微机保护的硬件原理
- 格式:ppt
- 大小:736.00 KB
- 文档页数:64
微机保护装置的原理1.测量采集:微机保护装置首先需要采集电力系统中的各种电气量,如电流、电压、功率等。
通过安装在各种电气设备上的传感器,可以将这些电气量转换为相应的模拟信号。
然后,使用模数转换器将模拟量转换为数字量,供后续处理使用。
2.信号处理:通过采集到的数字量,微机保护装置可以进行信号处理,包括滤波、采样、定标等。
其中滤波是为了滤除噪声和干扰,使得信号更为稳定;采样是为了采集到足够的离散的数据点,以便于后续计算和分析;定标是为了将数字量转换为实际的物理量,以便更好地理解和处理。
3.故障检测:在信号处理之后,微机保护装置通过各种算法和模型进行故障检测。
这些算法和模型是基于电力系统的工作原理和特性进行建立的,可以通过对输入信号的分析和比较来判断系统是否存在故障情况。
例如,可以通过电流和电压的幅值、相位、频率等信息来判断电力设备是否过载、短路等。
4.故障定位:一旦微机保护装置检测到电力系统中存在故障,它可以通过进一步的信号处理和分析来进行故障的定位。
根据电力设备的具体结构和布置,可以通过测量到的电气量和设备的参数计算出故障点的位置,以指导后续的处理和维修。
5.保护动作:最后,当微机保护装置确认存在故障并确定故障位置之后,它会采取相应的保护动作以保护电力设备的安全运行。
这些保护动作通常包括断开故障电路、切除故障负荷和发送报警信号等。
同时,微机保护装置还会记录故障发生的时间、位置和原因等信息,以供后续的故障分析和预防。
总之,微机保护装置通过采集、处理、分析电力系统中的各种电气量来检测故障,定位故障,并最终采取适当的措施以保护电力设备的安全运行。
通过软件算法和模型的支持,微机保护装置能够快速、准确地响应电力系统中的异常情况,并对其进行及时控制和保护。
一、微机继电保护装置的特点1.可靠性高微机保护的软件设计,考虑到电力系统中各种复杂的故障,具有很强的综合分析和判断能力,几乎就是一个专家智能系统。
而常规保护装置,由于是各种器件组成的,不可能做得很复杂,否则硬件越多,越复杂,本身出故障的概率就越大,可靠性当然就降低了。
另外微机保护装置的自检与巡检功能也大大提高了其可靠性。
2.动作正确率高鉴于计算机软件计算的实时性特点,微机保护装置能保证在任何时刻均不断迅速地采样计算,反复准确地校核。
在电力系统发生故障的暂态时期内,就能正确判断故障,如果故障发生了变化或进一步发展也能及时做出判断和自纠。
如在保护延时动作或重合间延时的过程中都能监视系统故障的变化,因此微机保护的动作正确率很高,运行实践已证明了这点。
3.易于获得各种附加功能由于计算机软件的特点,使得微机保护可以做到硬件和软件资源共享,在不增加任何硬件的情况下,只需增加一些软件就可以获得各种附加功能。
例如在微机保护装置中,可以很方便地附加了低周减载和自动重合闸等自动装置的功能。
4.保护性能容易得到改善由于计算机软件可方便改写的特点,保护的性能可以通过研究许多新的保护原理来得到改善。
而且许多现代新原理的算法,在常规保护中是很难或根本不可能用硬件来实现的。
5.使用灵活、方便目前微机保护装置的人机界面做得越来越好,也越来越简单方便。
例如汉化界面、微机保护的查询、整定更改及运行方式变化等等都十分灵活方便,受到现场继电保护工作入员的普遍欢迎。
6.具有远方监控特性微机保护装置都具有串行通信功能,与变电所微机监控系统的通信联络使微机保护具有远方监控的特点并将微机保护纳入变电所综合自动化系统。
三、微机保护的学习方法微机保护专业基础是单片微机原理和电力系统继电保护原理,显然要学好微机保护就得掌握一定的单片微机原理和电力系统继电保护原理。
