当前位置:文档之家› 盾构机液压系统及其热平衡计算

盾构机液压系统及其热平衡计算

盾构机液压系统及其热平衡计算
盾构机液压系统及其热平衡计算

盾构机液压系统原理.

盾构机液压系统原理 一. 液压系统原理 盾构机的绝大部分工作机构主要由液压系统驱动来完成,液压系统可以说是盾构机的心脏,起着非常重要的作用。这些系统按其机构的工作性质可分为: 盾构机液压推进及铰接系统 刀盘切割旋转液压系统 管片拼装机液压系统 管片小车及辅助液压系统 螺旋输送机液压系统 液压油主油箱及冷却过滤系统 同步注浆泵液压系统 超挖刀液压系统 以上8个系统除同步注浆泵液压系统在1号拖车、超挖刀液压系统在盾壳前体为两个独立的系统外,其余6个液压系统都共用一个油箱,并安装在2号拖车上组成一个液压泵站。有的系统还相互有联系。下面就分别介绍一下以上8个液压系统的作用及工作原理。 (一盾构机液压推进及铰接系统 盾构机液压推进

(1)盾构机液压推进系统的组成 盾构机液压推进系统由液压泵站,调速、调压机构,换向控制阀组及推进油缸组成,30个油缸分20组均布的安装在盾构中体内圆壁上(见图),并分为上、下、左、右四个可调整液压压力的区域,为盾构机前进提供推进力、推进速度,通过调整四个区域的压力差来实现盾构机的转弯调向及 纠偏功能。铰接系统的主要作用是减小盾构机转弯或纠偏时的曲率半径上的直线段,从而减少盾尾与管片、盾体与围岩间的摩擦阻力。 (2)推进系统液压泵站: 推进系统的液压泵站是由一恒压变量泵(1P001)和一定量泵(1P002)组成的双联泵,功率为75KW,恒压变量泵为盾构的前进提供恒定的动力。恒压泵的压力可通过油泵上的电液比例溢流阀(A300)调整,流量在0-qmax范围内变化时,调整后的泵供油压力保持恒定。恒压式变量泵常用于阀控系统的恒压油源以避免溢流损失。

海瑞克盾构机液压系统说明(附电路图)

一、液压系统元件 1液压泵 液压泵是液压系统的动力元件,按结构可以分为柱塞泵、齿轮泵、叶片泵,按排量可以分为定量泵、变量 泵,按输出出口方向又可以分为单向泵、双向泵。 泵都是由电动机或其他原动机带动旋转,通过这种往复的旋转将油不断地输送到管路中,通过各种阀的作 用,控制着执行元件的运行。 在大连地铁盾构机中,螺旋输送机使用一个双向变量泵和一个定量泵,推进系统中使用一个大排量的单向 变量泵,管片安装机种使用两个单向变量泵,注浆系统 中使用一个单向变量泵,辅助系统使用一个单向变量泵。

a.定量齿轮泵 注:右侧油液进入泵内,齿轮旋转带动油液从左侧出口流出,排量是一定的

c.定量叶片泵 注:转子转动,带动叶片推动油液1、2进油,3、4出油,排量一定 d.斜盘式柱塞泵 注:斜盘由联轴器带动转动,往复吸油、压油,斜盘角度是可以调控的

2液压阀 液压阀根据作用可以分为压力控制阀、流量控制阀、方向控制阀。 压力控制阀可以控制液压回路的压力,如当液压回路中压力过大时,溢流阀或卸荷阀打开泄压。 流量控制阀可以控制液压回路中的流量大小,根据流量的不同可以控制执行元件的速度。 方向控制阀主要控制液压回路中液压油的流动方向,由此可以改变液压油缸的伸缩。 各种阀一般安装在靠近泵的油液管路中,相对来说比较集中,便于检查和维修。 a.单向阀 注:油液从P1口进入,克服弹簧力推开单向阀的阀芯,经孔隙从p2 口流出,油液只能从p1流向p2

b.溢流阀 注:油从压力口进入,通过阻尼孔进入后腔,克服弹簧压力,推开阀芯,油液 从溢流口

c.液控单向阀 注:x口接压力油时,阀芯将a与b口堵死,当x口接油箱时,若Pa大于Pb,则从a口进油,打开阀芯,流向b口,若Pb大于Pa时,则油液从b 口流向a口,

液压系统温升及散热器选型计算

液压系统温升及散热器 选型计算 The manuscript was revised on the evening of 2021

液压系统温升及散热器选型计算 液压系统油液温升计算及冷却器选型 摘要: 介绍了液压系统的系统损耗功率及油液温升的计

算。通过对两种冷却器的比较, 提出了正确的选型方法。 关键词: 液压系统; 油液温升; 冷却器; 损耗功率 1 前言 液压系统的压力、容积和机械损失构成总的能 量损失, 这些能量损失都将转化为热量, 使系统油温升高。油温的变化将直接影响液压元件的寿命; 油温升高将使油液氧化, 加速油液的变质; 油温过高还严重影响液压油的稳定性, 进而影响液压系统的寿命和传动效率。为此, 必须对系统进行发热与温升计算, 以便对系统温升加以控制。下面对液压系统的发热量及温升计算和冷却器的选择予以介绍。 2 系统损耗功率和温升计算 损耗功率计算 液压系统发热的主要原因是由液压泵和执行器 的功率损失以及溢流阀的溢流损失造成的。其系统的损耗功率即发热功率为: H=P( 1- η) 式中: P—系统泵组的总驱动功率; η—系统效率。 η=ηP ηC ηA 其中: ηP —液压泵的效率, 可从产品样本中查到; ηA —液压执行器总效率, 液压缸一般取~; ηC —液压回路的效率。 ηC

