核医学物理
- 格式:ppt
- 大小:1.94 MB
- 文档页数:54
第一章总论核医学定义:是一门研究核素和核射线在医学中的应用及其理论的学科。
主要任务是用核技术进行诊断、治疗和疾病研究。
核医学三要素:研究对象放射性药物核医学设备一、核物理基础(一)基本概念:元素---凡质子数相同的一类原子称为一种元素核素---质子数、中子数、质量数及核能态均相同的原子称为一种核素。
放射性核素----能自发地发生核内结构或能级变化,同时从核内放出某种射线而转变为另一种核素,这种核素称为放射性核素。
(具有放射性和放出射线)稳定性核素----能够稳定地存在,不会自发地发生核内结构或能级的变化。
不具有放射性的核素称为稳定性核素。
(无放射性)同位素----具有相同的原子序数(质子数相同),但质量数(中子数)不同的核素互为同位素。
同质异能素----- 核内质子数、中子数相同,但处在不同核能态的一类核素互为同质异能素。
(质量数相同,能量不同,如99mTc和99Tc)(二)核衰变类型四种类型五种形式α衰变释放出α粒子的衰变过程,并伴有能量释放。
β衰变放射出β粒子或俘获轨道电子的衰变。
β衰变后,原子序数可增加或减少1,质量数不变。
•β-衰变•β+衰变•电子俘获(EC)γ衰变核素由激发态或高能态向基态或低能态跃迁时,放射出γ射线的衰变过程γ衰变后子核的质量数和原子序数均不变,只是核素的能态发生改变。
放射性核素的原子核不稳定,随时间发生衰变,衰变是按指数规律发生的。
随时间延长,放射性核素的原子核数呈指数规律递减。
N=N0e-λtN0:t=0时原子核数N:t时间后原子核数e:自然对数的底(e≈2.718)λ:衰变常数(λ=0.693/T1/2)物理半衰期(T1/2)生物半衰期(Tb)有效半衰期(Te)1/Te=1/T1/2+1/ Tb放射性活度描述放射性核素衰变强度的物理量。
用单位时间内核衰变数表示,国际制单位:贝可(Becquerel,Bq)定义为每秒1次衰变(s-1),旧制单位:居里(Ci)、毫居里(mCi)、微居里(μCi)换算关系:1Ci=3.7×1010Bq比活度单位质量物质内所含的放射性活度。
核医学考试重点第⼀章核物理基础知识元素:凡就是质⼦数相同,核外电⼦数相同,化学性质相同得同⼀类原⼦称为⼀组元素、同位素(isotope):凡就是质⼦数相同,中⼦数不同得元素互为同位素如: 1H、2H、3H。
同质异能素:凡就是原⼦核中质⼦数与中⼦数相同,⽽处于不同能量状态得元素叫同质异能素、核素:原⼦核得质⼦数、中⼦数、能量状态均相同原⼦属于同⼀种核素。
例如:1H、2H、3H、12C、14C 198Au、99mTc、99Tc1.稳定性核素 (stable nuclide)稳定性核素就是指:原⼦核不会⾃发地发⽣核变化得核素,它们得质⼦与中⼦处于平衡状态,⽬前稳定性核素仅有274种,2.放射性核素(radioactivenuclide)放射性核素就是⼀类不稳定得核素,原⼦核能⾃发地不受外界影响(如温度、压⼒、电磁场),也不受元素所处状态得影响,只与时间有关。
⽽转变为其它原⼦核得核素。
核衰变得类型1.α衰变(αdecay):2。
β—衰变(β-decay):3.β+衰变:4、γ衰变:核衰变规律1.物理半衰期(physical half life,T1/2):放射性核素衰变速率常以物理半衰期T1/2表⽰,指放射性核素数从No衰变到No得⼀半所需得时间、物理半衰期就是每⼀种放射性核素所特有得。
数学公式T1/2=0。
693/λ2、⽣物半衰期(Tb):由于⽣物代谢从体内排出原来⼀半所需得时间,称为之、3.有效半衰期(Te):由于物理衰变与⽣物得代谢共同作⽤⽽使体内放射性核素减少⼀半所需要得时间,称之。
Te、Tb、T1/2三者得关系为:Te= T1/2·Tb / (T1/2+ Tb)。
4.放射性活度(radioactivity, A) :就是表⽰单位时间内发⽣衰变得原⼦核数。
放射性活度得单位就是每秒衰变次数。
其国际制单位得专⽤名称为贝可勒尔(Becquerel),简称贝可,符号为Bq。
数⼗年来,活度沿⽤单位为居⾥(Ci) 1Ci=3.7×1010/每秒。
核医学物理师报考条件(一)核医学物理师报考条件1. 介绍核医学物理学是医学物理学中的一个重要分支,致力于研究核素的使用及其在医学影像和治疗中的应用。
成为一名核医学物理师需要具备一定的学术基础和专业知识。
