公务员考试1000道数字推理题详细讲解(精选)
- 格式:docx
- 大小:336.22 KB
- 文档页数:71
国家公务员考试数字推理题附答案为了帮助参加国家公务员考试的考生复习数字推理题这一模块,接下来,本人为你分享国家公务员考试数字推理题附答案。
国家公务员考试数字推理题(一)1.17, 29, 43, 61, 87, ( )A.167B.115C.259D.1292.1, 11, 31, 512, 196, ( )A.9999B.999C.888D.88883.1/3,1,9,243,( )A.19683B.19785C.19827D.198694.2,1,6,14,40,108,( )A.288B.296C.304D.3125.3, 10,31,94,( ),850A.250B.270C.282D.283国家公务员考试数字推理题答案1.【解析】D.等差数列变式:2.【解析】D.数列各项的各位数字之和分别为1,2,4,8,16,(32),构成等比数列,只有D项各位数字之和为32,当选。
3.【解析】A.作商数列。
4.【解析】B.递推数列,递推规律为:后一项=前两项之和×2.因此,未知项为(40+108)×2=296.5.【解析】D.前一项×3+1=后一项,94×3+1=(283),(283)×3+1=850.国家公务员考试数字推理题(二)1. 4736,3728,3225,2722,2219,( )A.1514B.1532C.1915D.15622. 1.01,1.02,1.03,( ),1.08,1.13A.1.04B.1.05C.1.06D.1.073. 22,24,39,28,( ),16A.14B.11C.30D.154. 448,516,639,347,178,( )。
A.163B. 134C.785D. 8965. 23,57,1113,1317,( ),2331A.1921B.1715C.1723D.2129国家公务员考试数字推理题答案1.答案: A解析:将原数列机械划分47|36、37|28、32|25、27|22、22|19,每个数字的前半部分减后半部分构成一个公差为-2的等差数列,47-36=11,37-28=9,32-25=7,27-22=5,22-19=3,则未知项机械划分后前半部分减去后半部分应为1,只有选项A符合。
基础数列【例1】质数:2,3,5,7,1l,1 3,17,1 9,23.…【例2】合数:4,6,8,9,10,12,14,15,…【例】1,3,7,1,3,7,…1,7,1,7,l,7,…1,3,7,一1,一3,7,…【例】(1)6,12,19,27,35,( ),48答案:42,首尾相加为54。
(2)3,- l,5,5,11,( )答案:7,首尾相加为10。
等差数列及其变式一、基本等差数列【例】1,4,7,10,l 3,l 6,19,22,25,…【例1】(2007黑龙江,第8题)11,12,15,20,27,( ) A.32 B.34 C.36 D.38【答案】C【解题关键点】【例2】(2002国家,B类,第3题)32,27,23,20,18,( ) A.14 B.15 C.16 D.1 7【答案】D【解题关键点】【例3】(2002国家,B类,第5题)-2,1,7,16,( ),43 A.25 B.28 C.31 D.35【答案】B【解题关键点】【例】3,6,11,( ),27A.15 B.18 C.19 D.24【答案】B【解题关键点】二级等差数列。
(1)相邻两项之差是等比数列【例】0,3,9,21,( ),93A.40 B.45 C. 36 D.38【答案】B【解题关键点】二级等差数列变式(2)相邻两项之差是连续质数【例】11,13,16,21,28,( )A.37 B.39 C.41 D.47【答案】B【解题关键点】二级等差数列变式(3)相邻两项之差是平方数列、立方数列【例】1,2,6,15,()A.19B.24C.31D.27【答案】C【解题关键点】数列特征明显单调且倍数关系不明显,优先做差。
得到平方数列。