= Σp1 q1 Σp P q P 式中: Σp1 q1 —各执行器负载压力和负载流量即输入 流量乘积的总和; Σp p q p —各液压泵供油压力和输出流量乘积的 总和。 系统的损耗功率即发热功率H 也可按下式估 算, 由于热能的损耗总量约占泵组驱动功率的15% ~30%, 因此: H=( 15%~30%) P 油液温升计算 液压系统中产生的热量H, 由系统中各个散热 面散发至空气中, 其中油箱是主要散热面。因为管道散热面积相对较小, 且与其身的压力损失产生的热量基本平衡, 故一般略去不计。当只考虑油箱散热 时, 其散热量H O 可按下式计算: H O=KAΔt 式中: K—散热系数[ W(/ m2·℃) ] , 计算时可选用推荐值: 当通风很差( 空气不循环) 时, K=8[ W/ ( m2·℃) ] ; 通风良好( 空气流速为1m/s 左右) 时, K=14~20[ W(/ m2·℃) ] ; 风扇冷却时, K=20~25[ W(/ m2·℃) ] ; 用循环水冷却时, K=110~175[ W(/ m2·℃) ] 。 A—油箱散热面积, m2;

盾构机液压系统原理(海瑞克)

盾构机液压系统原理 一.液压系统原理 盾构机的绝大部分工作机构主要由液压系统驱动来完成,液压系统可以说是盾构机的心脏,起着非常重要的作用。这些系统按其机构的工作性质可分为: 1. 盾构机液压推进及铰接系统 2. 刀盘切割旋转液压系统 3. 管片拼装机液压系统 4. 管片小车及辅助液压系统 5. 螺旋输送机液压系统 6. 液压油主油箱及冷却过滤系统 7. 同步注浆泵液压系统 8. 超挖刀液压系统 以上8个系统除同步注浆泵液压系统在1号拖车、超挖刀液压系统在盾壳前体为两个独立的系统外,其余6个液压系统都共用一个油箱,并安装在2号拖车上组成一个液压泵站。有的系统还相互有联系。下面就分别介绍一下以上8个液压系统的作用及工作原理。 (一)盾构机液压推进及铰接系统 1. 盾构机液压推进 (1)盾构机液压推进系统的组成 盾构机液压推进系统由液压泵站,调速、调压机构,换向控制阀组及推进油缸组成,30个油缸分20组均布的安装在盾构中体内圆壁上(见图),并分为上、下、左、右四个可调整液压压力的区域,为盾构机前进提供推进力、推进速度,通过调整四个区域的压力差来实现盾构机的

转弯调向及 纠偏功能。铰接系统的主要作用是减小盾构机转弯或纠偏时的曲率半径上的直线段,从而减少盾尾与管片、盾体与围岩间的摩擦阻力。 (2)推进系统液压泵站: 推进系统的液压泵站是由一恒压变量泵(1P001)和一定量泵(1P002)组成的双联泵,功率为75KW,恒压变量泵为盾构的前进提供恒定的动力。恒压泵的压力可通过油泵上的电液比例溢流阀(A300)调整,流量在0-q ma x范围内变化时,调整后的泵供油压力保持恒定。恒压式变量泵常用于阀控系统的恒压油源以避免溢流损失。

热平衡计算.(DOC)

2.热平衡计算 单位时间内熔体固化放出的热量等于冷却水所带走的热量 ⑴ 进入模腔的总热量 G i n Q in ???= (公式11-1) 式中: Q in ——进入模腔的总热量(/KJ h ) n ——每小时注射次数 i ?——塑料熔体进入模腔时(1max t )及冷却结束时(1min t )塑料热含之差(/KJ kg )查图4-2-13 公式计算 1max 1min ()p E i C t t L ?=-+。(公式11-2) P C ——平均比热,查表4-2-4; E L ——潜热,查表4-2-4 (/kJ kg )。 G ——每次注射量(kg ) ⑵模具散热量L R c out Q Q Q Q ++= (公式11-3) 1)对流散发走的热量 ()021t t F Q m c -??=α (公式11-4) 式中: C Q ——对流散发走的热量(/KJ h ) 1α——传热系数0211t t A m -=α (公式11-5) F ——模具表面积(2m ) 2m t —模具平均温度(℃)查表4-2-6 0t —室温(℃) '''F F F τ=+ (公式11-6) 'F 为模具四侧面积,''F 为模具对合面积; τ 为开模率() ' '' ''θθθθτ+-= (公式11-7) θ注射时间,'θ制件冷却时间,''θ注射周期 1360 4.1868(0.25) 300 A t =?++

当0<2m t <300℃时,由实验得: 2)制品所需冷却时间计算 冷却时间定义:从熔体充满型腔起,到可以开模取出制件止的这段时间。常以制件巳充分凝固,具 有一定强度和刚性为准,具体的标准为: (a)制件最厚部断面中心层温度冷却到该种塑料的热变温度以下所需的时间。 (b )制件断面的平均温度,冷却到所要求的某一温度以下所要的时间: (c )某些较厚的制品,断面中心部分尚未凝固,但有一定的壳层已经凝固,此时取出制品,可不产 生让大的变形,这段时间也可定为制件的冷却时间。 (d)结晶性塑料制件最厚部位断面的中心层温度,冷却到其熔点以下所需的时间。 2)制品所需冷却时间计算 ①可查表4-2-5确定 ②可理论计算 制件最厚部断面中心层温度冷却到热变温度以下所需的时间。 ?? ???????? ???='W w 22 --4ln k t T T T T S m ππθ (公式11-8) t--制品的壁厚,㎜ w T --模具温度,℃ 表4-2-6 m T --塑料熔体温度,℃ 表4-2-6 s T --塑件的热变形温度,℃ κ --塑料热扩散系数,㎜2 /s 表4-2-4 3)由辐射散发的热量 (公式11-9) 式中:R Q ——由辐射散发的热量(/KJ h ) 'F ——为模具四侧面积(2m ) ?? ????? ???? ??+-??? ??+?=4 42'R 100273100273Q t t F m ε

