RAMAN拉曼实验讲义报告
- 格式:ppt
- 大小:1.65 MB
- 文档页数:28
拉曼光谱实验报告拉曼光谱(Raman spectra )以印度科学家C.V.拉曼(Raman )命名,是一种分子结构检测手段。
拉曼光谱是散射光谱,通过与入射光频率不同的散射光谱进行分析以得到分子振动、转动方面信息。
以横坐标表示拉曼频移,纵坐标表示拉曼光强,与红外光谱互补,可用来分析分子间键能的相关信息。
(Raman)在%与中观輕L 种特眛进谱的砸茯1品輙礙毀图1 :印度科学家拉曼一、拉曼光谱原理拉曼效应:起源于分子振动(和点阵振动)与转动,因此从拉曼光谱中可以得到分子振动能级(点阵振动能级)与转动能级结构的知识。
拉曼效应是光子与光学支声子相互作用的结果。
光照射到物质上发生弹性散射和非弹性散射。
弹性碰撞:光子和分子之间没有能量交换,仅改变了光子的运动方向,其散射频率等于入射频率,这种类型的散射在光谱上称为瑞利散射。
非弹性碰撞:光子和分子之间在碰撞时发生了能量交换,即改变了光子的运动方向,也改变了能量。
使散射频率和入射频率有所不同。
此类散射在光谱上被称为拉曼散射。
图2 :拉曼散射示意图物质与光的相对作用分为三种:反射,散射和透射。
根据这三种情况,衍生出相X射线荧光光谱法(XFS)、分子荧光光谱法(MFS )等),吸收光谱(紫外—可见光法(UV-Vis )、原子吸收光谱(AAS)、红外观光谱(IR)、核磁共振(NMR )等),联合散射光谱(拉曼散射光谱(Raman ))。
拉曼光谱应运而生。
宾际应用原子左切光淆(AES ).克予黄光光谱(砖5 )X®住砂光蔺云C游S ),分子页光光诰艺(MFS )吹收光诣蒙井-可足光J去(UV-V F S)宗子够厘光谱(AAS )辽井%hf (IR } 垓暹共眼(NMR )蛮合散51 此漕(Raman)表1:光谱种类区分表拉曼频移(Raman shift ):拉曼光谱的横坐标称作拉曼频移。
拉曼散射分为斯托克斯散射和反斯托克斯散射,通常的拉曼实验检测到的是斯托克斯散射,拉曼散射光和瑞利光的频率之差值称拉曼频移(Raman shift ):Av| v 0 - v s |, 即散射光频率与激发光频之差。
激光拉曼光谱实验报告摘要:本实验研究了用半导体激光器泵浦的3Nd+:4YVO 晶体并倍频后得到的532nm 激光作为激发光源照射液体样品的4CCL 分子而得到的拉曼光谱,谱线很好地吻合了理论分析的4CCL 分子4种振动模式,且频率的实验值与标准值比误差低于2%。
又利用偏振片及半波片获得与入射光偏振方向垂直及平行的出射光,确定了各振动的退偏度,分别为0.013、0.853、0.869、0.940,和标准值0和0.75比较偏大。
关键词:拉曼散射、分子振动、退偏 一,引言1928年,印度物理学家拉曼(C.V.Raman )和克利希南(K.S.Krisman )实验发现,当光穿过液体苯时被分子散射的光发生频率变化,这种现象称为拉曼散射。
几乎与此同时,苏联物理学家兰斯别而格(ndsberg )和曼杰尔斯达姆(L.Mandelstamm )也在晶体石英样品中发现了类似现象。
在散射光谱中,频率与入射光频率0υ相同的成分称为瑞利散射,频率对称分布在0υ两侧的谱线或谱带01υυ±即为拉曼光谱,其中频率较小的成分01υυ-又称为斯托克斯线,频率较大的成分01υυ+又称为反斯托克斯线。
这种新的散射谱线与散射体中分子的震动和转动,或晶格的振动等有关。
拉曼效应是单色光与分子或晶体物质作用时产生的一种非弹性散射现象。
拉曼谱线的数目,位移的大小,谱线的长度直接与试样分子振动或转动能级有关。
因此,与红外吸收光谱类似,对拉曼光谱的研究,也可以得到有关分子振动或转动的信息。
目前拉曼光谱分析技术已广泛应用于物质的鉴定,分子结构的研究谱线特征。
20世纪60年代激光的问世促进了拉曼光谱学的发展。
由于激光极高的单色亮度,它很快被用到拉曼光谱中作为激发光源。
