换热器种类及原理
- 格式:docx
- 大小:121.65 KB
- 文档页数:4
换热器分类换热器作为传热设备随处可见,在工业中应用非常普遍,特别是耗能用量十分大的领域,随着节能技术的飞速发展,换热器种类开发越来越多。
适用于不同介质,不同工况,不同温度,不同压力的换热器,结构和形式亦不同,换热器种类随新型,高效换热器的开发不断更新,具体分类如下。
(一)按传热原理分类1.直接接触式换热器这类换热器主要工作原理是两种介质经接触面而相互传递热量,实现传热,接触面积直接影响到传热量。
这类换热器的介质通常是一种气体,另一种为液体,主要以塔设备为主体的传热设备,但通常又涉及传质。
故很难区分与塔器的关系,通常归口为塔式设备,电厂用凉水塔为最典型的直接接触式换热器。
2.蓄能式换热器(简称蓄能器)这类换热器用量极少,原理是通过一种固体物质,热介质先通过加热固体物质达到一定温度后,冷介质再通过固体物质被加热,使之达到传递热量的目的。
3.板,管式换热器这类换热器用量非常大,占总量的99%以上,原理是热介质通过金属或非金属将热量传递给冷介质的传热设备,这类换热器是我们通常称为管壳式,板式,板翘式,板壳式换热器。
(二)按传热种类分类1.无相变传热一般分为加热器和冷却器。
2.有相变传热一般分为冷凝器和重沸器。
重沸器又分为釜式重沸器,虹吸式重沸器,再沸器,蒸发器,蒸汽发生器,废热锅炉。
(三)按结构分类分为釜式换热器,固定管板式换热器,填料函式换热器,u形管式换热器,蛇管式换热器,双壳程换热器,单套管换热器,多套管换热器,外导流筒换热器,折流杆式换热器热管式换热器,插管式换热器,滑动管板式换热器。
(四)按折流板分类分为单弓形换热器,双弓形换热器,三弓形换热器,螺旋弓形换热器。
(五)按板状分类分为螺旋板式换热器,板式换热器,板翘式换热器,板壳式换热器,板式蒸发器,板式冷凝器,印刷电路板换热器,穿孔板换热器。
(六) 按密封形式分类此类换热器多用于高温,高压装置中,具体分为:螺旋锁紧环换热器,薄膜密封换热器,钢垫圈换热器,密封盖板式换热器。
十三种类型换热器结构原理及特点(图文并茂)一、板式换热器的构造原理、特点:板式换热器由高效传热波纹板片及框架组成。
板片由螺栓夹紧在固定压紧板及活动压紧板之间,在换热器内部就构成了许多流道,板与板之间用橡胶密封。
压紧板上有本设备与外部连接的接管。
板片用优质耐腐蚀金属薄板压制而成,四角冲有供介质进出的角孔,上下有挂孔。
人字形波纹能增加对流体的扰动,使流体在低速下能达到湍流状态,获得高的传热效果。
并采用特殊结构,保证两种流体介质不会串漏。
板式换热器结构图二、螺旋板式换热器的构造原理、特点:螺旋板式换热器是一种高效换热器设备,适用汽-汽、汽-液、液-液,对液传热。
它适用于化学、石油、溶剂、医药、食品、轻工、纺织、冶金、轧钢、焦化等行业。
结构形式可分为不可拆式(Ⅰ型)螺旋板式及可拆式(Ⅱ型、Ⅲ型)螺旋板式换热器。
螺旋板式换热器结构图三、列管式换热器的构造原理、特点:列管式换热器(又名列管式冷凝器),按材质分为碳钢列管式换热器,不锈钢列管式换热器和碳钢与不锈钢混合列管式换热器三种,按形式分为固定管板式、浮头式、U型管式换热器,按结构分为单管程、双管程和多管程,传热面积1~500m2,可根据用户需要定制。
列管式换热器结构图四、管壳式换热器的构造原理、特点:管壳式换热器是进行热交换操作的通用工艺设备。
广泛应用于化工、石油、石油化工、电力、轻工、冶金、原子能、造船、航空、供热等工业部门中。
特别是在石油炼制和化学加工装置中,占有极其重要的地位。
换热器的型式。
管壳式换热器结构图五、容积式换热器的构造原理、特点:钢衬铜热交换器比不锈钢热交换器经济,并且技术上有保证。
它利用了钢的强度和铜的耐腐蚀性,即保证热交换器能承受一定工作压力,又使热交换器出水质量好。
钢壳内衬铜的厚度一般为1.0mm。
