第4章__控制算法史密斯预估器和大林算法
- 格式:ppt
- 大小:369.50 KB
- 文档页数:43
计算机控制系统复习题第一章一、下列知识点可出单选题或填空题1. 控制器将反馈信号与设定值进行比较并产生控制量。
2. 变送器将被控参量转换成电信号。
3. 模数转换器(A/D转换器)将模拟量转换成数字量。
4. 数模转换器(D/A转换器)将数字量转换成模拟量。
5. 测量检测器对被控对象的参数进行检测。
6. 自动控制系统通常由被控对象、检测传感装置、控制器组成。
7. 计算机控制系统的典型结构有:操作指导控制系统ODC直接数字控制系统DDC计算机监督控制系统SCC集散控制系统DCS现场总线控制系统FCS8. 计算机控制系统常用的时域指标有:延迟时间t d、上升时间t r、峰值时间t p、调节时间t s、超调量匚% ;_9. 计算机控制系统包括计算机和生产过程两大部分。
10. 计算机控制系统是指采用了数字控制器的自动控制系统。
二、下列知识点可出名词解释和简答题1. 实时数据采集:对被控参数按一定的采样时间间隔进行检测,并将结果输入计算机。
2. 实时计算:对采集到的被控参数进行处理后,按预先设计好的控制算法进行计算,决定当前的控制量。
3. 实时控制:根据实时计算得到的控制量,通过D/A转换器将控制信号作用于执行机构。
4. 实时管理:根据采集到的被控参数和设备的状态,对系统的状态进行监督与管理。
5. 直接数字控制系统:计算机代替模拟控制器直接对被控对象进行控制。
6. 与连续控制系统相比,计算机控制系统具有哪些特点?(1) 计算机控制系统是模拟和数字的混合系统。
(2) 在计算机控制系统中,控制规律是由计算机通过程序实现的(数字控制器) ,修改一个控制规律,只需修改程序,因此具有很大的灵活性和适应性。
(3) 计算机控制系统能够实现模拟电路不能实现的复杂控制规律。
(4) 计算机控制系统并不是连续控制的,而是离散控制的。
(5) 一个数字控制器经常可以采用分时控制的方式,同时控制多个回路第二章一、下列知识点可出单选题或填空题1. 完成模拟量的采集并转换成数字量送人计算机的通道是模拟量输入通道。
作 业第二章:2-6某水槽如题图2-1所示。
其中A 1为槽的截面积,R 1、R 2均为线性水阻,Q i 为流入量,Q 1和Q 2为流出量要求:(1)写出以水位h 1为输出量,Q i 为输入量的对象动态方程;(2)写出对象的传递函数G(s)并指出其增益K 和时间常数T 的数值。
图2-1解:1)平衡状态: 02010Q Q Q i +=2)当非平衡时: i i i Q Q Q ∆+=0;1011Q Q Q ∆+=;2022Q Q Q ∆+= 质量守恒:211Q Q Q dthd A i ∆-∆-∆=∆ 对应每个阀门,线性水阻:11R h Q ∆=∆;22R h Q ∆=∆ 动态方程:i Q R hR h dt h d A ∆=∆+∆+∆2113) 传递函数:)()()11(211s Q s H R R S A i =++1)11(1)()()(211+=++==Ts KR R S A s Q s H s G i这里:21121212111111R R A T R R R R R R K +=+=+=;2Q112-7建立三容体系统h 3与控制量u 之间的动态方程和传递数,见题图2-2。
解:如图为三个单链单容对像模型。