而且基于新激光技术在拉曼光谱学中的使用,发展了共振拉曼、受激拉曼散射和番斯托克斯拉曼散射等新的实验技术和手段。
拉曼光谱分析技术是以拉曼效应为基础建立起来的分子结构表征技术,其信号来源于分子的振动和转动。
拉曼光谱实验报告篇一:拉曼光谱实验报告拉曼光谱实验[实验目的]1、了解Raman光谱的原理和特点;2、掌握Raman光谱的定性和定量分析方法;3、了解Raman 光谱的谱带指认。
4、了解显微成像Raman光谱。
[仪器和装置] 1、显微Raman光谱系统一套,拉曼光谱仪的型号为SPL-RAMAN-785 USBXX+的拉曼光谱仪,自带785nm激光;2、带二维步进电机平移台一台(有控制器一台);3、PT纳米线样品;4、光谱仪软件SpectraSuite;5、步进电机驱动软件;6、摄像头(已与显微镜集成在一起)。
[实验内容]1、使用显微Raman系统及海洋光谱软件对单根或多根纳米线进行显微Raman光谱测量,对测量的图和标准图进行比较,并通过文献阅读对PT纳米线Raman(测量和标准)的谱峰进行指认。
2、使用显微拉曼扫描系统进行二维样品表面拉曼信号收集,并生成样品表面特定波长处的拉曼信号强度三维图,模拟样品表面拉曼表征。
选择多个拉曼波长对样品形状进行观察。
[实验结果及分析]观察PbTiO3的拉曼散射谱并比对具体的拉曼散射光谱数据进行分析,可以找到以上10个拉曼散射峰,分别位于784.54nm,794.94 nm,798.60 nm,802.90 nm,806.84 nm,811.91 nm,817.10 nm,825.29 nm,832.44 nm,879.69nm附近,对应的Raman Shift分别是-7.46 cm-1159.28 cm-1216.94 cm-1284.00 cm-1 344.82 cm-1422.21 cm-1 500.44 cm-1 621.90 cm-1 725.97 cm-11371.21 cm-1。
(通过Raman Shift=1/λ入射-1/λ散射计算得到)PT纳米线Raman测量的谱峰指认:分析可知,-7.46 cm-1159.28 cm-1216.94 cm-1284.00cm-1 344.82 cm-1422.21 cm-1 500.44 cm-1 621.90 cm-1 725.97 cm-1附近的9个振动模,分别对应于PbTiO3的A1(1TO),E(1LO),E(2TO),B1+E,A1(2TO),E(2LO)+A1(2LO),E(3TO)A1(3TO),A1(3LO)声子模。
拉曼光谱仪实验报告拉曼光谱仪实验报告引言:拉曼光谱仪是一种常用的分析仪器,可以通过测量样品散射光的频率变化来获取样品的结构和化学成分信息。
本实验旨在通过使用拉曼光谱仪,研究不同样品的拉曼光谱特征,并分析其结构和成分。
实验方法:1. 样品准备:选择不同类型的样品,如有机物、无机物或生物分子等,并将其制备成均匀的固态、液态或气态样品。
2. 仪器调试:根据实验要求,调整拉曼光谱仪的参数,如激光功率、波长、光路等,以确保获得稳定的信号和准确的光谱数据。
3. 测量操作:将样品放置在拉曼光谱仪样品台上,调整焦距和位置,使激光光斑准确照射到样品表面。
开始测量前,进行背景扫描以消除环境光的影响。
然后,选择适当的积分时间和扫描次数,进行拉曼光谱的测量。
实验结果与讨论:1. 有机物样品:a. 苯:苯是一种常见的有机物,其拉曼光谱特征主要集中在1000-1700 cm^-1的范围内。
我们观察到苯分子的拉曼光谱中存在苯环的振动模式,如苯环的C-C和C-H振动。
这些峰的位置和强度可以提供关于苯环结构和键的信息。
b. 酚:酚是另一种有机物,其拉曼光谱特征主要出现在300-1100 cm^-1的范围内。
我们观察到酚分子的拉曼光谱中存在酚环的振动模式,如C-O和C-C 振动。
这些峰的位置和强度可以提供关于酚分子结构和键的信息。