本文将介绍核医学物理师的报考条件。
2. 学历要求•本科学历:报考核医学物理师需要具备本科学历,学习相关的医学、物理或相关学科。
•相关专业:最好拥有医学、物理学、生物医学工程等相关专业学位,以便更好地理解和应用核医学物理的知识。
3. 专业知识•医学物理学知识:具备扎实的医学物理学基础知识,包括医学成像技术、放射治疗技术等方面的理论和实践经验。
•核医学知识:了解核素的性质、应用以及医学影像和治疗中的相关原理和技术。
•辐射安全与保护:熟悉辐射安全与保护措施,明白在核医学实验室和临床中的辐射防护要求。
4. 实践经验•实习经验:报考者最好具备一定的实习经验,特别是在核医学物理相关领域工作的经验,有帮助。
•手术室经验:一些医院要求核医学物理师参与手术过程的辐射防护工作,对手术室经验的要求较高。
5. 职业道德•责任心:对患者负责,遵守医疗伦理规范和专业道德。
•团队合作:能够与医疗团队合作,包括放射科医师、临床医生等。
6. 考试要求•通过国家或地方相关考试:不同国家和地区对核医学物理师的认证要求不同,需要通过相应的考试获得资格证书。
7. 持续学习•继续教育:核医学物理学领域的知识更新较快,需要持续学习和更新自己的专业知识。
•学术交流:参与学术会议、研讨会等活动,与同行交流、学习。
8. 结语核医学物理师是医学影像和治疗团队中不可或缺的重要成员。
成为一名核医学物理师需要具备一定的学术背景、专业知识和实践经验。
同时,保持职业道德,不断学习和交流,才能更好地从事核医学物理工作。
物理基础知识在核医学中的应用Introduction核医学是一门研究用放射性同位素诊断和治疗疾病的学科,它与物理学有着密切的关系。
物理学是核医学的基础,它为核医学的发展提供了坚实的理论基础和重要的技术手段。
本文将介绍物理基础知识在核医学中的应用。
核医学中的放射性同位素在核医学中,常用的放射性同位素有碘-131、铊-201、骨扫描中的锶-85、钴-57、钴-60、铷-82、铀-233、铝-26、砷-75、铊-204等。
这些放射性同位素被应用于多种诊断和治疗工具,如放射性药物、放射性示踪、放射性核素扫描等。
核医学中的物理量和计量单位在核医学中,有很多物理量和计量单位被广泛应用。
其中最常涉及的物理量包括放射性强度、活度、吸收剂量、等同吸收剂量、有效剂量等。
为了保障人员安全和保护环境,核医学中的放射性同位素强度和放射性剂量需要进行实时测量和计算,这就需要用到各种物理仪器和测量方法。
核医学中的放射性示踪技术放射性示踪技术是核医学中最经典的应用之一,它是通过给患者注射放射性示踪剂,来跟踪并观察器官、组织或细胞的生理功能和代谢过程,进而诊断疾病。
放射性示踪技术是一种非侵入性的检查方法,可以在不影响患者健康的前提下获取大量的生理信息。
物理学在放射性示踪技术中起到了重要的作用,它提供了放射性示踪为何能被探测、如何被探测以及如何进行图像处理的理论和技术手段。
同时,物理学也可帮助优化放射性示踪剂的设计,提高其探测灵敏度和选择性。
核医学中的正电子发射断层扫描技术正电子发射断层扫描技术(PET扫描)是现代核医学中广泛应用的一种断层扫描技术,它可以通过注射放射性示踪剂并在受检者全身进行扫描,了解人体内部生理过程和疾病进程的情况,进而进行临床分析和诊断。
PET扫描技术主要是用于癌症和神经系统疾病等领域,并且具有高度灵敏度和精度。
在PET扫描中,物理学家帮助解决了自然衰变率、数据采集与处理、图像重建等难题,为临床应用奠定了重要的物理学基础。
核医学第1章:核医学物理基础1.1 核能的基本概念核能是指核物质中原子核所具有的能量。
根据爱因斯坦的质量能等价原理,原子核的质量与能量可以相互转化。
因此,核能也可以理解为原子核质量的变化所产生的能量。
1.2 放射性与放射线放射性是指原子核发生变化而自发地释放出射线(如α、β、γ等)的现象。
放射性物质可以通过衰变到达稳定状态,其半衰期长短不同。
放射线是指放射性核子发生衰变后放出的电磁波和次级粒子。
1.3 α、β、γ射线的特性α射线的质量比较大,能量相对较低,电离能力强,但穿透力较弱,只能被轻质材料遮蔽。
β射线的穿透力较强,电离能力比α弱,可以被金属遮蔽。
γ射线的能量远高于α、β射线,穿透力强,电离能力弱,需要厚密的屏蔽材料。
1.4 核衰变的本质核衰变是指放射性物质中原子核发生自发的转化,通过放出α、β、γ射线等辐射释放能量,从而达到稳定状态的过程。