盾构机主要部件组成及施工工艺

盾构机主要部件组成及施工工艺 雷宏 盾构是一个具备多种功能于一体的综合性设备,它集合了隧道施工过程中的开挖、出土、支护、注浆、导向等全部的功能。盾构施工的过程也就是这些功能合理运用的过程。 盾构在结构上包括刀盘、盾体、人舱、螺旋输送机、管片安装机、管片小车、皮带机和后配套拖车等;在功能上包括开挖系统、主驱动系统、推进系统、出碴系统、注浆系统、油脂系统、液压系统、电气控制系统、自动导向系统及通风、供水、供电系统、有害气体检测装置等。 1、刀盘和刀具 刀盘:根据北京地铁特殊地质条件设计。辐条式刀盘,开口率约为50%。6个刀梁。刀梁及隔板上有5路碴土改良的注入孔(泡沫、膨润土、水注入管路)。刀盘表面采用耐磨材料或堆焊耐磨材料,确保刀盘的耐磨性。刀盘具有正反转功能,切削性能相同。 刀具:中心鱼尾刀1把,先行刀36把、主切刀82把(高64把、低18把),保径刀24把;合计:143把。另配超挖刀2把。 2、盾体 盾体钢结构承受土压、水压和工作荷载(土压3bar)。 盾体包括:前盾、中盾、盾尾。 ●前盾 前盾又称切口环,它里面装有支撑主驱动和螺旋输送机的钢结构。隔板上面设人舱、球阀通道、四个搅拌器。前盾上有液压闭合装置,可以关闭螺旋输送机的前闸门。前盾的隔板上装有土压传感器。 ●中盾和盾尾 中盾又称支承环,前盾和中盾用螺栓联接,并加焊接联接。 中盾内布置有推进油缸、铰接油缸和管片安装机架。中盾的盾壳园周布置有超前钻孔的预留孔。

中盾和盾尾之间通过铰接油 缸连接,两者之间可以有一定的 夹角,从而使盾构在掘进时可以 方便的转向。 盾尾安装了三道密封钢丝刷 及8个油脂注入管道、8根内置的 同步注浆管道(4根正常使用4 根注浆管为备用)。 3、主驱动系统 主驱动机构包括主轴承、八个液压马达、八个减速器和安装在后配套拖车上的主驱动液压泵站。刀盘通过螺栓与主轴承的内齿圈联接在一起,刀盘驱动系统通过液压马达驱动主轴承的内齿圈来带动刀盘旋转。 主轴承采用大直径三滚柱轴承,外径2820mm。 4、推进系统 盾构的推进机构提供盾构向前推进的动力。推进机构包括32个推进油缸和推进液压泵站。推进油缸按照在圆周上的区域分为四组,顶部3对油缸一组、左侧4对油缸一组、右侧4对油缸一组、底部5对油缸一组。油缸的后端顶在管片上以提供盾构前进的反力。 推进系统油缸分组控制如图所示,其中4个位置的油缸装有位移传感器。

回转窑系统热平衡计算

回转窑系统热平衡计算 1 热平衡计算基准、范围及原始数据 1.1 热平衡计算基准 物料基准:一般以1kg 熟料为基准; 温度基准:一般以0℃为基准; 1.2 热平衡范围 热平衡范围必须根据回转窑系统的设计或热工测定的目的、要求来确定。在回转窑系统设计时,其平衡范围,可以回转窑、回转窑加窑尾预热分解系统、或再加冷却机和煤磨作平衡范围。范围选得大,则进出口物料、气体温度较低,数据易测定或取得,但往往需要的数据较多,计算也烦琐。因此一般选回转窑加窑尾预热分解系统作为平衡范围。 1.3 原始数据 根据确定的计算基准和平衡范围,取得必要的原始数据,这是一项非常重要的工作。计算结果是否符合实际情况,主要取决于所选用的数据是否合理。对新设计窑或改造窑来说,主要是根据同类型窑的生产资料,结合工厂具体条件和我国实际情况、合理地确定各种参数;对于生产窑来说,主要通过热工测定取得实际生产中各种参数。若以窑加窑尾预热系统为平衡范围,一般要取得如下原始数据:生料用量、化学组成、水分、入窑温度;燃料成分、工业分析和入窑温度;一、二次空气的比例和温度;空气过剩系数、漏风系数;废气温度;飞灰量、灰温度及烧失量;收尘器收尘效率;窑体散热损失;熟料形成热等等。熟料形成热可根据熟料形成过程中的各项物理化学热效应求得,也可用经验公式计算或直接选定。 2 物料平衡与热量平衡 计算方法与步骤说明于下: 窑型:悬浮预热器窑 基准:1kg 熟料;0℃ 平衡范围:窑+预热器系统 根据确定的平衡范围,绘制物料平衡图和热量平衡图,如图1和图2所示。 图1 物料平衡图 图2 热量平衡图

2.1 物料平衡计算 2.1.1 收入项目 (1)燃料消耗量 m r (kg/kg 熟料) 设计新窑或技术改造时,m r 是未知量,通过热平衡方程求得,已生产的窑,通过热工测定得到。 (2)入预热器物料量 ① 干生料理论消耗量 s ar r gsL 100100L a A m m --= 式中,m gsL —干生料理论消耗量,kg/kg 熟料;A ar —燃料收到基灰分含量,%;a —燃料灰分掺入熟料中的量,%;L s —生料的烧失量,%。 ② 入窑回灰量和飞损量 ηfh y h m m = )1(fh Fh η-=m m 式中,m yh —入窑回灰量,kg/kg 熟料;m fh —出预热器飞灰量,kg/kg 熟料;m Fh —出收尘器飞灰损失量,kg/kg 熟料;η—收尘器、增湿塔综合收尘效率,%。 ③ 考虑飞损后干生料实际消耗量 s fh Fh gsL gs 100100L L m m m --? += 式中,m gs —考虑飞损后干生料实际消耗量,kg/kg 熟料;L fh —飞灰烧失量,%。 ④ 考虑飞损后生料实际消耗量 s gs s 100100 W m m -? = 式中,m s —考虑飞损后生料实际消耗量,kg/kg 熟料;W s —生料中水分含量,%。 ⑤ 入预热器物料量 y h s m m +=入预热器物料量(kg/kg 熟料) (3)入窑系统空气量 ① 燃料燃烧理论空气量 )O 0.033(S 0.267H 0.089C ar ar ar ar LK -++='V LK LK 293.1V m '='