2. 无机物样品:a. 二氧化硅:二氧化硅是一种常见的无机物,其拉曼光谱特征主要出现在400-1200 cm^-1的范围内。
我们观察到二氧化硅分子的拉曼光谱中存在硅氧键的振动模式,如Si-O和Si-O-Si振动。
这些峰的位置和强度可以提供关于二氧化硅结构和键的信息。
b. 硝酸盐:硝酸盐是另一种常见的无机物,其拉曼光谱特征主要出现在100-1700 cm^-1的范围内。
我们观察到硝酸盐分子的拉曼光谱中存在硝酸根离子的振动模式,如NO2和NO3振动。
这些峰的位置和强度可以提供关于硝酸盐结构和键的信息。
3. 生物分子样品:a. DNA:DNA是生物体内的重要分子,其拉曼光谱特征主要出现在500-1700 cm^-1的范围内。
拉曼光谱实验报告当一束频率为v0的单色光照射到样品上后,分子可以使入射光发生散射。
大部分光只是改变光的传播方向,从而发生散射,而穿过分子的透射光的频率,仍与入射光的频率相同,这时,称这种散射称为瑞利散射;还有一种散射光,它约占总散射光强度的10^~10^,该散射光不仅传播方向发生了改变,而且该散射光的频率也发生了改变,从而不同于激发光(入射光)的频率,因此称该散射光为拉曼散射。
在拉曼散射中,散射光频率相对入射光频率减少的,称之为斯托克斯散射,因此相反的情况,频率增加的散射,称为反斯托克斯散射,斯托克斯散射通常要比反斯托克斯散射强得多,拉曼光谱仪通常大多测定的是斯托克斯散射,也统称为拉曼散射。
散射光与入射光之间的频率差v称为拉曼位移,拉曼位移与入射光频率无关,它只与散射分子本身的结构有关。
拉曼散射是由于分子极化率的改变而产生的(电子云发生变化)。
拉曼位移取决于分子振动能级的变化,不同化学键或基团有特征的分子振动,ΔE反映了指定能级的变化,因此与之对应的拉曼位移也是特征的。
这是拉曼光谱可以作为分子结构定性分析的依据。
全球第一台拉曼分析仪spector RamanT"是一款功能强大的手提式拉曼光谱仪。
此色散型光谱轻巧便携,既可在现场做快速鉴定之用,也可加配Nuscope"数字显微镜及XYZ三维载物台在实验室搭建简易的冠微拉曼。
全球最小的掌上拉曼光谱仪DeltaNu研制出了全球最小的掌上拉曼光谱仪ReporteR--其体积仅为手机大小,可独立工作,也可用USB连接电脑做实时谱图分析。
台式拉曼光谱仪Advantage 532是一台低价高性能的台式拉曼光谱仪。
相对于Advantage系列的其他型号来说,它具有更高的信噪比。
台式拉曼光谱仪(633)DeltaNu经典的以633 nm为激发光源波长的低价高性能台式拉曼光谱仪。
Advantage 633拉曼操作简单,适用于溶液、凝胶、粉末和涂层,完善的配件选择可以实现对各种类型的样品进行分析。
拉曼光谱实验报告引言光谱是研究物质结构和性质的重要手段之一,而拉曼光谱则是近年来备受关注的一种非常有用的光谱技术。
拉曼光谱通过测量物质在激发光照射下所散射光的频率差,揭示了物质分子的振动和转动信息。
本实验旨在通过测量不同物质的拉曼光谱,探讨拉曼光谱在化学分析中的应用。
实验方法本实验使用的拉曼光谱仪配备了一台激光器和一个光电倍增管。
首先,将待测样品放置在样品台上,并将激光对准样品表面。
开启光谱仪后,记录激光的波长和功率,并调整样品的位置和角度,以获得清晰的拉曼光谱信号。
实验过程中,要确保样品不受污染和损坏,并且保持仪器的灵敏度和稳定性。
实验结果与讨论1. 水的拉曼光谱我们首先对水这一常见物质进行了实验。
结果显示,水的拉曼光谱包含了丰富的信息,其中包括了水分子的伸缩振动和转动振动等。
根据实验结果,我们能够准确测量水的拉曼频移以及相应的光谱峰位,并据此进一步推测水的分子结构和键长等物理参数。
此外,由于水是一种极具活性的化学物质,我们还可以通过比较不同水样品的拉曼光谱差异,来确定水中的杂质和污染物含量。
2. 有机物的拉曼光谱在本实验中,我们还研究了一些有机物的拉曼光谱,并对比了不同有机物的光谱特征。
