2017_2018学年高中数学第三章函数的应用3-1函数与方程3-1-2用二分法求方程的近似解优化练习新人教A版必修1
- 格式:doc
- 大小:88.50 KB
- 文档页数:5
方程的根与函数的零点(45分钟70分)一、选择题(每小题5分,共40分)1.(2017·烟台高一检测)函数f(x)=log5(x-1)的零点是( )A.0B.1C.2D.3【解析】选C.令log5(x-1)=0,得x=2,所以函数f(x)=log5(x-1)的零点是2.2.(2017·开封高一检测)二次函数y=x2-kx-1(k∈R)的图象与x轴交点的个数是( )A.0B.1C.2D.无法确定【解析】选C.二次函数y=f(x)的图象与x轴交点的个数与对应的一元二次方程f(x)=0的实根个数有关,由于Δ=b2-4ac=(-k)2-4×1×(-1)=k2+4,无论k为何实数,Δ>0恒成立,即方程x2-kx-1=0有两个不相等的实数根,所以二次函数y=x2-kx-1的图象与x轴应有两个交点.3.(2017·聊城高一检测)函数f(x)=ax2+2ax+c(a≠0)的一个零点是-3,则它的另一个零点是( )A.-1B.1C.-2D.2【解析】选B.设另一个零点是x,由根与系数的关系得-3+x=-=-2,所以x=1.即另一个零点是1.4.(2017·吉安高一检测)已知函数f(x)=-log2x,若实数x0是方程f(x)=0的解,且0<x1<x0,则f(x1) ( )A.恒为负值B.等于0C.恒为正值D.不大于0【解析】选C.由实数x0是方程f(x)=0的解,得=log2x0,分别作出函数y=,y=log2x 的图象,由图象可知,当0<x1<x0时,>log2x1,所以f(x1)=-log2x1>0.【一题多解】因为函数y=是单调减函数,y=log2x在(0,+∞)上是增函数,所以根据函数单调性的性质可知,函数f(x)=-log2x在(0,+∞)上是减函数.因为0<x1<x0,所以f(x1)>f(x0)=0.5.(2017·黄冈高一检测)若函数f(x)在定义域{x|x∈R,且x≠0}上是偶函数,且在(0,+∞)上是减函数,f(2)=0,则函数f(x)的零点有( )A.一个B.两个C.至少两个D.无法判断【解析】选B.因为f(x)在(0,+∞)上是减函数,且f(2)=0,所以在(0,+∞)上有且仅有一个零点2,又因为f(x)是偶函数,所以f(x)在(-∞,0)上有且仅有一个零点-2,所以函数f(x)的零点有两个.6.(2017·郑州高一检测)已知实数a,b满足2a=3,3b=2,则函数f(x)=a x+x-b的零点所在区间是( )A.(-2,-1)B.(-1,0)C.(0,1)D.(1,2)【解析】选B.由2a=3,3b=2,得a=log23,b=log32,ab=1,f(-1)=a-1-1-b=-1<0,f(0)=1-b=1-log32>0.所以零点所在区间是(-1,0).7.函数g(x)=x2+a存在零点,则a的取值范围是( )A.a>0B.a≤0C.a≥0D.a<0【解析】选B.函数g(x)=x2+a存在零点,则x2=-a有解,所以a≤0.【延伸探究】若本题中条件“存在零点”换为“有两个零点”,其结论又如何呢?【解析】选D.函数g(x)=x2+a有两个零点,则x2=-a有两个实数解,所以a<0,故选D.【补偿训练】函数f(x)=|x|-ax-1仅有一个负零点,则a的取值范围是( )A.(-∞,1)B.(-∞,1]C.(1,+∞)D.[1,+∞)【解析】选D.在平面直角坐标系中作出函数y=|x|-1和y=ax的图象如图,结合图象可以看出:当a≥1时,两函数的图象只有一个交点,且交点横坐标小于0,即函数f(x)=|x|-ax-1仅有一个负零点.故应选D.8.已知函数f(x)=x--1,g(x)=x+2x,h(x)=x+lnx的零点分别为x1,x2,x3,则( )A.x2<x1<x3B.x2<x3<x1C.x3<x1<x2D.x1<x2<x3【解析】选 B.f(x)=x--1=0⇔x-1=,根据图象可得两个函数图象的交点x1>1,g(x)=x+2x=0⇔2x=-x,根据两个函数图象的交点可知x2<0,h(x)=x+lnx=0⇔lnx=-x,根据两个函数图象的交点可知0<x3<1,所以x2<x3<x1.【一题多解】选B.三个函数图象y=--1,y=2x,y=lnx与y=-x的交点横坐标比较大小,这样画在同一坐标系下也清楚交点的大小.