装载机液压系统热平衡分析

装载机液压系统热平衡分析 发表时间:2019-04-17T09:43:54.903Z 来源:《防护工程》2018年第36期作者:兰忠 [导读] 为装载机的工作特性和液压系统的热特性进行数据支持,为我国装载机技术的发展提供较为准确的优化方向。 中铁二局第二工程有限公司四川成都 610091 摘要:随着工程机械的快速发展,装载机由于具有作业效率高、灵活机动、操作轻便及负载能力高等优点,在建筑业及矿业中得到广泛应用。本文在对装载机液压系统热特性的分析过程中,通过对装载机主要元件的产热和散热情况的研究,建立了装载机运行过程中的液压热平衡模型,基于计算机软件和程序分别将装载机工作装置的动力学和液压系统合成仿真模型。 关键词:装载机;液压系统;热平衡分析 引言 装载机属于典型的机、电、液一体化设备。主要由机械本体、液压系统、电气控制系统组成。本文对装载机液压系统热平衡进行分析,通过数学建模的形式为今后的设备安全和优化提供一定的依据。 1装载机液压系统油温过高的危害 油温过高,会使油液粘度降低,泄漏增大,运动元件之间的油膜变薄或被破坏,运动阻力增大,磨损加剧;橡胶密封件变形,提前老化失效,造成泄漏;加速油液氧化变质,降低油液使用寿命,并析出沥青物质,堵塞阻尼小孔和阀口,导致压力阀调压失灵、流量阀流量不稳定和方向阀卡死不换向;油的空气分离压力降低,空气逸出,产生气穴,从而导致装载机工作性能降低。 2装载机压系统热平衡建模阐述 首先,对于容性元件可以根据能量守恒定律以及流体焓的定义转化该类型元件的产热量数据。公式如下: 其中,qg表示经过管道流体流量的数据,ξ表示沿程阻力系数,v表示液压系统内部流体的流动速度,l表示液压管道的长度,λ表示阻力元件产生的损失热量系数,d表示液压系统的管道直径。 3液压系统热平衡计算 3.1液压系统系统发热功率计算 发热功率的计算,可采用两种方法:一种是通过元件的功率损失计算发热量,这种方法直接分析发热源,可采取针对性措施减少发热量;另一种是通过系统的输入功率和执行元件的有效输出功率来计算发热量,这种方法不需要考虑每一个发热源,但需要掌握系统工况随时间变化的特性。 3.1.1按元件功率损失计算 (1)液压泵功率损失引起的发热功率:H1=P(1-η)。其中:P—液压泵的总功率,P=pq/η;η—液压泵的总效率,一般在0.7~0.85之间,常取0.8;p—液压泵实际出口压力;q-液压泵实际流量。 (2)液压阀功率损失引起的发热功率:H2=p1q1。其中:p1—通过阀的压力损失,根据测试数据统计,一般取阀口压降为1.4MPa;q1—流经该阀的流量。 (3)管路及其他功率损失引起的发热功率:H3=(0.03~0.05)P。此项功率损失,包括很多复杂的因素,由于其值较小,加上管路散热的关系,在计算时一般取全部能量的0.03~0.05倍。 (4)系统总的发热功率损失:H=∑Hi=H1+H2+H3。 3.1.2按系统输入功率和执行元件有效输出功率计算 当把液压系统当作能量整体,电动机向液压泵输入能量和执行元件向外输出能量的差值即为系统的损失即系统的发热量。系统的发热

液压系统的设计计算

液压系统的设计计算2 题目:一台加工铸铁变速箱箱体的多轴钻孔组合机床,动力滑台的动作顺序为快速趋进工件→Ⅰ工进→Ⅱ工进→加工结束块退→原位停止。滑台移动部件的总重量为5000N ,加减速时间为0.2S 。采用平导轨,静摩擦系数为0.2,动摩擦系数为0.1。快进行程为200MM ,快进与快退速度相等均为min /5.3m 。Ⅰ工进行程为100mm ,工进速度为min /100~80mm ,轴向工作负载为1400N 。Ⅱ工进行程为0.5mm ,工进速度为min /50~30mm ,轴向工作负载为800N 。工作性能要求运动平稳,试设计动力滑台的液压系统。 解: 一 工况分析 工作循环各阶段外载荷与运动时间的计算结果列于表1 液压缸的速度、负载循环图见图1

二 液压缸主要参数的确定 采用大、小腔活塞面积相差一倍(即A 1=2A 2)单杆式液压缸差动联接来达到快 速进退速度相等的目的。为了使工作运动平稳,采用回油路节流调速阀调速回路。液压缸主要参数的计算结果见表2。 按最低公进速度验算液压缸尺寸 故能达到所需低速 2 7.163 1005.06.253 min min 2 2cm v Q cm A =?=>= 三 液压缸压力与流量的确定

因为退时的管道压力损失比快进时大,故只需对工进与快退两个阶段进行计算。计算结果见表3 四液压系统原理图的拟定 (一)选择液压回路 1.调速回路与油压源 前已确定采用回油路节流调速阀调速回路。为了减少溢流损失与简化油路,故采用限压式变量叶片泵 2.快速运动回路 采用液压缸差动联接与变量泵输出最大流量来实现 3.速度换接回路 用两个调速阀串联来联接二次工进速度,以防止工作台前冲(二)组成液压系统图(见图2)