对于专业入员的培训学习,目前主要的困难还在于单片微机的基本知识。
为了提高培训学习的效率,对于单片微机原理应该抓住单片微机的实质,而不应以单片微机电路的细节为主,要防止钻进去而跳不出来,在具体细节上纠缠不清的现象。
第二章微机保护装置硬件原理微机保护装置是一种常见的电力系统保护装置,用于对电力系统进行监控、测量和保护。
它通常由硬件和软件两部分组成,其中硬件部分是保护装置的核心部分。
本章将介绍微机保护装置的硬件原理。
一、微机保护装置的硬件构成微机保护装置的硬件构成包括中央处理器、存储器、输入输出接口、时钟和定时器、外围电路等。
1. 中央处理器(Central Processing Unit, CPU):中央处理器是微机保护装置的核心部件,它负责执行各种保护算法和逻辑控制,对电力系统进行监测和保护。
中央处理器中通常包含ALU(算术逻辑单元)、控制单元和寄存器等。
2. 存储器(Memory):存储器用于存储程序、数据和中间结果等信息。
微机保护装置中的存储器通常包括主存储器和辅助存储器。
主存储器用于存储运行时的程序和数据,而辅助存储器用于存储长期保存的程序和数据。
3. 输入输出接口(Input/Output Interface):输入输出接口用于与外部设备进行数据交换。
微机保护装置的输入输出接口通常包括模拟输入输出接口和数字输入输出接口。
模拟输入输出接口用于处理模拟量数据,如电流、电压等;而数字输入输出接口用于处理数字量数据,如开关状态、报警信号等。
4. 时钟和定时器(Clock and Timer):时钟和定时器用于对微机保护装置进行时序控制。
时钟用于提供基本的时钟周期,定时器用于进行定时操作,如定时测量、关闭保护装置等。
5. 外围电路(Peripheral Circuit):外围电路包括电源电路、输入电路和输出电路等。
电源电路用于为微机保护装置提供稳定的供电,输入电路用于对输入信号进行处理和转换,输出电路用于向外部设备输出信号。
二、微机保护装置的工作原理微机保护装置的工作原理主要包括数据采集、信号处理、判决逻辑和输出动作等。
1.数据采集:微机保护装置通过输入接口从电力系统中采集各种信号,如电流、电压、功率、频率等,并将它们转换为数字信号进行处理。
微机综合保护原理微机综合保护原理是指在微机控制系统中,通过采取多种措施对系统进行保护的原理。
这种保护是为了防止外界干扰、操作失误、故障等因素对系统正常运行和数据安全产生影响。
微机综合保护原理主要包括硬件保护和软件保护两个方面。
硬件保护主要是通过硬件电路来实现的。
常用的硬件保护措施包括过电流保护、过压保护、过温保护等。
过电流保护是为了防止电流超过设定值而对电路造成损坏。
一般采用熔丝、电流保险丝等方式来实现过电流保护。
过压保护是为了防止电压超过设定值而对电路造成损坏。
一般采用过压保护器、瞬变电压抑制器等方式来实现过压保护。
过温保护是为了防止温度超过设定值而对电路造成损坏。
一般采用温度传感器、风扇等方式来实现过温保护。
软件保护主要是通过软件编程来实现的。
常用的软件保护措施包括系统自检、错误处理、恢复机制等。
系统自检是指在系统启动过程中对关键参数进行检测和验证,以确保系统的正常运行。
例如,检测CPU、内存、硬盘等是否正常工作,检测系统的硬件和软件配置是否与预期一致等。
错误处理是指在系统运行过程中,对可能出现的错误进行处理。
例如,对于输入数据错误、传感器异常、通信中断等情况,系统可以进行相应的处理,包括报警、自动纠错、数据重发等操作。
恢复机制是指在系统发生故障时,通过自动恢复措施使系统尽快恢复正常工作状态。
例如,系统可以自动重启、切换到备用系统、恢复最近的工作状态等。