核衰变与放射性同义,是放射性物质的特征之一。
1.5 核反应的基本概念核反应是指核子相互作用,经过核转化而形成新的原子核的过程。
通常用粒子表示法或核反应方程式来描述核反应。
在核反应中,可能伴随着放出射线或吸收射线,释放出能量。
1.6 核反应堆的基本原理核反应堆是利用核裂变或核聚变反应产生的热能转化成电能的装置。
核反应堆的核心是燃料区,通过控制反应堆中的裂变或聚变过程,可以控制反应堆的输出功率和运行状态。
1.7 核医学应用的主要方法核医学应用是指利用放射性核素的特殊性质,通过各种技术手段进行检测、治疗或研究生命过程的方法。
常用的核医学方法有放射性同位素扫描、放射性同位素治疗、放射性同位素标记技术等。
1.8 核医学的危害与防护核医学应用中,放射性物质有一定的辐射危害,如果安全操作不当可能会对人体造成伤害。
因此,核医学应用过程中需要加强防护措施,包括使用防护材料、佩戴防护设备、掌握操作技能等,以最大程度保障操作人员和患者的安全。
1.9以上为核医学第1章:核医学物理基础的相关内容,通过本章的学习可以初步了解核能、放射性、核衰变、核反应堆、核医学应用等方面的知识。
核医学物理师报考条件(二)
核医学物理师报考条件
核医学物理师是医学领域的专业技术人员,他们在核医学影像诊断和治疗过程中起着重要的作用。
想要成为一名核医学物理师,需要满足以下报考条件:
学历要求
•获得本科学士学位或以上学历,专业通常为物理学、核物理学、医学物理学等相关专业。
专业知识
•具备扎实的物理学和数学基础,对核物理学有较深入的了解。
•熟悉医学影像学的基本原理和相关技术。
•掌握放射性同位素的使用和管理。
实践经验
•至少需要有一年的相关实践经验,例如在核医学诊断中的实习经历。
•参与过科研项目或学术论文的撰写,表明具备研究能力和学术水平。
考试要求
•必须通过国家相关资格考试,取得核医学物理师资格证书。
其他要求
•具备良好的沟通能力和团队合作精神,能够与医生、技师等多个职业之间进行有效的协作。
•具备良好的职业道德和职业操守,能够保护患者和工作环境的安全。
成为一名核医学物理师不仅需要系统的理论知识和实践经验,还需要具备良好的专业素养和职业素养。
希望有志于从事核医学物理工作的人,能够通过努力学习和实践,满足以上条件,为医学影像诊断和治疗事业做出贡献。
一、选择题绪论+第一章核物理知识1. 凡核内具有一定质子数、质量数以及一定能量状态的原子,即称为BA:元素B:核素C:同位素D:同质异能素E:同量异位素2. 下列哪组是同位素BA:131I和131Cs B:131I和125I C:131I和18F D:99Tc和99mTc E:99Tc和18F 3. 原子核放射下列何种粒子为α衰变AA:4He核B:电子C:正电子D:光子(电磁辐射)E:中子4. 物理半衰期(T1/2)、生物半衰期(Tb)、有效半衰期(Te)之间的关系是BA: Te =( T1/2+ Tb)÷(T1/2·Tb) B: Te = (T1/2·Tb)÷( T1/2+ Tb)C: Tb = ( T1/2+ Te) ÷( T1/2- Te) D: Tb = ( T1/2·Te) ÷( T1/2+Te)E: Te =( T1/2-Tb)÷(T1/2·Tb)5. 湮没辐射见于下列何种射线与物质的作用CA:α线B:负β线C:正β线D:γ线E:标识X线第二章核医学仪器1. 下列何种仪器不能用于脏器显像AA:脏器功能测定仪B:脏器扫描仪C:γ照相机D:正电子照相机E:ECT2.γ照相机分辨两个点源或线源最小距离的能力,称为AA:空间分辨率B:能量分辨率C:积分均匀度D:微分均匀度E:固有均匀度3.PET探测原理是基于CA:光电效应B:康普顿效应C:湮没辐射D:韧致辐射E:电子对生成效应第三章示踪技术及核医学显像1.仅限于身体某一部位或某一脏器的显像称为A:静态显像B:动态显像C:局部显像D:全身显像E:断层显像第四章放射性药物1. 99mTc及其标记化合物是脏器显像中最常用的放射性药物,99mTc半衰期为BA:3h B:6h C:12h D:2.7d E:8.1d2. 99mTc标记的DTPA在显像中主要用于BA:肝显像B:肾显像C:甲状腺显像D:骨显像E:心肌显像3、特定化学形式物质的放射性活度占总放射性活度的比例,称为CA:放射性比度B:放射性核纯度C:放射性化学纯度D:化学纯度E:放射性浓度4.99mTc标记的MIBI心肌断层显像是采用DA:扫描机B:γ照相机C:正电子照相机D:SPECT E:PECT第八章内分泌系统1. 