如图所示,因此,选C(4)相邻两项之差是和数列【例】2, 1, 5, 8, 15, 25, ( )A.41B.42C.43D.44【答案】B【解题关键点】相邻两项之差是和数列(5)相邻两项之差是循环数列【例】1,4,8,13,16,20,( )A. 20B. 25C. 27D. 28【答案】B【解题关键点】该数列相邻两数的差成3,4,5一组循环的规律,所以空缺项应为20+5=25,故选B。
(1)2、3、10、15、() 解析: 1的平⽅+1=2、2的平⽅-1=3、3的平⽅+1=10、4的平⽅-1=15、5的平⽅+1=(26) (2)10、9、17、50、() 解析: 10*1-1=9、9*2-1=17、17*3-1=50、50*4-1=(199) (3)2、8、24、64、() 解析: 2*2+4=8、8*2+8=24、24*2+16=64、64*2+32=(160) (4)0、4、18、48、100、() 解析: 这道题的关键是将每⼀项分解,0*1=0、2*2=4、6*3=18、12*4=48、20*5=100、30*6=(180) (5)4、5、11、14、22、() 解析: 前项与后项的和是到⾃然数平⽅数列。
4+5=9、5+11=16、11+14=25、14+22=36、22+(27)=49 (6)2、3、4、9、12、15、22、() 解析: 每三项相加,得到⾃然数平⽅数列。
2+3+4=9、3+4+9=16、4+9+12=25、9+12+15=36、12+15+22=49、15+22+(27)=64 (7) 1、2、3、7、46、() 解析: 后⼀项的平⽅减前⼀项得到第三项,2的平⽅-1=3、3的平⽅-2=7、7的平⽅-3=46、46的平⽅-7=(2109) (8)2、2、4、12、12、()、72 这是⼀个组合数列2*1=2、2*2=4、4*3=12、12*1=12、12*2=(24)、24*3=72 (9) 4、6、10、14、22、() 每项除以2得到质数列 2、3、5、7、11、(26)/2=13 (10)5、24、6、20、()、15、10、() 5*24=120、6*20=120、(8)*15=120、10*(12)=120 (11)763951、59367、7695、967、() 本题并未研究计算关系,⽽只是研究项与项之间的数字规律。
将第⼀项763951中的数字“1”去掉,并从后向前数得到下⼀项59367;将59367中的“3”去掉,并从后向前数得到7695;7695去掉“5”,从后向前数得到967;967去掉“7”,从后向前数得到(69)。
国家公务员考试数字推理习题附答案国家公务员考试数字推理这一模块的复习,做习题是必不可少。
今天,本人为大家整理了国家公务员考试数字推理习题。
国家公务员考试数字推理习题(一)1. 10, 21, 44, 65, ( )A.122B.105C.102D.902. -1,2,1,8,19,( )A.62B.65C.73D.863. 4,5,15,6,7,35,8,9,( )A.27B.15C.72D.634. 2,4,12,60,420,( )A.4620B.840C.3780D.7205. 11,11,13,21,47,( )A.125B.126C.127D.128国家公务员考试数字推理习题答案1.答案: C解析: 因式分解数列。
列中的项一次拆分为2*5、3*7、4*11、5*13,我们发现2、3、4、5是等差数列,下一项为6;5、7、11、13为质数列,下一项为17,所以答案为6*17=102,即C选项。
2.答案: A解析:原数列为二级等比数列。
该数列两两相加可以得到1、3、9、27、(81),构成等比数列。
故未知项为81-19=62。
故正确答案为A。
3.答案: D解析:三三分组: [4,5,15] 、 [ 6,7,35] 、 [ 8,9,( )];组内关系:(4-1)×5=15, (6-1)×7=35, (8-1)×9=63;则未知项为63,故正确答案为D。
4.答案: A解析: 观察后发现数列单调递增,增速较快,且数字间有明显的倍数关系,考虑做商。
原数列:2,4,12,60,420;做一次商:2,3,5,7为质数数列,下一项应为11,故原数列下一项为420×11=4620。
因此,本题答案为A选项。
5.答案: C解析:原数列两次两两做差得0,2,8,26,(),再两两做差得:2,6,18,(54),为公比是3的等比数列,所以原数列=26+54+47=127。