闭式液压系统热平衡计算

闭式液压系统内部油温的热平衡是决定系统工作寿命,甚至能否正常工作的重要因素之一。因而在设计闭式液压系统时,设计者需要对整个系统的热平衡进行一个概算,从而对这个系统的温升有一个评估和判断,极大的避免了盲目试验。笔者结合现在的认识,对闭式液压系统做如下的概略分析,以期抛砖引玉之效。 在设计计算系统热平衡之前,首先需要确定对于这个系统,最高的内部油温t2不超过100℃,在系统工作压差超过14Mpa时,设计t2定为95℃,油箱温度t1定位65℃,系统温度循环如下图所示: 系统发热量: 在闭式液压系统中,由于局部和沿程压力损失、内部泄漏及运动部件摩擦力的存在,会导致一部分系统功率损失,这一部分损失的功率会转化成热量被系统的油液及元器件所吸收,使系统温度升高。根据能量守恒定律,系统损失的功率将转化成热量,即系统的损失功率为系统的发热功率。如果设系统的功率为P,总效率为η=0.65~0.75,系统的总发热功率为Pt,则有 P=Q△P(1-η)/60(kW)(1) 式中:Q为主泵的流量,L/min;△P为系统的工作压差,Mpa。 系统散热量: 整个散热系统可理解分为三级,第一级为补油泵的冲洗散热,第二级为油散热器的散热,第三级为油箱散热。 补油泵的一级冲洗散热。闭式系统的大部分热量是靠补油泵的低温油液置换冲洗带走。若不计液压元件表面散热,单位时间内,当补油泵的低温油和系统的高温油达到热平衡(温度计为t)时,系统发热量等于冲洗散热量,则散热功率: P=LρC△T/60(kW)(2) 式中:L为补油泵流量,L/min。ρ为液压油密度0.85kg/L。 C为液压油比热容,kJ/(kg·°C),取1.88。 △T为低温油和热平衡油温度之差,°C。△T=t-t1 设补油系数为K=L/Q=0.15~0.25。(3) 联合(1)、(2)和(3)式得△T=(4) 由式(4)可知,对于选定的液压油品、液压泵和马达,液压油密度ρ、液压油比热容C、总效率为η和补油系数K为定值,系统一级温升△T与系统的工作压差△P成正比。 在忽略系统泄漏的前提下,系统达到热平衡的温度t=(5) △T=t-t1(6) 由(4)、(5)、(6)和(7)可得:t2=(1+K)t-Ktl=K△T+t。(7)求出的t2与上文设定值进行比较,也即满足条件t2≤95℃。 液压油散的二级散热。散热器所需的散热功率: P=(t-t3)CρQ/60,(kW)(8) 式中:Q为进入油散的回油流量,L/min.t3为油散出口油温,℃液压油箱的三级散热。液压油箱的散热功率: P=KA(t1-T)x10,(kW)(9) 式中:K为油箱散热系数,与通风条件有关,一般30~55W/m·℃ A为油箱的散热面积,m。T为环境温度,℃ 从散热器进入油箱的油液冷却至油箱温度t1所需功率近似等于液压油箱的自然散热功率,从而保证油箱油温的基本恒定,即: P=△TCρQ/60(10) T=t3-t1(11)

盾构机液压系统原理

盾构机液压系统原理 液压系统原理 盾构机的绝大部分工作机构主要由液压系统驱动来完成,液压系统可以说是盾构机的心脏,起着非常重要的作用。这些系统按其机构的工作性质可分为: 盾构机液压推进及铰接系统 刀盘切割旋转液压系统 管片拼装机液压系统 管片小车及辅助液压系统 螺旋输送机液压系统 液压油主油箱及冷却过滤系统 同步注浆泵液压系统 超挖刀液压系统 以上8个系统除同步注浆泵液压系统在1号拖车、超挖刀液压系统在盾壳前体为两个独立的系统外,其余6个液压系统都共用一个油箱,并安装在2号拖车上组成一个液压泵站。有的系统还相互有联系。下面就分别介绍一下以上8个液压系统的作用及工作原理。 (一)盾构机液压推进及铰接系统 盾构机液压推进 盾构机液压推进系统的组成 盾构机液压推进系统由液压泵站,调速、调压机构,换向控制阀组及推进油缸组成,30个油缸分20组均布的安装在盾构中体内圆壁上(见图),并分为上、下、左、右四个可调整液压压力的区域,为盾构机前进提供推进力、推进速度,通过调整四个区域的压力差来实现盾构机的转弯调向及 纠偏功能。铰接系统的主要作用是减小盾构机转弯或纠偏时的曲率半径上的直线段,从而减少盾尾与管片、盾体与围岩间的摩擦阻力。 推进系统液压泵站: 推进系统的液压泵站是由一恒压变量泵(1P001)和一定量泵(1P002)组成的双联泵,功率为75KW,恒压变量泵为盾构的前进提供恒定的动力。恒压泵的压力可通过油泵上的电液比例溢流阀(A300)调整,流量在 0-q max范围内变化时,调整后的泵供油压力保持恒定。恒压式变量泵常用于阀控系统的恒压油源以避免溢流损失。 由恒压变量泵输出的高压油分别送达A、B、C、D四组并联的推进方向控制阀组,经过阀组的流量、压力调整和换向后再去控制推进油缸,从而使推进油缸的推进速度、推力大小及方向得到准确控制。因每组油缸的控制原理都一样,下面就以B组中的第一个油缸控制为例,介绍其作用和工作原理。 油泵输出的高压油经高压管路由B组的P口进入,一路径F1(过滤)→A111(流量调整)→A101(压力调整)→经电液换向阀进入推进油缸。缸的快进快退,提高工作效率。A783控制的插装阀。A403为推进油缸底端预卸荷阀。阀组中还有液控单向阀、载荷溢流阀,以及A256压力传感器和油缸行程传感器。四组阀组中的电液换向阀的液控油由定量泵(1P002)经减压阀(1V034)提供。 铰接装置工作模式分三种:

闭式液压系统油温过高的分析与计算

闭式液压系统油温过高的分析与计算 集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#

闭式液压系统油温过高的分析与计算 摘要:闭式液压系统在工程机械上得到广泛应用,高油温是液压系统的突出问题,会改变油液物理特性,损伤液压元件,影响系统的工作性能。介绍了典型的车辆行走闭式液压系统,并对系统热平衡进行分析计算。 0引言 液压系统工作时压力、容积和机械损失所构成的总的能量损失必然转化成热能,使液压系统的油温升高,由此产生很多不良后果,如油温上升,油液黏度很快下降,泄漏增大,容积效率降低;油温升高还会使油液形成胶状物质,堵塞元件小孔和缝隙,使液压系统不能正常工作等,尤其是闭式液压系统更容易由于高温而导致系统效能下降甚至失效。 1典型的车辆液压系统介绍 静液压驱动行走车辆主要由闭式行走回路和开式辅助回路组成。辅助回路主要用来转向和举升等动作,可以是普通开式阀控系统也可以是负荷敏感系统。 由于液压系统的温升主要由闭式回路产生,因此本文以某车型为例,介绍闭式行走回路的原理。行走回路的液压原理图如图1 所示。 该回路由闭式变量泵、自动变量马达和冲洗阀等组成。柴油发动机带动闭式变量泵和补油泵,补油泵从油箱吸油,补入闭式系统冷油,同时闭式系统中的热油通过冲洗阀流出带走系统中产生的热量。当热油带走的热量等于系统产生的热量,液压油温达到平衡。 2闭式液压系统高油温原因分析 (1)液压元件选用不合理设计液压系统时,元件的规格会对油温产生很大的影响。若液压控制阀的规格小,则系统会产生很大的节流损失,使系统发热;若选取的液压控制阀的规格大,则系统多余的液压油从溢流阀溢流,造成大量的能量损失,使系统发热; (2)管路设计不合理如管路管径偏小会增加系统的沿程压力损失;管路截面变化频繁、弯管和接头多会增加系统的局部压力损失,均会使系统发热增加; (3)液压油使用不合理工作介质选择时,黏度对温升影响显着,黏度过大会使黏性阻力损失增加,导致温升增大;黏度过低会使系统泄漏增大导致容积效率降低,两者均会增大系统的温升;液压油的污染老化会增大系统阻力,而且杂质颗粒会划伤液压元件,增大泄漏和磨损,使油温升高; (4)冷却循环系统设计不合理该系统采用补油泵和冲洗阀将工作产生的热油导入油箱来降低系统的温度,若补油泵流量太小则不能带走系统产生的热量,补油泵流量太大则会造成油液溢流浪费发动机功率,增大能量损耗。 3闭式液压传动系统热平衡分析与计算