下列哪个疾病无甲状腺吸碘率增高的表现CA:甲状腺功能亢进B:单纯性甲状腺肿C:亚急性甲状腺炎D:Pendred综合征E:缺碘性甲状腺肿2. 下列哪个是肾上腺髓质显像剂BA:131I-6位碘代胆固醇B:131I-MIBG C:131I-IMPD:131I-HIPDM E:131I-HAS3. 妊娠伴Graves病的核医学诊断宜用下列何种检查EA:甲状腺吸碘试验B:T3抑制试验C:过氯酸钾排泌试验D:TT3和TT4测定E:FT3和FT4测定4.、碘甲状腺机能亢进时下列那点是错的AA:甲状腺吸碘率增高B:T3正常C:TT4增高D:γT3增高E:T4/T3比值增高5.、原发性甲减时下列那点是错的EA:甲状腺吸碘率减低B:T3减低C:T4减低D:γT3减低E:TSH减低1.甲状腺摄碘功能测定利用的是()A、γ射线B、β射线C、α射线D、俄歇电子E、以上都是2.某患者摄131I率明显低于正常范围,T3、T4增高,应首先考虑()A、甲状腺功能亢进B、甲状旁腺功能减退C、甲状腺腺瘤D、亚急性甲状腺炎E、甲状腺癌3.原发性甲低时,TRH兴奋试验呈()A、过度反应B、无反应C、低反应D、延迟反应E、以上都是4.同时测定血清TSH和T4 浓度是筛选新生儿甲低的有效方法,其灵敏度可()A、检出全部患者B、仅有3-5%的患者漏诊C、检出70%的患者D、不一定E、检出50%的患者5、在甲状腺显像图上,甲状腺弥漫性肿大,放射性碘(或锝)摄取均匀性增高是()的特征A、甲状腺癌B、甲亢C、甲状腺炎D、甲状腺腺瘤E、甲状旁腺功能减退神经系统1.诊断短暂性脑缺血发作(TIA)最好选用_______显像。
教案授课内容:核物理基础知识授课对象:医学检验专业,本科学生使用教材:《检验核医学》第2版孟庆勇黄定德主编授课时间:2学时主讲教师:管超楠一、教学背景核物理基础知识是学习检验核医学专业的物理基础,本专业涉及到的核物理基础仅仅局限于对原子结构,质子、中子和电子层面的理解,不涉及更深层次理论物理。
二、教学目标与要求✧知识目标掌握:核素和同位素概念;α衰变,β衰变,γ衰变三种衰变类型;带电粒子与物质的相互作用;γ射线对物质的作用熟悉:α射线,β射线,γ射线的特点;轫致辐射的概念;光电效应意义;康普顿效应特点✧能力目标掌握核物理基础知识,在接下来的学习中应用理解。
✧情感目标在学习基础知识的过程中,培养学生对核物理的兴趣,建立学生对学习本门课程的信心。
三、重点与难点✧重点放射性衰变三种类型各自的特点意义;带电粒子与物质相互作用的主要效应机制;γ射线与物质相互作用的机制;✧难点轫致辐射的理解,辐射防护的意义四、教学方法和手段✧教学方法启发式教学、象形式教学、对比教学等✧教学手段课堂讲授、多媒体教学五、教学内容(一)课程导入:通过从核能的开发利用和战争的威慑带入学生的兴趣进入到核物理基础中。
通过介绍两位物理人物的背景提高学生学习信心。
(二)课程纲要:1.核素的分类2.放射性核素的三种衰变类型3.三种放射性衰变射线的特点4.不同放射性核素衰变射线对物质的作用效应(三)课程内容1,安东尼·亨利·贝克勒尔(Antoine Henri Becquerel)生平简史。
1896年3月,贝克勒尔发现,与双氧铀硫酸钾盐放在一起但包在黑纸中的感光底板被感光了。
他推测这可能是因为铀盐发出了某种未知的辐射。
同年5月,他又发现纯铀金属板也能产生这种辐射,从而确认了天然放射性的发现。
2,通过安东尼·亨利·贝克勒尔的生平介绍,导出放射性活度单位贝克勒尔的概念名称:贝克[勒耳]符号:Bq量的名称:放射性活度单位SI表示:1 Bq = 每秒1次放射性衰变3,玛丽亚·斯克沃多夫斯卡·居里(Marie Skłodowska Curie)生平简史。
核医学知识点总结绪论+第一章核物理知识1、湮灭辐射:18F、11C、13N、15O等正电子核素在衰变过程中发射(产生)正电子,正电子与原子核周围的轨道电子(负电子)发生结合,同时释放两个能量相等方向相反的γ光子(511kev),这种现象就叫正电子湮灭辐射现象。
2、物理半衰期(T1/2):指放射性核素数目因衰变减少到原来的一半所需的时间,如131碘的半衰期是8.04天。
3、临床核医学:是将核技术应用于临床领域的学科,是用利用放射性核素诊断、治疗疾病和进行医学研究的学科。