钢衬铜热交换器必须防止在罐内形成部分真空,因此产品出厂时均设有防真空阀。
此阀除非定期检修是绝对不能取消的。
部分真空的形成原因可能是排出不当,低水位时从热交换器,或者排水系统不良。
各种换热器的原理、特点及适用范围一、T 型翅片管一、原理及特点1、原理T型翅片管是由光管经过滚轧加工成型的一种高效换热管。
其结构特点是在管外表面形成一系列螺旋环状T型隧道。
管外介质受热时在隧道中形成一系列的气泡核,由于在隧道腔内处于四周受热状态,气泡核迅速膨大充满内腔,持续受热使气泡内压力快速增大,促使气泡从管表面细缝中急速喷出。
气泡喷出时带有较大的冲刷力量,并产生一定的局部负压,使周围较低温度液体涌入T型隧道,形成持续不断的沸腾。
这种沸腾方式在单位时间内,单位表面积上带走的热量远远大于光管,因而这种管型具有较高的沸腾传热能力。
2、特点⑴传热效果好。
在R113工质中T管的沸腾给热系数比光管高1.6-3.3倍。
⑵常规的光管换热器,只有当热介质的温度高于冷介质的沸点或泡点12℃-15℃时,冷介质才会起泡沸腾。
而T型翅片管换热器只需2℃-4℃的温差,冷介质就可沸腾,且鼓泡细密、连续、快速,形成了与光管相比的独特优势。
⑶以氟利昂11为介质的单管实验表明,T型管沸腾给热系数可达光管的10倍;以液氨为介质的小管束实验结果,总传热系数为光管的2.2倍;C3、C4烃类分离塔的再沸器工业标定表明,低负荷时,T 型管总传热系数比光滑管高50%,大负荷时高99%。
⑷较铝多孔表面传热管的价格便宜。
⑸由于隧道内部的气液扰动非常激烈以及气体沿T缝高速喷出,因而无论是T型槽内部还是管外表面,都不易结垢,这一点保证了设备能长期使用而传热效果不会受到结垢的影响。
二、应用场合只要壳侧介质比较干净、无固体颗粒、无胶质,均可采用T型翅片管作换热元件,形成T型翅片管式高效换热器,以提高壳侧沸腾传热效果。
二、低螺纹翅片管一、原理及特点1、原理低螺纹翅片管是普通换热管经轧制在其外表面形成螺纹翅片的一种高效换热管型,其结构如图所示:这种管型的强化作用是在管外。
对介质的强化作用一方面体现在螺纹翅片增加了换热面积;另一方面是由于壳程介质流经螺纹管表面时,表面螺纹翅片对层流边层产生分割作用,减薄了边界层的厚度。
换热器的原理及应用一、换热器的基本原理换热器是一种热交换设备,用于将热量从一个介质传递到另一个介质中。
其基本原理是利用不同温度的两种流体(或气体)之间的热传导,使它们在多个细小通道中进行流动,并通过这些通道的壁与介质之间进行换热。
换热器通常由两个主要部分组成:热源端和热载体端。
热源端是传递热量的一侧,热载体端是吸收热量的一侧。
换热器的基本工作原理如下:1.传热方式:换热器主要通过对流、传导和辐射的方式进行热传导。
2.热源端:热源端的流体吸收热量,并传递给换热器中的壁面。
3.热载体端:热载体端的流体通过与换热器的壁面接触,吸收热量进行传递。
4.换热器壁面:换热器壁面起到隔离两边流体的作用,并通过壁面的传导和对流换热,将热量从热源端传递到热载体端。
5.换热流体状态:换热器可以处理不同物态的流体,包括气体、液体和气液两相流体。
二、换热器的应用领域换热器是广泛应用于工业生产中的关键设备,其作用多种多样。
以下是一些典型的换热器应用领域的列举:1.供暖系统:供暖系统中的换热器将锅炉中的热水或蒸汽传递给房间内的暖气设备,用于供暖。
2.汽车冷却系统:汽车发动机冷却系统中的散热器,通过冷却剂的循环来降低发动机温度,保证发动机正常运行。
3.空调系统:空调系统中的蒸发器和冷凝器,通过制冷剂的循环工作,实现对空气的冷却或加热。
4.石油化工:在石油化工生产过程中,换热器用于原油加热、冷却和重整等工序。
5.核能领域:核电站中的换热器被用于冷却核反应堆中的燃料,并产生蒸汽驱动涡轮发电机。
6.食品加工:食品加工行业中的换热器,用于热交换、杀菌、蒸煮和冷却等工艺。
7.航空航天:飞机和火箭中的换热器,用于控制燃料温度和提供舒适的空调环境。