由图可知x2<x3<x1.【补偿训练】(2017·德州高一检测)若函数f(x)的图象在R上连续不断,且满足f(0)<0,f(1)>0,f(2)>0,则下列说法正确的是( )A.f(x)在区间(0,1)上一定有零点,在区间(1,2)上一定没有零点B.f(x)在区间(0,1)上一定没有零点,在区间(1,2)上一定有零点C.f(x)在区间(0,1)上一定有零点,在区间(1,2)上可能有零点D.f(x)在区间(0,1)上可能有零点,在区间(1,2)上一定有零点【解析】选C.因为f(0)·f(1)<0,故f(x)在(0,1)内一定有零点.尽管f(1)·f(2)>0,f(x)在(1,2)内也可能有零点,如图,故C正确.二、填空题(每小题5分,共10分)9.(2017·嘉兴高一检测)已知函数f(x)=则函数f(x)的零点为________.【解析】当x≤1时,令2x-1=0,得x=0.当x>1时,令1+log2x=0,得x=,此时无解.综上所述,函数零点为0.答案:010.已知函数f(x)=x2+x+a在区间(0,1)上有零点,则实数a的取值范围为________.【解析】易知函数f(x)=x2+x+a的图象开口向上,且对称轴为直线x=-.若函数f(x)在区间(0,1)上有零点,则只需满足f(0)·f(1)<0,即a(a+2)<0,解得-2<a<0.答案:-2<a<0【补偿训练】已知对于任意实数x,函数f(x)满足f(-x)=f(x).若f(x)有2015个零点,则这2015个零点之和为________.【解析】设x0为其中一根,即f(x0)=0,因为函数f(x)满足f(-x)=f(x),所以f(-x0)=f(x0)=0,即-x0也为方程一根,又因为方程f(x)=0有2015个实数解,所以其中必有一根x1,满足x1=-x1,即x1=0,所以这2015个零点之和为0.答案:0三、解答题(每小题10分,共20分)11.判断函数f(x)=lnx-在区间[1,3]内是否存在零点.【解析】因为函数f(x)=lnx-的图象在[1,3]上是连续不断的一条曲线,且f(1)=-1<0,f(3)=ln3->0,从而由零点存在性定理知,函数在[1,3]内存在零点.12.(2017·大同高一检测)已知函数f(x)=2a·4x-2x-1.(1)当a=1时,求函数f(x)的零点.(2)若f(x)有零点,求a的取值范围.【解析】(1)当a=1时,f(x)=2·4x-2x-1.令f(x)=0,即2·(2x)2-2x-1=0,解得2x=1或2x=-(舍去),所以x=0,所以函数f(x)的零点为0.(2)若f(x)有零点,则方程2a·4x-2x-1=0有解.于是2a==+=-,因为>0,所以2a>-=0,即a>0.【补偿训练】已知函数f(x)=x2-bx+3.(1)若f(0)=f(4),求函数f(x)的零点.(2)若函数f(x)的一个零点大于1,另一个零点小于1,求b的范围.【解题指南】第(2)问将函数的零点转化为函数图象与x轴交点的横坐标,利用图象找出关于b的不等式,然后解不等式即可.【解析】(1)因为f(0)=f(4),所以3=16-4b+3,即b=4,所以f(x)=x2-4x+3,令f(x)=0即x2-4x+3=0得x1=3,x2=1.所以f(x)的零点是1和3.(2)因为f(x)的零点一个大于1,另一个小于1,如图.需f(1)<0,即1-b+3<0,所以b>4.【能力挑战题】已知函数f(x)=2(m+1)x2+4mx+2m-1.求当m为何值时,函数f(x)有两个零点.【解析】函数f(x)有两个零点,即方程2(m+1)x2+4mx+2m-1=0有两个不相等的实根,所以解得m<1且m≠-1,所以当m<1且m≠-1时,函数f(x)有两个零点.。
第三章 函数的应用3-1 函数与方程§3.1.1方程的根与函数的零点一、教学目标1. 知识与技能①理解函数(结合二次函数)零点的概念,领会函数零点与相应方程要的关系,掌握零点存在的判定条件.②培养学生的观察能力.③培养学生的抽象概括能力.2. 过程与方法①通过观察二次函数图象,并计算函数在区间端点上的函数值之积的特点,找到连续函数在某个区间上存在零点的判断方法.②让学生归纳整理本节所学知识.3. 情感、态度与价值观在函数与方程的联系中体验数学中的转化思想的意义和价值.二、教学重点、难点重点 零点的概念及存在性的判定.难点 零点的确定.三、学法与教学用具1. 学法:学生在老师的引导下,通过阅读教材,自主学习、思考、交流、讨论和概括,从而完成本节课的教学目标。