4、核素:指具有特定的质子数、中子数及特定能态的一类原子。
5、放射性衰变的定义:放射性核素的原子由于核内结构或能级调整,自发的释放出一种或一种以上的射线并转化为另一种原子的过程。
6、放射性活度:表示单位时间内原子核的衰变数量:单位为Ci(居里),1Ci=3.7x1010Bq7、放射性核素发射器:从长半衰期的母体分离短半衰期的子体的装置,又称为“母牛”。
8、个人剂量监测仪:是从事放射性工作人员用来测量个人接受外照射剂量的仪器,射线探测器部分体积较小,可佩戴在身体的适当部位。
9、放射性核素示踪原理:是以放射性核素或其标记化合物作为示踪剂,应用射线探测仪器来检测其行踪,借此研究示踪剂在生物体内的分布代谢及其变化规律的技术。
10、阳性显像(positive imaging)是以病灶对显像剂摄取增高为异常的显像方法。
由于病灶放射性高于正常脏器、组织,故又称“热区”显像(hot spot imaging)如放射免疫显像、急性心肌梗死灶显像、肝血管瘤血池显像等。
11阴性显像(negative imaging)是以病灶对显像剂摄取减低为异常的显像方法。
正常的脏器、组织因摄取显像剂而显影,其中的病变组织因失去正常功能不能摄取显像剂或摄取减少而呈现放射性缺损或减低,故又称“冷区”显像(cold spot imaging)12放射性药物:含有放射性核素,用于临床诊断或治疗的药物。
核医学方法与仪器第一讲有关核医学的物理知识金永杰本讲座撰写人金永杰先生清华大学教授中国电子学会核医学电子学专业委员会副主任委员一核医学及其技术基础核医学(Nuclear Medicine)采用放射性同位素来进行疾病的诊断治疗及研究它是核技术与医学相结合的产物放射医学也以核辐射为手段但是它使用封闭型辐射源(如X光球管加速器)从人体外进行照射核医学则将开放型放射性同位素以放射性药物的形式引入体内虽然核医学包括用核辐射的生物效应治疗疾病但是诊断疾病是临床核医学的主要内容诊断核医学可划分为两类:(1) 体外诊断将放射性核素放在试管中(In Vitro)进行放射性免疫测量或活化分析(2) 体内诊断把放射性核素引入活体内(In Vivo)进行脏器功能测量或显像后者为当代核医学最主要的工作领域核医学依据放射性示踪原理进行体内诊断放射性核素及其标记物构成了放射性药物它们保持着对应稳定核素或被标记药物的化学性质和生物学行为能够正常参与机体的物质代谢放射性药物产生的γ射线能穿透机体可以在体外测量到所以核医学能够无创伤地观察放射性药物在活体中循环扩散聚集排出的过程得到药物分子的图像提供关于机体代谢的生理学的功能方面的信息由于疾病一般先表现在生理功能方面的变化然后才有脏器形态的改变所以核医学方法有助于疾病的早期诊断核医学涉及核物理化学药学电子学计算机等学科在技术上以放射性药物和核医学仪器为基础从核素的生产标记化合物的研制到新型放射性药物的寻找没有化学人员与药理学家参与是不可能的从放射免疫分析仪功能仪扫描机γ照相机到单光子发射CT(Single Photon Emission ComputedTomography SPECT)正电子发射CT(Positron Emission Tomography PET)的设计制造没有物理人员和工程人员参与也是不可能的二关于放射性衰变的一些物理知识1. 同位素和放射性衰变一切物质都是由原子组成的原子又是由质子和中子构成的原子核以及围绕原子核运动的电子组成的质子的数量决定了原子的种类质子数相同中子数不同的核素在元素周期表中处于同一位置故称为同位素(Isotopes)它们具有相同的化学及生物性质自然界中存在的核素大多是稳定的但是它们的一些同位素是不稳定的会自发地蜕变成其他的核素或改变其能态并伴随αβγ辐射这个过程称为放射性衰变(Radioactive Decay)放射性衰变的发生是随机的我们用单位时间内平均发生衰变的次数来衡量样品的放射性衰变能力称作放射性强度或放射性活度(Activity)它的单位是贝克尔(Bq)或居里(Ci)1Bq=1次核衰变/秒1Ci=3.71010次核衰变/秒不难得出1mCi(10-3Ci)=37MBq随着衰变进行样品中放射性核素逐渐减少其放射性强度呈负指数规律下降A=A o e-t为核素的衰变常数放射性强度减弱一半所需的时间称为半衰期T可以推出T1/2=0.693/除了物理半衰期以外核医学中还有一个生物半衰1/2期的概念它是指生物体内的放射性核素由于生物代谢从体内排出一半所需的时间用T