盾构机液压系统原理海瑞克解读

上海吉原公司培训讲稿 盾构机液压系统原理 一.液压系统原理 盾构机的绝大部分工作机构主要由液压系统驱动来完成,液压系统可以说是盾构机的心脏,起着非常重要的作用。这些系统按其机构的工作性质可分为: 1. 盾构机液压推进及铰接系统 2. 刀盘切割旋转液压系统 3. 管片拼装机液压系统 4. 管片小车及辅助液压系统 5. 螺旋输送机液压系统 6. 液压油主油箱及冷却过滤系统 7. 同步注浆泵液压系统 8. 超挖刀液压系统 以上8个系统除同步注浆泵液压系统在1号拖车、超挖刀液压系统在盾壳前体为两个独立的系统外,其余6个液压系统都共用一个油箱,并安装在2号拖车上组成一个液压泵站。有的系统还相互有联系。下面就分别介绍一下以上8个液压系统的作用及工作原理。 (一)盾构机液压推进及铰接系统 1. 盾构机液压推进 (1)盾构机液压推进系统的组成 盾构机液压推进系统由液压泵站,调速、调压机构,换向控制阀组及推进油缸组成,30个油缸分20组均布的安装在盾构中体内圆壁上(见图),并分为上、下、左、右四个可调整液压压力的区域,为盾构机前进提供推进力、推进速度,通过调整四个区域的压力差来实现盾构机的 - 1 - 上海吉原公司培训讲稿 转弯调向及

径半的曲率转机弯或纠偏时接系统的主要作用是减小盾构能纠偏功。铰。阻力间围岩的摩擦减少盾尾与管片、盾体与,上的直线段从而:泵站进系统液压(2)

推泵定量1P001)和一一是由恒压变量泵(统推进系的液压泵站提进构的前量恒压变泵为盾功)(1P002组成的双联泵,率为75KW,)(A300例比溢流阀过力可通油泵上的电液压恒的供恒定动力。压泵的。恒恒持定供油压力保的时围0-q整调,流量在范内变化,调整后泵xma压油源以避免溢恒统控于常量式压变泵用阀系的流损失。 - 2 - 上海吉原公司培训讲稿 进推联的D四组并别送达A、B、C、输由恒压变量泵出的高压油分,油缸控制推进调整和换向后再去过方向控制阀组,经阀组的流量、压力油每组控制。因及

液压系统温升及散热器选型计算

液压系统温升及散热器选型计算 液压系统油液温升计算及冷却器选型 摘要: 介绍了液压系统的系统损耗功率及油液温升的计 算。通过对两种冷却器的比较, 提出了正确的选型方法。

关键词: 液压系统; 油液温升; 冷却器; 损耗功率 1 前言 液压系统的压力、容积和机械损失构成总的能 量损失, 这些能量损失都将转化为热量, 使系统油温升高。油温的变化将直接影响液压元件的寿命; 油温升高将使油液氧化, 加速油液的变质; 油温过高还严重影响液压油的稳定性, 进而影响液压系统的寿命和传动效率。为此, 必须对系统进行发热与温升计算, 以便对系统温升加以控制。下面对液压系统的发热量及温升计算和冷却器的选择予以介绍。 2 系统损耗功率和温升计算 2.1 损耗功率计算 液压系统发热的主要原因是由液压泵和执行器 的功率损失以及溢流阀的溢流损失造成的。其系统的损耗功率即发热功率为: H=P( 1- η) 式中: P—系统泵组的总驱动功率; η—系统效率。 η=ηP η C η A 其中: ηP —液压泵的效率, 可从产品样本中查到; η A —液压执行器总效率, 液压缸一般取0.9~0.95; η C —液压回路的效率。 η C = Σp1 q1 Σp P q P 式中: Σp1 q1 —各执行器负载压力和负载流量即输入 流量乘积的总和; Σp p q p —各液压泵供油压力和输出流量乘积的 总和。 系统的损耗功率即发热功率H 也可按下式估 算, 由于热能的损耗总量约占泵组驱动功率的15% ~30%, 因此: H=( 15%~30%) P 2.2 油液温升计算 液压系统中产生的热量H, 由系统中各个散热

盾构机液压系统说明

液压系统说明目录 一、液压系统的基本元件 二、盾构机液压系统说明

一、液压系统元件 1液压泵 液压泵是液压系统的动力元件,按结构可以分为柱塞泵、齿轮泵、叶片泵,按排量可以分为定量泵、变量 泵,按输出出口方向又可以分为单向泵、双向泵。 泵都是由电动机或其他原动机带动旋转,通过这种往复的旋转将油不断地输送到管路中,通过各种阀的作 用,控制着执行元件的运行。 在大连地铁盾构机中,螺旋输送机使用一个双向变量泵和一个定量泵,推进系统中使用一个大排量的单向 变量泵,管片安装机种使用两个单向变量泵,注浆系统 中使用一个单向变量泵,辅助系统使用一个单向变量泵。