此外,微机综合保护原理还包括网络安全防护。
网络安全防护涉及到对系统进行防火墙、入侵检测、数据加密等方面的保护措施,以确保系统的安全。
总的来说,微机综合保护原理通过硬件和软件两个方面的措施,保护系统免受外界干扰和故障的影响,确保系统的正常运行和数据的安全。
这是现代微机控制系统不可或缺的重要部分,也是保证系统稳定性和可靠性的基础。
微机保护工作原理
微机保护工作原理是通过监测微机系统内部的各种状态和外部环境的变化,并采取相应的措施来保护微机系统免受损害或故障。
具体的工作原理如下:
1. 温度保护:微机系统内部的温度过高容易导致电子元件的老化和损坏,因此需要通过温度传感器监测温度的变化,并在温度超过一定阈值时采取降低运行速度、增加风扇转速或自动关机等措施来降低温度。
2. 电压保护:微机系统对于电压的要求比较严格,过高或过低的电压都可能导致电子元件的损坏。
为了保护微机系统,通常会使用各种稳压电路和过压保护电路来稳定输入电压,并在电压异常时通过自动断电或发送报警信号等方式来保护微机系统。
3. 电流保护:微机系统中电流的过载会导致电子元件的过热和损坏,因此需要使用过流保护电路来监测电流的变化,并在电流超过一定阈值时采取相应的措施,如自动断电或降低负载等。
4. 过载保护:微机系统中的各个组件和外设都有其工作范围,超过该范围可能导致系统运行不稳定或故障。
为了保护微机系统,通常会使用过载保护电路来监测各个组件和外设的工作状态,并在超过规定范围时采取相应的措施来保护微机系统。
5. 过频保护:微机系统的工作频率也有一定的范围,超过该频率可能导致电子元件的损坏。
为了保护微机系统,通常会使用过频保护电路来监测系统的工作频率,并在超过规定范围时采
取相应的措施,如自动降低频率或断电等。
总之,微机保护工作原理是通过监测微机系统内部的各种状态和外部环境的变化,并采取相应的措施来保护微机系统免受损害或故障,从而提高系统的稳定性和可靠性。
微机保护装置的硬件原理1.电压电流采样和信号调理:微机保护装置通过安装在电力系统中的电流互感器和电压互感器对电力系统的电流和电压进行采样。
采样的模拟信号经过滤波、放大、保持等各种处理电路,转换为数字信号,经过数据处理和分析。
2.AD转换和DSP处理:采样信号经过模数转换器(ADC)转换成数字信号,然后送入数字信号处理器(DSP)。
DSP是微机保护装置的核心处理器,它能够高效执行各种复杂的算法,如差动、过流、过压、欠压等等。
DSP还可以实时采集、分析和存储数据,并与外部通信模块交互。
3.数据传输和通信:微机保护装置通常与电力系统交换信息,以便实时监测和保护。
通信模块可以是串行方向、以太网或光纤等多种方式。
通过通信模块,保护装置可以接收来自其他设备的控制信号,也可以将故障信息发送给监控中心或其他装置。
4.保护算法:微机保护装置内置了多种保护算法,用于识别电力系统中的各种故障和异常情况。
常见的保护算法包括差动保护(用于检测设备内部短路故障)、过流保护(用于检测额定电流以上的电路过流故障)、过压保护(用于检测设备额定电压以上的电压异常)等。
这些算法通过对采集的信号进行实时分析和比较,确定故障类型,并触发相应的保护动作。
5.控制和输出接口:保护装置通常还具有控制和输出接口,用于与其他设备或系统进行交互。
控制接口可以接收来自其他设备或系统的控制信号,如远方信号、故障信号等,并实施相应的动作。
输出接口则可以控制蜂鸣器、继电器等设备,实现报警、断路等操作。
综上所述,微机保护装置的硬件原理涉及到电压电流采样、信号调理、AD转换、DSP处理、数据传输和通信、保护算法、控制和输出接口等方面。
它通过采集、处理和分析电力系统的信号数据,并按照预设的保护算法进行相应的保护动作,有效地保护电力系统设备的安全运行。