b表示假定生物代谢造成的放射性强度减少也符合指数规律A(t)=Ae-bt则生物体内的放射性强度由于放射性衰变和生物代谢共同作用造成的衰减: A(t)=Ae-t.e-bt =A o e-(b)t总衰减速度大于任何单一因素所造成的衰减速度α粒子是两个质子和两个中子构成的氦原子核β辐射就是电子流γ射线的本质是与无线电波和可见光一样的电磁波由于它的波长比可见光更短有更强烈的粒子性表现所以我们也常称之为γ光子(Photon)这些粒子所具有的能量用电子伏特(electron V olt eV)来量度1eV就是电子经过1V的电场加速所获得的能量更大的单位是千电子伏特(kilo electron V olt keV)和兆电子伏特(Mega electron V olt MeV)1keV=1000eV1MeV =1000keV2. 同质异能素与辐射核内质子数和中子数都相同而处在不同能量状态的核素互称同质异能素(Isomer)例如m 9943Tc 和9943Tc 互为同质异能素m 9943Tc 的能态比9943Tc 高它处于亚稳态(Metastable State)处于亚稳态的原子核在回到基态时会放出γ光子这种原子核能态的改变称为同质异能跃迁(Isomeric Transition IT)例如m 9943Tc在跃迁时伴随γ辐射主要产生140keV 的低能γ射线3. 正负电子对湮灭许多缺中子核素会发生质子转变成中子并放出一个正电子的β蜕变结果变成原子序数少1的核素如189F +β188O 正电子是普通电子的反粒子它从原子核放出来以后与周围物质的原子发生碰撞迅速损失能量一般在几个毫米距离内就停止下来然后正电子与普通电子发生湮灭反应它们的质量转变为能量以两个向相反方向运动的511keV 的湮灭光子的形式释放出来4. 射线与物质的作用αβ是带电粒子它们在人体组织中会与各种分子原子发生碰撞减慢速度失去能量最后被吸收掉而被碰撞的分子原子则被电离和激发获得的能量最终转变为热(分子原子的振动)由于α和β粒子很快就失去了能量所以它们很难穿过人体组织γ光子的本质为电磁波它与物质作用的机理主要有以下三种:(1) 光电效应(Photoelectric Effect)即γ光子与原子壳层电子相互作用把能量全部交给电子使之成为自由电子的过程γ光子丧失全部能量后消失壳层电子逸出造成的空缺会导致荧光辐射而电子由光电效应获得的动能在与周围物质的作用中迅速耗散(2) 康普顿散射(Compton Scattering)γ光子与原子最外壳层电子发生弹性碰撞将部分能量交给电子使之脱离原子核的束缚从原子中逸出而光子运动方向改变能量减少(3) 电子对生成(Pair Production)能量大于1.02MeV 的光子经过原子核场转化为一个正电子和一个负电子γ光子消失强度为I 0(Photons/cm 2s)的γ光子束(或称γ射线)穿过物质时一部分光子与物质发生作用被吸收掉穿出厚度为x 的吸收物质后γ光子束强度被衰减为:I=I 0 e -µrc 式中ρ为吸收物质的密度单位为g/cm 3; µ为质量衰减系数(Mass Attenuation Coefficient)单位为cm 2/g 它取决于γ光子的能量E 和吸收物质的原子序数Zµ是上述三种效应的衰减系数之和:µ=τ+σ+k 式中光电效应衰减系数τZ 3/E 3低能γ光子和重元素原子作用时光电效应显著; 康普顿散射效应衰减系数σZ/E 随Z E 变化不大中等能量的γ光子与中等原子序数的物质作用时康普顿散射是主要因素在E> 1.02MeV 时才发生电子对生成其衰减系数k Z logE 高能光子经过重元素核场时才有电子对生成效应图1表示不同能量(E)的γ光子在不同原子序数(Z)的吸收物质中主要的作用机制可以看出对于核医学使用的能量范围为50~500keV 的γ光子来说与Z 20的人体组织的主要作用机制是康普顿散射与Z=82的铅主要作用机制是光电效应与αβ相比γ射线能够穿透更厚的吸收物质而且能量越高的γ射线穿透物质的能力越强对于m 9943Tc 产生的能量为140keV 的γ射线来说46mm 厚的人体组织才使它的强度衰减一半然而0.9mm 的铅便可使它的强度衰减10倍γ光子不像带电粒子那样直接引起物质的电离但是它引起的原子壳层电子发射和正负电子对会导致电离效应5. 