8.造纸业:造纸过程中,使用换热器来调节纸浆的温度,以实现最佳的造纸质量。
三、换热器的类型根据换热器的结构和工作原理,可以将其划分为多种类型。
以下是常见的几种换热器类型的介绍:1.管壳式换热器:管壳式换热器由一个外壳和许多平行或螺旋排列的管子组成。
换热器的工作原理引言概述:换热器是一种用于传递热量的设备,广泛应用于工业生产和日常生活中。
它的工作原理基于热量传导和对流,通过将热量从一个物质传递到另一个物质,实现热能的有效利用。
本文将详细介绍换热器的工作原理及其五个主要部分。
一、传热介质1.1 热源介质:换热器的热源介质通常是高温的流体或气体。
当热源介质通过换热器时,其热量会传递给换热器的工作介质。
1.2 工作介质:工作介质是换热器中的传热介质,可以是液体或气体。
当工作介质经过换热器时,它会吸收热源介质传递过来的热量。
1.3 冷却介质:冷却介质是换热器中的另一个传热介质,用于吸收工作介质释放的热量。
冷却介质可以是水、空气或其他液体。
二、传热方式2.1 对流传热:对流传热是换热器中最常见的传热方式。
当热源介质与工作介质接触时,热量通过对流传递,即热源介质的热量通过流体的流动传递给工作介质。
2.2 导热传热:导热传热是指热量通过固体传递的过程。
在换热器中,导热传热主要发生在换热器的壁体上,热源介质的热量通过壁体传递给工作介质。
2.3 辐射传热:辐射传热是指热量通过电磁辐射传递的过程。
在换热器中,辐射传热主要发生在换热器的壁体和介质之间,热量以电磁波的形式传递。
三、换热器的结构3.1 管式换热器:管式换热器是最常见的一种换热器类型。
它由一组管子组成,热源介质和工作介质分别流过管内和管外,通过管壁的导热传热实现热量的传递。
3.2 板式换热器:板式换热器由一组平行排列的金属板组成,热源介质和工作介质分别流过板间和板面,通过对流传热和导热传热实现热量的传递。
3.3 壳管式换热器:壳管式换热器由一个外壳和一组管束组成,热源介质和工作介质分别流过壳侧和管侧,通过对流传热和导热传热实现热量的传递。
四、换热器的性能参数4.1 热效率:热效率是换热器传递热量的效率,一般用换热器输出的热量与输入的热量之比来表示。
4.2 压降:压降是指流体在换热器中流动时产生的压力损失。
换热器的工作原理换热器是一种用于传递热量的设备,它的工作原理是利用流体之间的热交换实现热量的传递。
换热器广泛应用于工业生产、能源系统、空调系统等领域,起到了重要的热能转移作用。
换热器的工作原理可以简单描述为热量传导和对流传热的过程。
下面将详细介绍换热器的工作原理。
1. 热量传导:换热器中的热量传导是指热量通过固体壁板的传递。
换热器通常由两个流体流经相邻的金属壁板,热量从一个流体通过壁板传递给另一个流体。
这种热量传导是通过壁板的份子振动和碰撞实现的。
壁板通常是由导热性能较好的金属材料制成,如铜、铝、不锈钢等。
2. 对流传热:对流传热是指热量通过流体的传递。
换热器中的两个流体在壁板两侧形成为了对流层,热量通过对流层的传递完成热交换。
对流传热受到流体的流速、流体性质以及壁板的热传导性能等因素的影响。
换热器的工作原理可以分为两种类型:直接传热和间接传热。
1. 直接传热:直接传热是指两个流体直接接触并交换热量。
例如,水和蒸汽在换热器中直接接触并交换热量。
这种方式通常适合于两个流体之间温度差较小的情况。
直接传热的优点是传热效率高,但由于两个流体直接接触,可能存在污染、腐蚀等问题。
2. 间接传热:间接传热是指两个流体通过壁板进行热量传递,彼此之间不直接接触。
例如,热水通过管道流经换热器的壁板,与空气进行热量交换。
这种方式通常适合于两个流体之间温度差较大的情况。
间接传热的优点是能够避免两个流体之间的混合和污染。
换热器的性能评价指标主要包括传热系数、压降和换热面积。
1. 传热系数:传热系数是指单位面积上的热量传递量。
传热系数越大,换热器的传热效率越高。