因此,本题答案选择C选项。
数字推理题500道详解【1】7,9,-1,5,( )A、4;B、2;C、-1;D、-3分析:选D,7+9=16;9+(-1)=8;(-1)+5=4;5+(-3)=2 , 16,8,4,2等比【2】3,2,5/3,3/2,( )A、1/4;B、7/5;C、3/4;D、2/5分析:选B,可化为3/1,4/2,5/3,6/4,7/5,分子3,4,5,6,7,分母1,2,3,4,5【3】1,2,5,29,()A、34;B、841;C、866;D、37分析:选C,5=12+22;29=52+22;( )=292+52=866【4】2,12,30,()A、50;B、65;C、75;D、56;分析:选D,1×2=2;3×4=12;5×6=30;7×8=()=56【5】2,1,2/3,1/2,()A、3/4;B、1/4;C、2/5;D、5/6;分析:选C,数列可化为4/2,4/4,4/6,4/8,分母都是4,分子2,4,6,8等差,所以后项为4/10=2/5,【6】4,2,2,3,6,()A、6;B、8;C、10;D、15;分析:选D,2/4=0.5;2/2=1;3/2=1.5;6/3=2;0.5,1,1.5, 2等比,所以后项为2.5×6=15【7】1,7,8,57,()A、123;B、122;C、121;D、120;分析:选C,12+7=8;72+8=57;82+57=121;【8】4,12,8,10,()A、6;B、8;C、9;D、24;分析:选C,(4+12)/2=8;(12+8)/2=10;(8+10)/2=9【9】1/2,1,1,(),9/11,11/13A、2;B、3;C、1;D、7/9;分析:选C,化成1/2,3/3,5/5 ( ),9/11,11/13这下就看出来了只能是(7/7)注意分母是质数列,分子是奇数列。
【10】95,88,71,61,50,()A、40;B、39;C、38;D、37;分析:选A,思路一:它们的十位是一个递减数字9、8、7、6、5 只是少开始的4 所以选择A。
国家公务员考试行测冲刺备考举一反三灵活解答规律特征型图形推理题近年来国家公务员考试的难度在不断加大,反映在图形推理中就是规律越来越复杂隐蔽。
相比于数学运算、资料分析,图形推理似乎并无取巧之处。
这也造成了很多考生反映的图形推理完全没有思路,做了很多练习但临场就发懵的现状。
中公教育专家认为,突破图形推理,适度的练习是必要的,但关键在于通过这些练习学会举一反三。
图形问题在考察内容上主要分为:规律特征型推理思路、平面图形的空间还原与立体图形的平面展开、拼图及图形拆分与组合、意指型图形。
其中,以规律特征型推理思路考察得最为广泛和普遍,也是让考生最为头疼的题型。
在此,中公教育专家结合例题对这一类型的题目进行深入分析,正确引导考生的解题思路。
例题1:答案:B。
解题思路:定位此题,为组合图形的变化,故思维圈定于图形内部分割部分数;内部图形与外部图形的替代关系;图形求同。
图形内部分割部分数:第一组图的部分数分别为三部分、两部分、两部分,第二组图的部分数分别为九部分、三部分,不具有数字规律性,故此思维被否定。
内部图形与外部图形的替代关系:第一组图形中,图形一的外面正方形在图形二中移到内部,图形二中的六边形在图形三中并未发生替代关系,故此思维被否定。
图形求同:在第一组图中,均含有正方形,在第二组图中,均含有圆形,对照选项,只有B项含有圆形,可得题解。
例题2:答案:D。
解题思路:此题为细节变化问题,故思维圈定为前后图对比寻找细节差异。
第一图与第二图比较可发现,箭头方向发生变化、左边的小线段从最下面减少一条,对比第二图与第三图,箭头方向又发生变化、右边的小线段从最上面减少一条,即可推得可能性规律,以第三、四幅图进行验证,符合,对照选项,可得题解为D。
例题3:答案:C。
解题思路:定位此题为图形种类的变化,故思维圈定为某一或某几个图形的数量呈现规律性变化、每个图形总数量的恒定。
某一或某几个图形的数量呈现规律性变化:前五个图出现的六种图形的数量并未符合任何规律性分布,故此思维被否定。
国家公务员考试之数字推理习题精解(二)1. 20/9 ,4/3 ,7/9 ,4/9 ,1/4,()A.5/36B.1/6C.1/9D.1/144解析:这是一道分数难题,分母与分子均不同。
