程和水蒸气循环过程等方面。
通过深入了解水蒸气的热力性质和热力过程,我们可以更好地应用工程热力学的原理和方法,在实际工程中合理利用和控制水蒸气的能量转换过程,提高工程的热力效率。