传热系数受到流体性质、流速、壁板材料等因素的影响。
2. 压降:压降是指流体通过换热器时的压力损失。
压降越小,流体通过换热器的阻力越小,能耗也就越低。
压降受到流速、管道长度、管道直径等因素的影响。
3. 换热面积:换热面积是指用于热量传递的有效面积。
换热面积越大,热量传递的面积也就越大,传热效率也会提高。
管壳式换热器的三种分类管壳式换热器按照应力补偿的方式不同,可以分为以下三个种类:1、固定换热器管板式换热器固定管板式换热器是结构最为简单的管壳式换热器,它的传热管束两端管板是直接与壳体连成一体的,壳体上安装有应力补偿圈,能够在固定管板式换热器内部温差较大时减小热应力。
固定管板式换热器的热应力补偿较小,不能适应温差较大的工作。
2、浮头式换热器浮头式换热器是管壳式换热器中使用最广泛的一种,它的应力消除原理是将传热管束一段的管板放开,任由其在一定的空间内自由浮动而消除热应力。
浮头式换热器的传热管束可以从壳体中抽出,清洗和维修都较为方便,但是由于结构复杂,因此浮头式换热器的价格较高。
3、U 型管换热器U 型管换热器的换热器传热管束是呈 U 形弯曲换热器,管束的两端固定在同一块管板的上下部位,再由管箱内的隔板将其分为进口和出口两个部份,而完全消除了热应力对管束的影响。
U 型管换热器的结构简单、应用方便,但很难拆卸和清洗。
管壳式换热器由一个壳体和包含许多管子的管束所构成,冷、热流体之间通过管壁进行换热的换热器。
管壳式换热器作为一种传统的标准换热设备,在化工、炼油、石油化工、动力、核能和其他工业装置中得到普遍采用,特殊是在高温高压和大型换热器中的应用占领绝对优势。
通常的工作压力可达 4 兆帕,工作温度在200℃以下,在个别情况下还可达到更高的压力和温度。
普通壳体直径在1800 毫米以下,管子长度在 9 米以下,在个别情况下也有更大或者更长的。
工作原理和结构图 1 [固定管板式换热器]为固定管板式换热器的构造。
A 流体从接管 1 流入壳体内,通过管间从接管 2 流出。
B 流体从接管 3 流入,通过管内从接管 4 流出。
如果 A 流体的温度高于 B 流体,热量便通过管壁由 A 流体传递给 B 流体;反之,则通过管壁由B 流体传递给 A 流体。
壳体以内、管子和管箱以外的区域称为壳程,通过壳程的流体称为壳程流体 (A 流体)。
换热器种类及原理各种换热器优缺点、原理图及适用场合一、换热器种类及原理:1、表面式换热器表面式换热器是温度不同的两种流体在被壁面分开的空间里流动,通过壁面的导热和流体在壁表面对流,两种流体之间进行换热;表面式换热器有管壳式、套管式和其他型式的换热器;2、蓄热式换热器蓄热式换热器通过固体物质构成的蓄热体,把热量从高温流体传递给低温流体,热介质先通过加热固体物质达到一定温度后,冷介质再通过固体物质被加热,使之达到热量传递的目的;蓄热式换热器有旋转式、阀门切换式等;3、流体连接间接式换热器流体连接间接式换热器,是把两个表面式换热器由在其中循环的热载体连接起来的换热器,热载体在高温流体换热器和低温流体之间循环,在高温流体接受热量,在低温流体换热器把热量释放给低温流体;4、直接接触式换热器直接接触式换热器是两种流体直接接触进行换热的设备,例如,冷水塔、气体冷凝器等;二、换热器优缺点、原理图及适用场合1、表面式换热器:间壁式换热器1、管壳式换热器:优点:结构简单造价低、制造方便和内径小;缺点:由于温差问题会引起管子弯曲造成泄漏、污垢清洗很困难、只适用于温差小、单行程、压力不高以及结垢不严重的场合;2、容积式换热器:优点:供水平稳、安全,易于清除污垢;主要用于热水供应系统;但其传热系数比壳管式换热器低得多;3、板式换热器:优点:传热系数很高;缺点:水质不好形成水垢或污物沉积,都容易堵塞;在我国城镇集中供热系统中开始得到广泛应用;4、螺旋板式换热器:与板式换热器相比,流通截面较宽,不易堵塞;缺点:不能拆卸清洗、2、蓄热式交换器:优点:结构紧凑、价格便宜、单位体积传热面积大,适用于气-气热交换;如回转式空气预热器;局限:若两种流体不允许混合,不能采用蓄热式换热器;3、流体连接间接式换热器:4、直接接触式热交换器混合式换热器:优点:传热效率高、单位容积传热面积大、设备结构简单、价格便宜等;仅适用工艺上允许两种流体混合的场合;。