结果表明,不同有机物的拉曼光谱存在差异,这可以用于鉴别和定量分析不同的有机化合物。
通过观察拉曼光谱中的峰位、强度和形状等特征,我们能够确定物质的化学组成和结构。
由于有机物在拉曼光谱中具有独特的指纹区域,因此拉曼光谱被广泛应用于药物分析、环境监测和食品安全等领域。
3. 表面增强拉曼光谱除了传统的拉曼光谱,我们还研究了表面增强拉曼光谱(Surface-enhanced Raman Spectroscopy, SERS)。
该技术基于纳米金属表面所产生的增强效应,能够大幅提高样品的拉曼散射信号,从而增强检测灵敏度。
我们在实验中采用了金纳米颗粒作为增强剂,并测量了不同浓度的染料溶液的拉曼光谱。
结果显示,SERS技术不仅可以有效检测低浓度的物质,还能够应用于微量分析和生物传感等领域。
拉曼光谱实验报告拉曼光谱实验报告拉曼光谱(Raman spectra),是一种散射光谱。
拉曼光谱分析法是基于印度科学家C.V.拉曼(Raman)所发现的拉曼散射效应,对与入射光频率不同的散射光谱进行分析以得到分子振动、转动方面信息,并应用于分子结构研究的一种分析方法。
由分子振动、固体中光学声子等激发与激光相互作用产生的非弹性散射称为拉曼散射。
1928年拉曼光谱C.V.拉曼实验发现,当光穿过透明介质被分子散射的光发生频率变化,这一现象称为拉曼散射,同年稍后在苏联和法国也被观察到。
在透明介质的散射光谱中,频率与入射光频率υ0相同的成分称为瑞利散射;频率对称分布在υ0两侧的谱线或谱带υ0±υ1即为拉曼光谱,其中频率较小的成分υ0-υ1又称为斯托克斯线,频率较大的成分υ0+υ1又称为反斯托克斯线。
靠近瑞利散射线两侧的谱线称为小拉曼光谱;远离瑞利线的两侧出现的谱线称为大拉曼光谱。
瑞利散射线的强度只有入射光强度的10-3,拉曼光谱强度大约只有瑞利线的10-3。
小拉曼光谱与分子的转动能级有关,大拉曼光谱与分子振动-转动能级有关。
拉曼光谱的理论解释是,入射光子与分子发生非弹性散射,分子吸收频率为υ0的光子,发射υ0-υ1的光子(即吸收的能量大于释放的能量),同时分子从低能态跃迁到高能态(斯托克斯线);分子吸收频率为υ0的光子,发射υ0+υ1的光子(即释放的能量大于吸收的能量),同时分子从高能态跃迁到低能态(反斯托克斯线)。
分子能级的跃迁仅涉及转动能级,发射的是小拉曼光谱;涉及到振动-转动能级,发射的是大拉曼光谱。
与分子红外光谱不同,极性分子和非极性分子都能产生拉曼光谱。
激光器的问世,提供了优质高强度单色光,有力推动了拉曼散射的研究及其应用。
拉曼光谱的应用范围遍及化学、物理学、生物学和医学等各个领域,对于纯定性分析、高度定量分析和测定分子结构都有很大价值。
拉曼光谱及宝石检测仿真实验实验报告
1. 了解拉曼光谱原理及其在宝石检测中的应用;
2. 学习使用RamanViewer仿真软件进行拉曼光谱检测的虚拟实验。
实验器材:
1. 个人电脑;
2. RamanViewer仿真软件。
实验步骤:
1. 打开RamanViewer软件,选择File -> Open,找到宝石检测的虚拟实验文件并打开;
2. 在软件界面的右侧可以选择不同的光源,这里我们选择红宝石的光源;
3. 点击Start Collecting按钮,进行拉曼光谱测试,测试完成后会在界面下方出现光谱图谱。
实验结果:
从拉曼光谱测试结果可以看出,在红宝石的光源照射下,宝石的拉曼光谱具有明显的特征峰,在一定程度上可以用于宝石的鉴定和检测。
同时,RamanView也能够对不同宝石的拉曼光谱给出详细的分析报告,为宝石鉴定提供了有力的辅助。
实验结论:
通过本次拉曼光谱及宝石检测仿真实验,我们深入了解了拉曼光谱原理及其在宝石检测中的应用,也掌握了使用RamanViewer仿真软件进行拉曼光谱测试的技能。
这对我们将来开展实验具有重要意义,也有利于我们更好地学习与理解相关知识。