被控参考△h 3的动态方程: 3233Q Q dt h d c ∆-∆=∆;22R h Q ∆=∆;33R hQ ∆=∆; 2122Q Q dt h d c ∆-∆=∆;11R hQ ∆=∆ 111Q Q dth d c i ∆-∆=∆ u K Q i ∆=∆ 得多容体动态方程:uKR h dth d c R c R c R dt h d c c R R c c R R c c R R dt h d c c c R R R ∆=∆+∆+++∆+++∆333332211232313132322121333321321)()(传递函数:322133)()()(a s a s a s Ks U s H s G +++==; 这里:32132133213213321321332211232132131313232212111;c c c R R R kR K c c c R R R a c c c R R R c R c R c R a c c c R R R c c R R c c R R c c R R a ==++=++=2-8已知题图2-3中气罐的容积为V ,入口处气体压力,P 1和气罐 内气体温度T 均为常数。
《计算机控制系统》课程复习题答案一、知识点:计算机控制系统的基本概念。
具体为了解计算机控制系统与生产自动化的关系;掌握计算机控制系统的组成和计算机控制系统的主要特性;理解计算机控制系统的分类和发展趋势。
回答题:1.画出典型计算机控制系统的基本框图;答:典型计算机控制系统的基本框图如下:2.简述计算机控制系统的一般控制过程;答:(1) 数据采集及处理,即对被控对象的被控参数进行实时检测,并输给计算机进行处理;(2) 实时控制,即按已设计的控制规律计算出控制量,实时向执行器发出控制信号。
3.简述计算机控制系统的组成;答:计算机控制系统由计算机系统和被控对象组成,计算机系统又由硬件和软件组成。
4.简述计算机控制系统的特点;答:计算机控制系统与连续控制系统相比,具有以下特点:⑴计算机控制系统是模拟和数字的混合系统。
⑵计算机控制系统修改控制规律,只需修改程序,一般不对硬件电路进行改动,因此具有很大的灵活性和适应性。
⑶能够实现模拟电路不能实现的复杂控制规律。
⑷计算机控制系统并不是连续控制的,而是离散控制的。
⑸一个数字控制器经常可以采用分时控制的方式,同时控制多个回路。
⑹采用计算机控制,便于实现控制与管理一体化。
5.简述计算机控制系统的类型。
答:(1)操作指导控制系统;(2)直接数字控制系统;(3)监督计算机控制系统(4)分级计算机控制系统二、知识点:计算机控制系统的硬件基础。
具体为了解计算机控制系统的过程通道与接口;掌握采样和保持电路的原理和典型芯片的应用,掌握输入/输出接口电路:并行接口、串行接口、A/D和D/A的使用方法,能根据控制系统的要求选择控制用计算机系统。
回答题:1.给出多通道复用一个A/D转换器的原理示意图。
2.给出多通道复用一个D/A转换器的原理示意图。
3.例举三种以上典型的三端输出电压固定式集成稳压器。
答:W78系列,如W7805、7812、7824等;W79系列,如W7805、7812、7824等4.使用光电隔离器件时,如何做到器件两侧的电气被彻底隔离?答:光电隔离器件两侧的供电电源必须完全隔离。
第五节 Smith 预估控制Smith 预估控制方法是在1957年由Smith 提出来的,其特点是预先估计被控系统在基本扰动下的动态特性,然后用预估器进行补偿,力图使被延迟的被控制量超前反映到控制器中,使控制器提前动作,从而显著地减小系统的超调量,同时加速系统的调节过程。
一、Smith 预估控制原理预估控制系统原理图如图7-24所示。
(a) 预估控制系统原理框图 (b) Smith 预估器图7-24 预估控制系统原理图 图中,s e s G τ−)(p 为具有时滞为τ的对象传递函数,其中)(p s G 为被控对象;)(m s G 为内部模型(又称为对象的标称或名义模型),即Smith 预估器的传递函数,()s e s G s G τ−−=1)()(p m ;)(s D 为(前馈)内模控制器;)(s d 为扰动;)(s R 为参考输入;)(s Y 为被控对象输出;)(m s Y 为内部模型输出。
由图7-24可知,将Smith 预估器与控制器(或被控对象)二者并联。
在理论上可以使被控对象的时间滞后得到完全补偿,控制器的设计就不必再考虑对象的时滞作用了。