临床使用的放射性核素用于临床的放射性核素应符合以下要求:(1) 半衰期合适使用较大强度的放射性核素可以缩短数据采集时间减小统计误差为了减少病人的辐照剂量半衰期要尽可能短短半衰期核素还便于在短时间内重复施用而不增加残留本底考虑到操作方便常选用半衰期为几小时到几天的核素现在半衰期为几分钟的放射性核素也开始在临床上使用(2) 射线的种类和能量恰当用于诊断的核素所产生的射线应该能穿出机体被探测到所以常用γ射线其能量如果过低在体内吸收太多; 能量过高则屏蔽准直困难影响空间分辨率探测效率也下降临床使用的γ射线能量一般在50~500keV 之间(3) 产生的射线种类及能量单一以减少散射和其他效应形成的测量本底核素的衰变产物应该是稳定核素以下介绍几种核医学常用的放射性核素a. m9943Tc(Technetium锝)经IT衰变产生140keV的能量γ射线(90%)不伴生β辐射适合用闪烁探测器探测半衰期为6.02h99m Tc标记的化合物络合物几乎可以用于所有器官的显像和血流动力学研究如: 脑血流灌注显像剂99m Tc-HMPAO异腈类心肌灌注显像剂99m Tc-MIBI最近还出现了99m Tc标记的抗体和其他导向药物例如: 浓集于心内膜炎的病损部位的99m Tc-抗葡萄球抗体检测血栓的99m Tc-抗血小板的单克隆抗体等99m Tc是理想的体外显影用核素它的用量占放射性核素总用量的90%左右b. 13153I(Iodine碘)经β-衰变产生605keV的β (90.4%)364keV的γ(82%)和637keV的γ (6.8%)物理半衰期为8.04h适于作甲状腺肾肝脑肺胆的显像功能测量和治疗但由于γ能量偏高γ相机探测效率低图像分辨率差c. 13154Xe(Xenon氙)经β-衰变产生346keV的β(99.3%)和81keV的γ (98%)半衰期为5.29天113Xe 气和113Xe生理盐水用于肺通气灌注显像d. 正电子衰变类放射性核素11 6C的半衰期为20.3min137N的半衰期为10min158O的半衰期为123s18 9F的半衰期为110min它们用于PET显像三γ射线探测器1. 闪烁探测器的构造和工作原理核医学仪器大多采用闪烁探测器来测量γ射线它的性/价比很好图2是一种闪烁探头的结构它主要由闪烁晶体和光电倍增管组成入射的γ光子在闪烁晶体中发生光电效应和康普顿散射把能量传给电子这些电子最终通过电离或激发作用将能量沉积在晶格中然后晶体发生退激释放出被沉积的能量其中一部分能量以可见光的形式释放出来X光增强屏和夜光手表盘使用的就是这类闪烁物质晶体产生的闪烁光非常微弱为了避免光逃逸除了与光学窗接触的表面以外晶体四周都填入白色的MgO或Al2O3反光粉为了屏蔽外界的光线防止潮气侵蚀晶体和机械损伤整个探测器用铝制或薄不锈钢制外壳包裹起来铝和薄不锈钢不透光但对γ射线的衰减很小NaI(Tl)晶体的密度大(ρ= 3.67g/cm3)又含有高原子序数的碘(Z=53)是γ射线的良好吸收物只要有一定厚度就可以将入射的γ光子的全部能量沉积在晶体中它的光产额高每keV辐射能量平均产生40个可见光光子输出的闪光信号强NaI(Tl)晶体产生的闪光亮度与入射γ光子的能量成正比所以可以用来测量γ光子的能量此外NaI(Tl)晶体对它产生的闪光是透明的即使很厚的晶体因自吸收造成的光损失也很小因此核医学仪器广泛使用NaI(Tl)晶体制作闪烁探测器一些核医学仪器中如PET还采用锗酸铋(Bi4Ge3O12也称BGO)氟化铯(CsF)等闪烁晶体光电倍增管(Photo Multiplier Tube PMT)是一种电子管它能够将微弱的光信号转换成电流脉冲NaI(Tl)晶体中的闪烁光经光学窗进入光电倍增管在光阴极上打出光电子离光阴极不远处的第一打拿极上加有200~400V的正电压光电子被它吸引和加速高速光电子撞在打拿极上会产生多个二次电子二次电子又被加有更高电压(+50~+150V)的第二打拿极吸引和加速并在它上面撞出更多二次电子然后第三打拿极使电子进一步倍增经过9~12个打拿极的连续倍增二次电子簇流最后被阳极收集起来形成电流脉冲每个打拿极的倍增因子一般为3~6总倍增因子可以达到105~108从阳极上得到的电子簇流与进入光电倍增管的闪光强度成正比因而也与入射闪烁晶体的γ光子的能量成正比所以闪烁探测器是一种能量灵敏探测器外界磁场能影响在打拿极之间飞行的二次电子的运动轨迹从而使倍增因子发生变化因此在光电倍增管外面通常包裹着高导磁系数材料制造的磁屏蔽层以降低外界磁场的影响2. 