可将分母先通分,最小的分母是36,通分后分子分别是204=80,412=48,74=28,44=16,19=9,然后再从分子80、48、28、16、9 中找规律。
80=(48-28)4,48=(28-16)4,28=(16-9)4,可见这个规律是第一个分子等于第二个分子与第三个分子之差的4 倍,依此规律,()内分数应是16=(9-?)4,即(36-16)4=5。
故本题的正确答案为A。
2. 23 ,46 ,48 ,96 ,54 ,108 ,99 ,()A.200B.199C.198D.197解析:本题的每个双数项都是本组单数项的2 倍,依此规律,()内的数应为992=198。
本题不用考虑第2 与第3,第4 与第5,第6 与第7个数之间的关系。
故本题的正确答案为 C。
3. 1.1 ,2.2 ,4.3 ,7.4 ,11.5 ,()A.15.5B.15.6C.17.6D.16.6解析:此题初看较乱,又是整数又是小数。
遇到此类题时,可将小数与整数分开来看,先看小数部分,依次为0.1,0.2,0.3,0.4,0.5,那么,()内的小数应为0.6,这是个自然数列。
再看整数部分,即后一个整数是前一个数的小数与整数之和,2=1+1,4=2+2,7=4+3,11=7+4,那么,()内的整数应为11+5=16。
故本题的正确答案为D 。
4. 0.75 ,0.65 ,0.45 ,()A.0.78B.0.88C.0.55D.0.96解析:在这个小数数列中,前三个数皆能被0.05 除尽,依此规律,在四个选项中,只有C 能被0.05 除尽。
故本题的正确答案为C。
5. 1.16 ,8.25 ,27.36 ,64.49 ,()A.65.25B.125.64C.125.81D.125.01解析:此题先看小数部分,16、25、36、49 分别是4、5、6、7 自然数列的平方,所以()内的小数应为8.2=64,再看整数部分,1=13,8=23,27=33,64=43,依此规律,()内的整数就是5.3=125。
公务员考试数字推理题725道详解【1】7,9,-1,5,( )A、4;B、2;C、-1;D、-3分析:选D,7+9=16;9+(-1)=8;(-1)+5=4;5+(-3)=2 , 16,8,4,2等比【2】3,2,5/3,3/2,( )A、1/4;B、7/5;C、3/4;D、2/5分析:选B,可化为3/1,4/2,5/3,6/4,7/5,分子3,4,5,6,7,分母1,2,3,4,5【3】1,2,5,29,()A、34;B、841;C、866;D、37分析:选C,5=12+22;29=52+22;( )=292+52=866【4】2,12,30,()A、50;B、65;C、75;D、56;分析:选D,1×2=2;3×4=12;5×6=30;7×8=()=56【5】2,1,2/3,1/2,()A、3/4;B、1/4;C、2/5;D、5/6;分析:选C,数列可化为4/2,4/4,4/6,4/8,分母都是4,分子2,4,6,8等差,所以后项为4/10=2/5,【6】4,2,2,3,6,()A、6;B、8;C、10;D、15;分析:选D,2/4=0.5;2/2=1;3/2=1.5;6/3=2;0.5,1,1.5, 2等比,所以后项为2.5×6=15【7】1,7,8,57,()A、123;B、122;C、121;D、120;分析:选C,12+7=8;72+8=57;82+57=121;【8】4,12,8,10,()A、6;B、8;C、9;D、24;分析:选C,(4+12)/2=8;(12+8)/2=10;(8+10)/2=9【9】1/2,1,1,(),9/11,11/13A、2;B、3;C、1;D、7/9;分析:选C,化成1/2,3/3,5/5 ( ),9/11,11/13这下就看出来了只能是(7/7)注意分母是质数列,分子是奇数列。
【10】95,88,71,61,50,()A、40;B、39;C、38;D、37;分析:选A,思路一:它们的十位是一个递减数字9、8、7、6、5 只是少开始的4 所以选择A。
提供了公务员考试行测数字推理经典例题与详解,供考生复习参考。