a.定量齿轮泵 注:右侧油液进入泵内,齿轮旋转带动油液从左侧出口流出,排量是一定的

c.定量叶片泵 注:转子转动,带动叶片推动油液1、2进油,3、4出油,排量一定 d.斜盘式柱塞泵 注:斜盘由联轴器带动转动,往复吸油、压油,斜盘角度是可以调控的

2液压阀 液压阀根据作用可以分为压力控制阀、流量控制阀、方向控制阀。 压力控制阀可以控制液压回路的压力,如当液压回路中压力过大时,溢流阀或卸荷阀打开泄压。 流量控制阀可以控制液压回路中的流量大小,根据流量的不同可以控制执行元件的速度。 方向控制阀主要控制液压回路中液压油的流动方向,由此可以改变液压油缸的伸缩。 各种阀一般安装在靠近泵的油液管路中,相对来说比较集中,便于检查和维修。 a.单向阀 注:油液从P1口进入,克服弹簧力推开单向阀的阀芯,经孔隙从p2 口流出,油液只能从p1流向p2

b.溢流阀 注:油从压力口进入,通过阻尼孔进入后腔,克服弹簧压力,推开阀芯,油液 从溢流口

(完整版)回转窑系统热平衡计算

回转窑系统热平衡计算 1 热平衡计算基准、范围及原始数据 1.1 热平衡计算基准 物料基准:一般以1kg熟料为基准; 温度基准:一般以0℃为基准; 1.2 热平衡范围 热平衡范围必须根据回转窑系统的设计或热工测定的目的、要求来确定。在回转窑系统设计时,其平衡范围,可以回转窑、回转窑加窑尾预热分解系统、或再加冷却机和煤磨作平衡范围。范围选得大,则进出口物料、气体温度较低,数据易测定或取得,但往往需要的数据较多,计算也烦琐。因此一般选回转窑加窑尾预热分解系统作为平衡范围。 1.3 原始数据 根据确定的计算基准和平衡范围,取得必要的原始数据,这是一项非常重要的工作。计算结果是否符合实际情况,主要取决于所选用的数据是否合理。对新设计窑或改造窑来说,主要是根据同类型窑的生产资料,结合工厂具体条件和我国实际情况、合理地确定各种参数;对于生产窑来说,主要通过热工测定取得实际生产中各种参数。若以窑加窑尾预热系统为平衡范围,一般要取得如下原始数据:生料用量、化学组成、水分、入窑温度;燃料成分、工业分析和入窑温度;一、二次空气的比例和温度;空气过剩系数、漏风系数;废气温度;飞灰量、灰温度及烧失量;收尘器收尘效率;窑体散热损失;熟料形成热等等。熟料形成热可根据熟料形成过程中的各项物理化学热效应求得,也可用经验公式计算或直接选定。 2 物料平衡与热量平衡 计算方法与步骤说明于下: 窑型:悬浮预热器窑 基准:1kg熟料;0℃ 平衡范围:窑+预热器系统 根据确定的平衡范围,绘制物料平衡图和热量平衡图,如图1和图2所示。

图1 物料平衡图 图2 热量平衡图 2.1 物料平衡计算 2.1.1 收入项目 (1)燃料消耗量 m r (kg/kg 熟料) 设计新窑或技术改造时,m r 是未知量,通过热平衡方程求得,已生产的窑,通过热工测定得到。 (2)入预热器物料量 ① 干生料理论消耗量 s ar r gsL 100100L a A m m --= 式中,m gsL —干生料理论消耗量,kg/kg 熟料;A ar —燃料收到基灰分含量,%;a —燃料灰分掺入熟料中的量,%;L s —生料的烧失量,%。 ② 入窑回灰量和飞损量 ηfh y h m m = )1(fh Fh η-=m m 式中,m yh —入窑回灰量,kg/kg 熟料;m fh —出预热器飞灰量,kg/kg 熟料;m Fh —出收尘器飞灰损失量,kg/kg 熟料;η—收尘器、增湿塔综合收尘效率,%。 ③ 考虑飞损后干生料实际消耗量 s fh Fh gsL gs 100100L L m m m --? += 式中,m gs —考虑飞损后干生料实际消耗量,kg/kg 熟料;L fh —飞灰烧失量,%。 ④ 考虑飞损后生料实际消耗量

盾构机液压系统原理

盾构机液压系统原理 一?液压系统原理 盾构机的绝大部分工作机构主要由液压系统驱动来完成,液压系统可以说是盾构机的心脏,起着非常重要的作用。这些系统按其机构的工作性质可分为: 1?盾构机液压推进及钱接系统 2.刀盘切割旋转液压系统 3.管片拼装机液压系统 4.管片小车及辅助液压系统 5.螺旋输送机液压系统 6.液压油主油箱及冷却过滤系统 7.同步注浆泵液压系统 8.超挖刀液压系统 以上8个系统除同步注浆泵液压系统在1号拖车、超挖刀液压系统在盾壳前体为两个独立的系统外,其余6个液压系统都共用一个油箱,并安装在2号拖车上组成一个液压泵站。有的系统还相互有联系。下面就分别介绍一下以上8个液压系统的作用及工作原理。 (…)盾构机液压推进及较接系统 1?盾构机液压推进 (1)盾构机液压推进系统的组成 盾构机液压推进系统由液压泵站,调速、调压机构,换向控制阀组及推进油缸组成,30 个油缸分20组均布的安装在盾构中体内壁上(见图),并分为上、下、左、右四个可调整液 压压力的区域,为盾构机前进提供推进力、推进速度,通过调整四个区域的压力差来实现盾构机的转弯调向及纠偏功能。较接系统的主要作用是减小盾构机转弯或纠偏时的曲率半径上的直线段,从而减少盾尾与管片、盾体与围岩间的摩擦阻力。