现在,系统中假设没有补偿器(预估器),则控制器输出与被控量之间的传递函数便为 s e s G s U s Y τ−=)()()(p (7-50) 上式表明,受到)(s U 控制作用的被控量)(s Y 要经过纯滞后时间τ之后才能反馈到系统控制器输入端。
若采用预估补偿器,则控制量)(s U 与反馈到控制器输入端的反馈信号)(s Y ′之间的传递函数乃是两个并联通道之和,即)()()()(m p s G e s G s U s Y s +=′−τ (7-51) 为使反馈信号)(s Y ′不发生时间滞后τ,则要求(7-51)式满足)()())(()()(p m p s G s G e s s G s U s Y s =+=′−τ (7-52) 于是,就导出了Smith 预估补偿器的传递函数为()s e s G s G τ−−=1)()(p m (7-53) 在系统中设置了Smith 预估器的情况下,可以推导出系统的闭环传递函数为)()(1)()()1)(()(1)()(1)1)(()(1)()()()(p p p p p p s G s D e s G s D e s G s D e s G s D e s G s D e s G s D s R s Y s s s s+=−++−+=−−−−−ττττ (7-54) 由上式可以明显看出,在系统的特征方程中,已经不含有s e τ−项。
《计算机控制技术》课程标准(执笔人:韦庆审阅学院:机电工程与自动化学院)课程编号:0811305英文名称:Computer Control Techniques预修课程:计算机硬件技术基础B、自动控制原理B、现代控制理论学时安排:36学时,其中讲授32学时,实践4学时。
学分:2一、课程概述(一)课程性质地位本课程作为《自动控制理论》的后续课程,是控制科学与工程、机械工程及其自动化和仿真工程专业本科学员理解和掌握计算机控制系统设计的技术基础课。
(二)课程基本理念本课程作为一门理论与工程实践结合紧密的技术基础课,结合自动控制原理技术、微机接口技术,以学员掌握现代化武器装备为目的。
本课程既注重理论教学,也注重教学过程中的案例实践教学环节,使学员在掌握基本理论的基础上,通过了解相关实际系统组成,综合培养解决工程实际问题的能力。
(三)课程设计思路本课程主要包括计算机控制原理和计算机控制系统设计两大部分。
在学员理解掌握自动控制原理的基础上,计算机控制原理部分主要介绍了离散系统的数学分析基础、离散系统的稳定性分析、离散系统控制器的分析设计方法等内容;计算机控制系统设计部分结合实际的项目案例,重点介绍了计算机控制系统的组成、设计方法和步骤、计算机控制原理技术的应用等内容。
二、课程目标(一)知识与技能通过本课程的学习,学员应该了解计算机控制系统的组成,理解计算机控制系统所涉及的采样理论,掌握离散控制系统稳定性分析判断方法,掌握离散控制系统模拟化、数字化设计的理论及方法,掌握一定的解决工程实际问题的能力。
(二)过程与方法通过本课程的学习和实际系统的演示教学,学员应了解工程实际问题的解决方法、步骤和过程,增强积极参与我军高技术武器装备建设的信心。
(三)情感态度与价值观通过本课程的学习,学员应能够提高对计算机控制技术在高技术武器装备中应用的认同感,激发对自动化武器装备技术的求知欲,关注高技术武器装备技术的新发展,增强提高我军高技术武器水平的使命感和责任感。
(1)841 自动控制原理一、考试形式与试卷结构1、试卷满分及考试时间试卷满分为150分,考试时间为180分钟2、考试方式考试方式为闭卷、笔试3、试卷的题型结构选择填空题,分析计算题,综合设计题二、考察的知识及范围第一章自动控制系统导论内容:(1)自动控制系统的一般性概念和基本工作原理;(2)反馈控制系统的基本组成、分类及对控制系统的基本要求;(3)《自动控制原理》课程研究的主要内容及其发展现状。