【1】7,9,-1,5,( )A、4;B、2;C、-1;D、-3分析:选D,7+9=16; 9+(-1)=8;(-1)+5=4;5+(-3)=2 , 16,8,4,2等比【2】3,2,5/3,3/2,( )A、1/4;B、7/5;C、3/4;D、2/5分析:选B,可化为3/1,4/2,5/3,6/4,7/5,分子3,4,5,6,7,分母1,2,3,4,52012国考华图全程班+2012中公面授全程班仅售30元2010-2011年中公华图全套面试视频课程(15元)【3】1,2,5,29,( )A、34;B、841;C、866;D、37分析:选C,5=12+22;29=52+22;( )=292+52=866【4】2,12,30,( )A、50;B、65;C、75;D、56;分析:选D,1×2=2; 3×4=12; 5×6=30; 7×8=( )=56【5】2,1,2/3,1/2,( )A、3/4;B、1/4;C、2/5;D、5/6;分析:选C,数列可化为4/2,4/4,4/6,4/8,分母都是4,分子2,4,6,8等差,所以后项为4/10=2/5,【6】 4,2,2,3,6,( )A、6;B、8;C、10;D、15;分析:选D,2/4=0.5;2/2=1;3/2=1.5; 6/3=2; 0.5,1,1.5, 2等比,所以后项为2.5×6=15【7】1,7,8,57,( )A、123;B、122;C、121;D、120;分析:选C,12+7=8; 72+8=57; 82+57=121;【8】 4,12,8,10,( )A、6;B、8;C、9;D、24;分析:选C,(4+12)/2=8;(12+8)/2=10; (8+10)/2=9【9】1/2,1,1,( ),9/11,11/13A、2;B、3;C、1;D、7/9;分析:选C,化成 1/2,3/3,5/5 ( ),9/11,11/13这下就看出来了只能是(7/7)注意分母是质数列,分子是奇数列。
公务员考试数字推理习题精解公务员考试数字推理习题:1.1,6,6,36,( ),7776A.96B.216C.866D.17762、2,7,13,20,25,31,( )A.35B.36C.37D.383.1/9,1/28,( ),1/126A.1/55B.1/54C.1/65D.1/754.1/2,1,4/3,19/12,( )A.133/60B.137/60C.107/60D.147/605.2,12,121,1121,11211,( )A.11121B.11112C.112111D.111211公务员考试数字推理习题答案精解:1.B。
从前四个数字不难看出规律,即an+2?=an+1an,636=216,再用所给数列中的第六项来进行验证,36216=7776,故正确选项为B。
2.D。
用后一项减去前一项,分别得到5、6、7、5、6,可见,所给数列中,相邻两项的差是以5、6、7为一个循环,则数列第七项减去第六项应该为7,故正确选项为D。
3.C。
先观察分母,9=23+1,28=33+1,126=53+1,则可推出空白项分母为43+1=65。
故正确选项为C。
4.C。
1=12+12,43=1+13,1912=43+14,( )=1912+15=10760。
故正确选项为C。
5.D。
该数列的偶数项=前一项+10N-1?(其中N为项数),如第四项1121=121+103;奇数项=前一项10+1(第一项不计),如第三项121=1210+1。
则第六项=11211+105=111211,故正确选项为D。
公务员考试数字推理习题精解相关。
一.题型:●等差数列及其变式【例题1】2,5,8,()A 10B 11C 12D 13【解答】从上题的前 3 个数字可以看出这是一个典型的等差数列,即后面的数字与前面数字之间的差等于一个常数.题中第二个数字为5,第一个数字为2,两者的差为3,由观察得知第三个、第二个数字也满足此规律,那么在此基础上对未知的一项进行推理,即8+3=11,第四项应该是11,即答案为B.【例题2】3,4,6,9,(),18A 11B 12C 13D 14【解答】答案为C.这道题表面看起来没有什么规律,但稍加改变处理,就成为一道非常容易的题目.顺次将数列的后项与前项相减,得到的差构成等差数列1,2,3,4,5,...显然,括号内的数字应填13.