换热器的工作原理
换热器是一种工业操作过程中常见的设备,它能够传递热量,以使一个流体温升与另一个流体降温。
它通常可以分为两类,一类是直管换热器,另一类是板式换热器。
一、直管换热器
1、工作原理
直管换热器通过将热量传送给流经其中的冷却剂来实现热量传递,必要时还可引入一个加热剂,当热量出现失衡时,可以引入加热剂,来补充热量。
2、结构组成
直管换热器由热交换器、流量调节器、矩阵、管接头和电加热器组成。
热交换器的内部空间,由一系列的连续直管构成,直管间左一定的间隙,形成一种诸如网格或层状的复杂结构,液体通过这些管道,垂直流动。
3、安装方式
直管换热器可以根据使用环境要求实现水平安装或垂直安装。
在小口径或管壁细的情况下,最好采用垂直安装;在安装流体管路不够灵活的情况下,最好采用水平安装。
二、板式换热器
1、工作原理
板式换热器是以水平或垂直的板状结构特点,可使两种温度不同的流体经衡量而相互置换热量,从而实现热量传递的一种设备。
并且具有体积小,传热系数大,安装和维修方便,寿命长等优点。
2、结构组成
板式换热器由热交换箱体、翅片、支架、管头连接等部分组成。
热交换箱两侧的进出口管的数目,以及板式构成的复杂曲折结构均由制造商设计提供,由客户按照生产需要而定。
3、功能
板式换热器的主要作用是将热量转换并在液体之间传递,改变流体的温度,提高冷却效率及减少流体损耗。
其次,板式换热器也可以利用压力差,使液体进行热回收,此外,他还可以进行蒸汽加热,实现加热和冷却的双重作用。
换热器种类及原理?各种换热器优缺点、原理图及适用场合
一、换热器种类及原理:
1、表面式换热器
表面式换热器是温度不同的两种流体在被壁面分开的空间里流动,通过壁面的导热和流体在壁表面对流,两种流体之间进行换热。
表面式换热器有管壳式、套管式和其他型式的换热器。
2、蓄热式换热器
蓄热式换热器通过固体物质构成的蓄热体,把热量从高温流体传递给低温流体,热介质先通过加热固体物质达到一定温度后,冷介质再通过固体物质被加热,使之达到热量传递的目的。
蓄热式换热器有旋转式、阀门切换式等。
3、流体连接间接式换热器
流体连接间接式换热器,是把两个表面式换热器由在其中循环的热载体连接起来的换热器,热载体在高温流体换热器和低温流体之间循环,在高温流体接受热量,在低温流体换热器把热量释放给低温流体。
4、直接接触式换热器
直接接触式换热器是两种流体直接接触进行换热的设备,例如,冷水塔、气体冷凝器等。
二、换热器优缺点、原理图及适用场合
1、表面式换热器:(间壁式换热器)
(1)、管壳式换热器:优点:结构简单造价低、制造方便和内径小;缺
点:由于温差问题会引起管子弯曲造成泄漏、污垢清洗很困难、只适用
于温差小、单行程、压力不高以及结垢不严重的场合。
(2)、容积式换热器:优点:供水平稳、安全,易于清除污垢。
主要用于热水供应系统。
但其传热系数比壳管式换热器低得多。
(3)、板式换热器:优点:传热系数很高;缺点:水质不好形成水垢或污物沉积,都容易堵塞。
在我国城镇集中供热系统中开始得到广泛应用。
(4)、螺旋板式换热器:与板式换热器相比,流通截面较宽,不易堵塞。
缺点:不能拆卸清洗、
2、蓄热式交换器:优点:结构紧凑、价格便宜、单位体积传热面积大,适用于气-气热交换。
如回转式空气预热器。
局限:若两种流体不允许混合,不能采用蓄热式换热器。
3、流体连接间接式换热器:
4、直接接触式热交换器(混合式换热器):优点:传热效率高、单位容积传热面积大、设备结构简单、价格便宜等。
仅适用工艺上允许两种流体混合的场合。