2. 教学用具:投影仪。
四、教学设想(一)创设情景,揭示课题1、提出问题:一元二次方程 a x 2+bx+c=0 (a ≠0)的根与二次函数y=a x 2+bx+c(a ≠0)的图象有什么关系?2.先来观察几个具体的一元二次方程的根及其相应的二次函数的图象:(用投影仪给出)①方程0322=--x x 与函数322--=x x y②方程0122=+-x x 与函数122+-=x x y③方程0322=+-x x 与函数322+-=x x y1.师:引导学生解方程,画函数图象,分析方程的根与图象和x 轴交点坐标的关系,引出零点的概念.生:独立思考完成解答,观察、思考、总结、概括得出结论,并进行交流.师:上述结论推广到一般的一元二次方程和二次函数又怎样?(二) 互动交流 研讨新知函数零点的概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点. 函数零点的意义:函数)(x f y =的零点就是方程0)(=x f 实数根,亦即函数)(x f y =的图象与x 轴交点的横坐标. 即:方程0)(=x f 有实数根⇔函数)(x f y =的图象与x 轴有交点⇔函数)(x f y =有零点.函数零点的求法:求函数)(x f y =的零点:①(代数法)求方程0)(=x f 的实数根;②(几何法)对于不能用求根公式的方程,可以将它与函数)(x f y =的图象联系起来,并利用函数的性质找出零点.1.师:引导学生仔细体会左边的这段文字,感悟其中的思想方法.生:认真理解函数零点的意义,并根据函数零点的意义探索其求法:①代数法;②几何法.2.根据函数零点的意义探索研究二次函数的零点情况,并进行交流,总结概括形成结论.二次函数的零点:二次函数)0(2≠++=a c bx ax y .(1)△>0,方程02=++c bx ax 有两不等实根,二次函数的图象与x 轴有两个交点,二次函数有两个零点.(2)△=0,方程02=++c bx ax 有两相等实根(二重根),二次函数的图象与x 轴有一个交点,二次函数有一个二重零点或二阶零点.(3)△<0,方程02=++c bx ax 无实根,二次函数的图象与x 轴无交点,二次函数无零点.3.零点存在性的探索:(Ⅰ)观察二次函数32)(2--=x x x f 的图象:① 在区间]1,2[-上有零点______; =-)2(f _______,=)1(f _______,)2(-f ·)1(f _____0(<或>=).② 在区间]4,2[上有零点______;)2(f ·)4(f ____0(<或>=). (Ⅱ)观察下面函数)(x f y =的图象① 在区间],[b a 上______(有/无)零点;)(a f ·)(b f _____0(<或>=). ② 在区间],[c b 上______(有/无)零点;)(b f ·)(c f _____0(<或>=). ③ 在区间],[d c 上______(有/无)零点;)(c f ·)(d f _____0(<或>=).由以上两步探索,你可以得出什么样的结论?怎样利用函数零点存在性定理,断定函数在某给定区间上是否存在零点?4.生:分析函数,按提示探索,完成解答,并认真思考.师:引导学生结合函数图象,分析函数在区间端点上的函数值的符号情况,与函数零点是否存在之间的关系.生:结合函数图象,思考、讨论、总结归纳得出函数零点存在的条件,并进行交流、评析.师:引导学生理解函数零点存在定理,分析其中各条件的作用.(三)、巩固深化,发展思维1.学生在教师指导下完成下列例题例1、求函数f(x)=㏑x +2x -6的零点个数。
人教版数学必修一第三章《函数的应用》重难点解析第三章 课文目录 3.1 函数与方程3.2 函数模型及其应用重点:1.通过用“二分法”求方程近似解,使学生体会函数零点与方程根之间的联系,初步形成用函数观点处理问题的意识.2.认识指数函数、对数函数、幂函数等 函数模型的增长差异,体会直线上升、指数爆炸、对数增长的差异. 难点:1.在利用“二分法”求方程近似解的过程中,对给定精确度的近似解的计算. 2.如何选择适当的函数模型分析和解决 实际问题.一、方程的根和函数的零点1.函数的零点给出三个具体函数的图象——设置问题研究情景,通过对函数图像的观察,归纳出结论:一元二次方程()002≠=++a c bx ax 的根,就是相应的二次函数()02≠++=a c bx ax y 的图象与x 轴的交点的横坐标。