光电倍增管的高压供电在光电倍增管工作的时候必须给各个打拿极D和阳极A分配相对于光阴极K依次递增的电位通常采用对高压电源HV(1000V左右)进行电阻分压的方法供电图3是采用正高压供电的情况R1~R8是分压电阻因为最后几个打拿极流过的脉冲电流较大C1和C2并联在相应的分压电阻上可以保持脉冲发生时打拿极电位稳定减少信号噪声和畸变RL给阳极电流脉冲提供通路由于它连在正高压上必须有高耐压的电容Ca把直流高压与后续电路隔离开而让脉冲信号通过由于RL下端不接地输出信号容易引入干扰但是正高压供电时光阴极是接地的这对光阴极的安全有利而且暗电流小输出噪声低图4是负高压供电的电路图它也能给各个打拿极和阳极提供依次递增的电位由于RL下端接地所以不需要高耐压的隔直电容可以克服干扰问题因此负高压供电较为常用但因为紧贴光电倍增管管壁的金属支架或磁屏蔽套通常是接地的负高压供电会使电子撞击光电倍增管内壁产生噪声光电倍增管的放大因子随各打拿极的电压而变化高压HV的1%改变会造成输出脉冲幅度10%以上的变化因此要求高压电源的长期稳定性和温度稳定性都非常好一般应比所要求的增益的稳定度高一个数量级直流高压输出应该不受电源电压和负载电流变化的影响交流纹波应该小于0.1V正确选择工作点很重要让光电倍增管工作在坪区(即灵敏度受高压变化影响最小的区域)不但有利于提高增益的稳定度而且常常能获得较佳的信号/噪声比3. 闪烁探测器测得的γ能量谱γ光子与闪烁晶体作用产生闪光由于作用过程不同各次闪光的强度不尽相同有一定的分布图5a是理想情况下单一能量γ光子入射NaI(Tl)晶体所产生的光脉冲其幅度大小不等图5b是脉冲幅度的统计分布即γ能谱其中右端的高峰是由光电效应产生的称为光电峰(Photopeak)由于在光电效应中γ光子把全部能量转换成可见光所以光电峰的横坐标对应γ光子的能量Er在康普顿散射中γ光子只把部分能量通过反冲电子传递给闪烁晶体被γ光子带走的能量和散射角有关因此探测器的输出脉冲幅度有很宽的分布在光电峰左边的低能区形成康普顿坪如果被散射的γ光子接着又被探测器吸收产生的脉冲也在光电峰里由于γ射线在NaI(Tl)晶体中产生可见光光子的数目可见光光子到达PMT光阴极的数目光阴极释放光电子的数目打拿极的倍增因子都有随机的统计涨落以及PMT光阴极各处灵敏度的不均匀加在PMT上的高压的波动及PMT的电子学噪声都会造成虽然γ光子沉积在NaI(Tl)晶体中的能量相同但是闪烁探测器输出的脉冲幅度参差不齐的现象这在图5b的脉冲幅度谱上表现为光电峰有一定的宽度也就是说探测器有一定的能量分辨率我们可以用光电峰高度一半处的宽度E来描述探测器的能量分辨率称为半高宽(Full Width at Half MaximumFWHM)通常FWHM表示为E与光电峰能量Er的百分比: FWHM(%)=(E/E r) 100%能量高的γ射线在闪烁晶体中可以产生更多的可见光光子相对的统计涨落较小探测器的能量分辨率也较好对140keV的γ射线NaI(Tl)闪烁探测器的FWHM(%)大约为11~15%未完待续。
物理在医学领域有许多重要的应用。
以下是一些常见的物理应用示例:
医学成像:物理学提供了各种各样的成像技术,例如X射线、计算机断层扫描(CT)和核磁共振成像(MRI)。
这些技术利用物理原理来生成人体内部的图像,帮助医生进行诊断和治疗。
超声波:超声波是一种无创的成像技术,通过测量声波在组织中的传播速度和反射来生成图像。
它广泛应用于产前检查、心脏病诊断和肿瘤检测等领域。
核医学:核医学利用放射性同位素来诊断和治疗疾病。
例如,放射性同位素的注射可以用于检测癌症和心血管疾病,并通过放射性治疗来治疗一些疾病。
激光治疗:激光技术可以用于医学中的手术和治疗。
例如,激光手术可以用于眼科手术,以及去除皮肤上的痣和疤痕。
生物电信号:物理学在研究和应用生物电信号方面起着重要作用。
例如,心电图(ECG)用于检测心脏电活动,脑电图(EEG)用于研究大脑电活动,肌电图(EMG)用于研究肌肉活动。
医疗器械:物理学在设计和开发医疗器械方面起着关键作用。
例如,X射线机、放射治疗机、心脏起搏器和人工关节等医疗设备都是基于物理原理设计和制造的。
总而言之,物理学为医学提供了许多重要的工具和技术,使医生能够更好地理解和治疗人体内部的各种疾病和问题。
这些应用不仅提高了医学诊断和治疗的准确性,还改善了患者的生活质量。