重点掌握:自动控制系统的一般性概念和基本工作原理;反馈控制系统的基本组成、分类及对控制系统的基本要求第二章控制系统的数学模型内容:(1)复数和复变函数的基本概念,拉普拉斯变换和拉普拉斯反变换;(2)控制系统研究中几种主要数学模型:微分方程、传递函数和频率特性的内在联系;(3)典型环节的数学模型;(4)常见电气系统和一般机械系统的数学建模;(5)方块图的化简法则;(6)利用梅逊公式求取系统的传递函数。
重点掌握:传递函数的概念、结构图的建立与等效变换、梅逊公式第三章自动控制系统的时域分析内容:(1)系统阶跃响应性能指标;(2)一阶、二阶系统阶跃响应的特点及一阶、二阶系统动态性能;(3)高阶系统动态性能(4)线性系统稳定的充要条件;(5)利用劳斯判剧判别系统的稳定性;(6)稳态误差的定义;(7)稳态误差系数的求取及减小或消除系统稳态误差的方法;重点掌握:稳定性、稳态误差、系统阶跃响应的特点及动态性能与系统参数间的关系等有关概念,有关的计算方法。
第四章根轨迹法内容:(1)根轨迹的定义、幅值和相角条件;(2)根轨迹的绘制法则;(3)利用根轨迹分析系统的特性。
重点掌握:根轨迹的绘制方法,利用根轨迹分析系统的特性。
第五章线性系统的频域分析法内容:(1)频率特性的定义、求法及性质;(2)线性系统极坐标图画法;Nyquist图稳定判据的应用;(3)线性系统伯德图的画法;最小相位系统的定义及性质;(4)利用Bode图求取系统稳态误差;增益裕量和相位裕量的定义、物理意义和求取;重点掌握:正确理解频率响应、频率特性的概念及特点,明确频率特性的物理意义;熟练掌握运用奈奎斯特稳定判据和对数频率判据判定系统稳定性的方法;熟练掌握计算稳定裕度的方法。
计算机控制系统(期末复习资料)⏹ 第一章 绪论1、计算机控制系统的组成:由计算机(工业控制计算机)和工业对象(被控对象)组成。
2、计算机控制过程的3个步骤:实时数据采集;实时决策;实时控制。
3、过程输入输出通道:计算机和被控对象(或生产过程)之间设置的信息传递和转换的连接通道。
4、采样过程:在计算机控制系统中,信号是以脉冲序列或数字序列的方式传递的,把连续信号变成数字序列的过程;采样开关:实现采样的装置。
5、控制系统的稳态控制精度由A/D 、D/A 转换器的分辨率决定。
6、计算机控制系统是利用离散的信号进行控制运算。
7、香农采样定理:一个连续时间信号f(t),设其频带宽度是有限的,其最高频率为ωmax(或fmax),如果在等间隔点上对该信号f(t)进行连续采样,为了使采样后的离散信号f *(t)能包含原信号f(t)的全部信息量。
则采样角频率只有满足下面的关系:ωs ≥2ωmax8、采样保持器:将数字信号序列恢复成连续信号的装置。
9、零阶保持器所得到的信号是阶梯信号,它只能近似地恢复连续信号。
⏹ 第二章 Z 变换及Z 传递函数1、计算机控制系统属于闭环离散控制系统,它的输出量与输入量之间的关系可用差分方程来描述。
2、部分分式法3、常用信号的Z 变换单位脉冲信号: 单位阶跃信号: 单位速度信号: 指数信号:正弦信号: 4、常用Z 变换表5、连续系统是用微分方程描述的,离散系统是用差分方程描述的,差分方程是离散系统时域分析的基础,而计算机系统的本质是离散系统。
6、Z 传递函数:在零初始条件下离散系统的输出与输入序列的Z 变换之比。
)()(t t f δ=)(1)(t t f =tt f =)(at e t f -=)(t t f ωsin )(=7、Z 传递函数的物理可实现性:k 时刻的输出y(k)不依赖于k 时刻之后的输入,只取决于k 时刻及k 时刻之前的输入和k 时刻之前 的输出。
故G(z)是物理可实现的。
Smith预估器控制设计《计算机控制》课程设计报告题⽬: Smith预估器控制设计姓名: 学号:姓名: 学号:姓名: 学号:2010年12⽉3⽇《计算机控制》课程设计任务书指导教师签字:系(教研室)主任签字:2010年7 ⽉5 ⽇Smith 预估器控制设计⼀.实验⽬的被控对象为ses G s+=-110)(1.0,画出系统框图,设计Smith 数字预估器。