(2 )推进系统液压泵站: 推进系统的液压泵站是由一恒压变量泵(IPOol )和一定量泵(1 P002 )组成的双联泵, 功率为 75KW ,恒压变量泵为盾构的前进提供恒定的动力。恒压泵的压力可通过油泵上的电液比 例溢流阀(A300 )调整,流量在0-qmax 范围 内变化时,调整后的泵供油压力保持恒定。恒压式 变量泵常用于阀 控系统的恒压油源以避免溢流损失。 由恒压变量泵输出的高压油分别送达A 、B 、C 、D 四组并联的推进方向控制阀组,经过阀 组的流量、压力调整和换向后再去控制推进油缸,从而使推进油缸的推进速度、推力大小及方向 得到准确控制。因每组油缸的控制原理都一样,下面就以B 组中的第一个油缸控制为例,介绍其 作用和工作原理。 油泵输出的高压油经高压管路由B 组的P 口进入,一路径FI (过滤)?A111 (流量调整) -Alol (压力调整)一经电液换向阀进入推进油缸。缸的 快进快退,提高工作效率。A783控制 的插装阀。A403为推进油缸底端预卸荷阀。阀组中还有液控单向阀、载荷溢流阀,以及A256压 力传感器和油缸行程 传感器。四组阀组中的电液换向阀的液控油由定量泵(1P002 )经减压阀 (1V034 )提供。 2.钱接装置工作模式分三种: 钱接装置的动力来源于推进系统的液压泵站中的定量泵(1 P002 ),钱接装 动模式),该模式下(Ho01、H002 )都不得电截止。钱接油缸有杆腔的油被封闭,油量保持 不变,被封闭的油在所有相互并联的有杆腔内互相补偿,直线推进时保持钱接间隙,转弯时处于 浮动 置的加载和卸载由(A349 )两位两电液 阀控制。 ⑴钱接回收(PULL 或RETRACTION ) 模式(减小较接间 隙),定量泵输送来的 高压油从阀 (2COOI) P 口进入,此时(HOOI)得电 截止,(HOO2 )得电导通,高油进入较接 油缸的有杆 腔使較接 缸回收。 (2)钱接保持(HOLD 或FREE )模式(浮 T- ! ∏ H^i —J — M ? ?∣ ? IZOOS I ① 1V034 快 不 压 油

隧道盾构机液压系统工作原理

隧道盾构机液压系统工作原理 一.液压系统原理 盾构机的绝大部分工作机构主要由液压系统驱动来完成,液压系统可以说是盾构机的心脏,起着非常重要的作用。这些系统按其机构的工作性质可分为: 1.盾构机液压推进及铰接系统 2.刀盘切割旋转液压系统 3.管片拼装机液压系统 4.管片小车及辅助液压系统 5.螺旋输送机液压系统 6.液压油主油箱及冷却过滤系统 7.同步注浆泵液压系统 8.超挖刀液压系统 以上8个系统除同步注浆泵液压系统在1号拖车、超挖刀液压系统在盾壳前体为两个独立的系统外,其余6个液压系统都共用一个油箱,并安装在2号拖车上组成一个液压泵站。有的系统还相互有联系。下面就分别介绍一下以上8个液压系统的作用及工作原理。 (一)盾构机液压推进及铰接系统 1. 盾构机液压推进 (1)盾构机液压推进系统的组成 盾构机液压推进系统由液压泵站,调速、调压机构,换向控制阀组及推进油缸组成,30个油缸分20组均布的安装在盾构中体内圆壁上(见图),并分为上、下、左、右四个可调整液压压力的区域,为盾构机前进提供推进力、推进速度,通过调整四个区域的压力差来实现盾构机的

转弯调向及 1A030U001 lAOie 1A015 纠偏功能。铰接系统的主要作用是减小盾构机转弯或纠偏时的曲率半径上的直线段,从而减少盾尾与管片、盾体与围岩间的摩擦阻力。 (2)推进系统液压泵站: 推进系统的液压泵站是由一恒压变量泵(1P001)和一定量泵(1P002)组成的双联泵,功率为75KW,恒压变量泵为盾构的前进提供恒定的动力。恒压泵的压力可通过油泵上的电液比例溢流阀(A300 )调整,流量在0-q max范围内变化时,调整后的泵供油压力保持恒定。恒压式变量泵常用于阀控系统的恒压油源以避免溢流损失。

盾构机的结构工作原理

1 盾构机的工作原理 1.1盾构机的掘进 液压马达驱动刀盘旋转,同时开启盾构机推进油缸,将盾构机向前推进,随着推进油缸的向前推进,刀盘持续旋转,被切削下来的碴土充满泥土仓,此时开动螺旋输送机将切削下来的渣土排送到皮带输送机上,后由皮带输送机运输至渣土车的土箱中,再通过竖井运至地面。 1.2掘进中控制排土量与排土速度 当泥土仓和螺旋输送机中的碴土积累到一定数量时,开挖面被切下的渣土经刀槽进入泥土仓的阻力增大,当泥土仓的土压与开挖面的土压力和地下水的水压力相平衡时,开挖面就能保持稳定,开挖面对应的地面部分也不致坍坍或隆起,这时只要保持从螺旋输送机和泥土仓中输送出去的渣土量与切削下来的流人泥土仓中的渣土量相平衡时,开挖工作就能顺利进行。 1.3管片拼装 盾构机掘进一环的距离后,拼装机操作手操作拼装机拼装单层衬砌管片,使隧道—次成型。 2 盾构机的组成及各组成部分在施工中的作用 盾构机的最大直径为6.28m,总长65m,其中盾体长8.5m,后配套设备长56.5m,总重量约406t,总配置功率1 577kW,最大掘进扭矩5 300kN·m,最大推进力为36400kN,最陕掘进速度可达8cm/min。盾构机主要由9大部分组成,他们分别是盾休、刀盘驱动、双室气闸、管片拼装机、排土机构、后配套装置、电气系统和辅助设备。 2.1盾体 盾体主要包括前盾、中盾和尾盾三部分,这三部分都是管状简体,其外径是6.25m。 前盾和与之焊在一起的承压隔板用来支撑刀盘驱动,同时使泥土仓与后面的工作空间相隔离,推力油缸的压力可通过承压隔板作用到开挖面上,以起到支撑和稳定开挖面的作用。承压隔板上在不同高度处安装有五个土压传感器,可以用来探测泥土仓中不同高度的土压力。 前盾的后边是中盾,中盾和前盾通过法兰以螺栓连接,中盾内侧的周边位置装有30个推进油缸,推进油缸杆上安有塑料撑靴,撑靴顶推在后面已安装好的管片上,通过控制油缸杆向后伸出可以提供给盾构机向前的掘进力,这30个千斤顶按上下左右被分成A、B、c、D四组,掘进过程中,在操作室中可单独控制每一组油缸的压力,这样盾构机就可以实现左转、右转、抬头、低头或直行,从而可以使掘进中盾构机的轴线尽量拟合隧道设计轴线。 中盾的后边是尾盾,尾盾通过14个被动跟随的铰接油缸和中盾相连。这种铰接连接可以使盾构机易于转向。 2.2刀盘

相关主题
文本预览
相关文档 最新文档