微机保护原理
微机保护原理是通过一系列的硬件和软件措施来确保计算机系统的安全和稳定运行。
微机保护原理的核心目标是防止计算机系统受到恶意软件、硬件故障、不当操作或未经授权的访问所引起的损害。
在硬件方面,微机保护原理主要包括以下几个方面:
1. 电源稳定性保护:通过电源管理单元(PMU)监控和控制
系统的供电电压和电流,确保供电稳定,避免电压波动和过电流对系统组件的损害。
2. 温度保护:通过传感器监测系统内的温度,当温度超过预设的安全范围时,会触发保护机制,例如自动降频、自动关机等,以避免过热引起硬件故障。
3. 过压保护:当外部电压超过允许范围时,系统会通过电路设计中的稳压器、过压保护管等部件来保护系统不受损害。
4. 过流保护:通过设计合理的电源线路和电流保护装置,当电流超过设定值时,会自动切断电源,以防止过流引起电子元件的损坏。
在软件方面,微机保护原理主要包括以下几个方面:
1. 防病毒和间谍软件:通过安装有效的杀毒软件和防火墙,对计算机进行实时监测和防护,及时发现和清除潜在的恶意软件。
2. 系统更新和补丁安装:定期更新操作系统和软件的补丁程序,修复已知的漏洞和安全问题,以提高系统的安全性。
3. 数据备份和恢复:定期备份关键数据和系统设置,并制定恢复计划和流程,以防止意外数据丢失或系统故障。
4. 访问控制和密码保护:通过严格的用户权限管理、访问控制策略和密码强度要求,限制未授权用户的访问和保护系统的安全性。
通过综合应用硬件和软件的保护措施,微机保护原理可以有效地提高计算机系统在安全和稳定性方面的性能,保护用户的数据和系统免受损害。
近三十年来,计算机技术发展很快,计算机的应用已广泛而深入的影响着科学技术、生产、和生活的各个领域。
它给各部门的面貌带来了巨大的并且往往是质的变化。
计算机技术同样影响到继电保护技术的发展。
传统的继电保护基本上已被新型的微机保护所替换。
下面简单介绍一下微机保护。
一、微机保护装置的构成微机保护与传统继电保护的最大区别就在于前者不仅有实现继电保护功能的硬件电路,而且还必须有保护和管理功能的软件———程序;而后者则只有硬件电路。
微机保护装置的硬件构成可分为四部分:数据采集、微型计算机模块、开出开入、人机接口、其它(通讯,电源等)。
(一)数据采集传统保护是把电压互感器(TV)二次侧电压信号及电流互感器(TA)二次电流信号直接引入继电保护装置,或者把二次电压、电流经过变换(信号幅值变化或相位变化)组合后再引入继电保护装置。
因此,无论是电磁型、感应型继电器还是整流型、晶体管型继电保护装置都属于反应模拟信号的保护。
尽管在集成电路保护装置中采用数字逻辑电路,但从保护装置测量元件原理来看,它仍属于反应模拟量的保护。
而微机保护中的微机则是处理数字信号的,即送入微型计算机的信号必须是数字信号。
这就要求必须有一个将模拟信号变换成数字信号的系统,这就是数据采集系统的任务。
(二)微型计算机模块微型计算机是微机保护装置的核心。
数字信号采集进来后对其进行数字虑波,然后通过各种不同的算法对其进行计算处理,逻辑判断,动作出口,事故纪录等等处理。
目前计算机保护的计算机部分都是由微型计算或单片微型计算机构成的,这也是微机保护名称的由来。
由一片微处理器配以程序存贮器、数据存贮器、接口芯片(包括并行接口芯片、串行接口芯片)、定时器、计数器芯片等构成的微机系统称为单微机系统。
而在一套微机型保护装置中有两片或两片以上的微处理器构成的微机系统则称为多微机系统。
由单片微型计算机配以部分接口芯片也可以构成微机系统。
同样地,在一套微机保护装置中仅有一个微处理器称为单微机系统,而在一套保护装置中有两片或两片以上微处理器则称为多微机系统。