我们把使()0=x f 的实数x 叫做函数()x f y =的零点。
注意函数的零点与方程的根间的联系和区别,二者不能混为一谈。
例1 函数322--=x x y 的零点是( )A .31=-=x x 或B .()()030,1,或-C .31-==x x 或D .()()030,1,或- 函数的零点与方程的根——形数的结合的典范。
利用学生熟悉的二次函数的图象和性质,为理解函数的零点提供直观认识,为判定零点是否存在和求零点提供支持,使函数零点的求解与函数的变化建立联系。
为判断方程()0=x f 实数根的个数,只需观察函数()x f y =的图象与x 轴交点的个数——方程根的研究转化为函数零点的研究。
例2 判断方程062ln =-+x x 实根的个数。
2.函数零点存在的判定引导学生观察图象连续的函数的变化情况,让学生通过连续的函数值的变化情况认识到:当函数值由正变为负时必定经过一个零点; 当函数值由负变为正时必定经过一个零点。
由此概括得到函数零点存在的判定方法。
如果函数()x f y =在区间[]b a ,上的图象是连续不断的一条曲线,并且有()()0<⋅b f a f ,那么,函数()x f y =在区间()b a ,内有零点,即存在()b a c ,∈,使得()0=c f ,这个c 也就是方程()0=x f 的根。
用二分法求方程的近似解
[课时作业]
[A 组 基础巩固]
1.下列图象与x 轴均有交点,其中不能用二分法求函数零点的是( )
答案:B
2.用“二分法”可求近似解,对于精确度ε说法正确的是( )
A .ε越大,零点的精确度越高
B .ε越大,零点的精确度越低
C .重复计算次数就是ε
D .重复计算次数与ε无关
答案:B
3.用二分法求函数f (x )=x 3+5的零点可以取的初始区间是( )
A .[-2, 1]
B .[-1,0]
C .[0,1]
D .[1,2] 解析:f (-2)=-3<0,f (1)=6>0
逐次验证得出初始区间为A.
答案:A
4.定义在R 上的函数f (x )的图象是连续不断的曲线,已知函数f (x )在区间(a ,b )上有一个零点x 0,且f (a )·f (b )<0,用二分法求x 0时,当f ⎝
⎛⎭⎪⎫a +b 2=0时,则函数f (x )的零点是( ) A .(a ,b )外的点
B .x =a +b 2
C .区间⎝ ⎛⎭⎪⎫a ,a +b 2或⎝ ⎛⎭
⎪⎫a +b 2,b 内的任意一个实数 D .x =a 或x =b
答案:B
5.设f (x )=3x +3x -8,用二分法求方程3x
+3x -8=0在x ∈(1,2)内近似解的过程中,计算得到f (1)<0,f (1.5)>0,f (1.25)<0,则方程的根落在区间( )
A .(1,1.25)
B .(1.25,1.5)
C .(1.5,2)
D .不能确定
解析:∵f(1)<0,f(1.5)>0,f(1.25)<0,则由f(1.25)·f(1.5)<0可知方程根落在(1.25,1.5)上.
答案:B
6.用二分法研究函数f(x)=x2+6x-2的零点时,第一次经过计算f (0)<0,f(0.5)>0可得其中一个零点x0∈________,第二次应计算________.
解析:由零点的存在性可知,x0∈(0,0.5),取该区间的中点0.5
2
=0.25,∴第二次应计算
f(0.25).
答案:(0,0.5) f(0.25)
7.求方程log3x+x=3的解所在区间是________.
解析:构造函数f(x)=log3x+x-3,找出函数零点所在的初始区间,
∵f(2)<0,f(3)>0,∴x0∈(2,3).
答案:(2,3)
8.若方程x3-x+1=0在区间(a,b)(a,b是整数,且b-a=1)上有一根,
则a+b=________.
解析:设f(x)=x3-x+1,则f(-2)=-5<0,
f(-1)=1>0可得a=-2,b=-1,∴a+b=-3.
答案:-3
9.求方程2x3+3x-3=0的一个近似解.(精确度0.1)
解析:设f(x)=2x3+3x-3,∵f(0)=-3<0,f(1)=2>0,∴函数在(0,1)内存在零点,即方程在(0,1)内有实数解,取(0,1)作为初始区间,利用二分法逐次计算,列表如下:。