三.控制系统仿真 1.⽅案设计已知纯滞后负反馈控制系统,其中其中D(s)为调节器传递函数,ses G s+=-110)(1.0为对象传递函数,其中G 0(s)e -0.1s包含纯滞后特性,纯滞后时间常数τ=0.1。
系统的特征⽅程为:0.1101()()1()01seD s G s D s s-+=+=+由于闭环特征⽅程中含有0.1se -项,产⽣纯滞后现象,有超调或震荡,使系统的稳定性降低,甚⾄使系统不稳定。
为了改善系统特性,引⼊Smith 预估器,使得闭环系统的特征⽅程中不含有0.1se-项。
Smith 纯滞后补偿的计算机控制系统为:上图所⽰Z O H 为零阶保持器,传递函数:1()Tsh e G s s--=并且有:lT τ=(l 为⼤于1的整数,T 为采样周期)。
2.采样周期T 的选择采样周期在计算机控制中是⼀个重要的参数。
从信号保真度看,采样周期不宜太长,即采样频率不应该过低。
Shannon 采样定理给出了下限⾓频率ωs ≧2ωmax ,ωmax 为原信号的最⾼频率;采样周期应尽可能的短,以使采样后的离散信号可以近似于连续信号,数字控制具有接近于连续控制系统的质量。
但采样频率过⾼,将使得数据存数容量加⼤,计算⼯作量加⼤,并且采样频率⾼到⼀定程度,对系统性能的改善效果并不显著。
所以,我们要找到⼀个最佳的采样周期。
纯滞后较⼤不可忽略时,可选择T 在/10τ附近,当纯滞后占主导地位时,可选择T 约为τ,再加上参考课本上表3.4扩充响应曲线法选择数字PID 参数计算公式,预选了l =2,3,5,10。
0 引言时滞现象常产生于化工、轻化、冶金、计算机网络通讯和交通等系统中[1,2]。
就控制系统而言,时滞是指作用于系统上的输入信号或控制信号与在它们的作用下系统所产生的输出信号之间存在的时间上的延迟,当时滞较大时,将会使系统中的被调量不能及时反映控制信号的作用;另外,当被控对象受到干扰而使被调量改变时,控制器产生的控制作用不能及时有效地抑制干扰的影响,从而导致较大的超调量和较长的调节时间,甚至产生不稳定。
因此,大时滞系统一直受到人们关注,成为目前过程控制研究领域的一个重要课题。
过程控制中,通常用过程纯滞后时间常数和系统时间常数之比来衡量过程时滞。
当τ/T≤0.3时,称为一般时滞过程,过程比较容易控制,常规PID控制就能收到良好的控制效果;当τ/T>0.3时,称为大时滞过程,需要采取特殊的高级控制方法,其控制难度随τ/T的比值增加而增加。
本文分析了在过程控制中广泛采用的大时滞过程控制算法——Smith预估补偿法,即Smith预估器,并重点讲述了其改进算法——双自由度Smith预估器,最后进行了仿真。
仿真结果表明该改进算法是可行的。
1 传统Smith预估器传统Smith预估器实质上是一种模型补偿控1.1 Smith预估控制基本思路Smith预估控制是瑞典科学家Smith于1957年提出的一种解决时滞系统控制问题的预估控制方法,其控制基本思路是预先估计出过程在基本扰动下的动态特性,然后由预估器进行补偿控制,使被延迟了的被调量提前反映到调节器,并使之动作,以此来减小超调量与加速调节过程[3]。
1.2 Smith预估控制补偿算法引入补偿环节Gk(s)后的闭环系统方框图如图1所示。
其中,Gc(s )e-τσ表示实际过程,Gk(s)表示系统一般PID调节器。
由图1可知系统闭环传递函数为引入补偿环节Gk (s)后,希望系统闭环传递函数的分母不再含e-τσ项,即要求1+Gc(s )Gk(s )+Gc(s )Gk(s )e-τσ=1+Gc(s)Gp(s) (2)即Gk(s)=(1-e-τσ)Gp(s) (3)将式(3)代入图1便可得到图2所示的传统连续Smith预估器方框图。