在这种题中,虽然相邻两项之差不是一个常数,但这些数字之间有着很明显的规律性,可以把它们称为等差数列的变式.●等比数列及其变式【例题3】3,9,27,81()A 243B 342C 433D 135【解答】答案为A.这也是一种最基本的排列方式,等比数列.其特点为相邻两个数字之间的商是一个常数.该题中后项与前项相除得数均为3,故括号内的数字应填243.【例题4】8,8,12,24,60,()A 90B 120C 180D 240【解答】答案为C.该题难度较大,可以视为等比数列的一个变形.题目中相邻两个数字之间后一项除以前一项得到的商并不是一个常数,但它们是按照一定规律排列的;1,1.5,2,2.5,3,因此括号内的数字应为60×3=180.这种规律对于没有类似实践经验的应试者往往很难想到.我们在这里作为例题专门加以强调.该题是1997 年中央国家机关录用大学毕业生考试的原题.【例题5】8,14,26,50,()A 76B 98C 100D 104【解答】答案为B.这也是一道等比数列的变式,前后两项不是直接的比例关系,而是中间绕了一个弯,前一项的2 倍减2 之后得到后一项.故括号内的数字应为50×2-2=98.●等差与等比混合式【例题6】5,4,10,8,15,16,(),()A 20,18B 18,32C 20,32D 18,32【解答】此题是一道典型的等差、等比数列的混合题.其中奇数项是以5 为首项、等差为5 的等差数列,偶数项是以4 为首项、等比为2 的等比数列.这样一来答案就可以容易得知是C.这种题型的灵活度高,可以随意地拆加或重新组合,可以说是在等比和等差数列当中的最有难度的一种题型.●求和相加式与求差相减式【例题7】34,35,69,104,()A 138B 139C 173D 179【解答】答案为C.观察数字的前三项,发现有这样一个规律,第一项与第二项相加等于第三项,34+35=69,这种假想的规律迅速在下一个数字中进行检验,35+69=104,得到了验证,说明假设的规律正确,以此规律得到该题的正确答案为173.在数字推理测验中,前两项或几项的和等于后一项是数字排列的又一重要规律.【例题8】5,3,2,1,1,()A -3B -2C 0D 2【解答】这题与上题同属一个类型,有点不同的是上题是相加形式的,而这题属于相减形式,即第一项5 与第二项3 的差等于第三项2,第四项又是第二项和第三项之差..所以,第四项和第五项之差就是未知项,即1-1=0,故答案为C.●求积相乘式与求商相除式【例题9】2,5,10,50,()A 100B 200C 250D 500【解答】这是一道相乘形式的题,由观察可知这个数列中的第三项10 等于第一、第二项之积,第四项则是第二、第三两项之积,可知未知项应该是第三、第四项之积,故答案应为D.【例题10】100,50,2,25,()A 1B 3C 2/25D 2/5【解答】这个数列则是相除形式的数列,即后一项是前两项之比,所以未知项应该是2/25,即选C.●求平方数及其变式【例题11】1,4,9,(),25,36A 10B 14C 20D 16【解答】答案为D.这是一道比较简单的试题,直觉力强的考生马上就可以作出这样的反应,第一个数字是1 的平方,第二个数字是2 的平方,第三个数字是3 的平方,第五和第六个数字分别是5、6 的平方,所以第四个数字必定是4 的平方.对于这类问题,要想迅速作出反应,熟练掌握一些数字的平方得数是很有必要的.【例题12】66,83,102,123,()A 144B 145C 146D 147【解答】答案为C.这是一道平方型数列的变式,其规律是8,9,10,11,的平方后再加2,故括号内的数字应为12 的平方再加2,得146.这种在平方数列基础上加减乘除一个常数或有规律的数列,初看起来显得理不出头绪,不知从哪里下手,但只要把握住平方规律,问题就可以划繁为简了.●求立方数及其变式【例题13】1,8,27,()A 36B 64C 72 D81【解答】答案为B.各项分别是1,2,3,4 的立方,故括号内应填的数字是64.【例题14】0,6,24,60,120,()A 186B 210C 220D 226【解答】答案为B.这也是一道比较有难度的题目,但如果你能想到它是立方型的变式,问题也就解决了一半,至少找到了解决问题的突破口,这道题的规律是:第一个数是1 的立方减1,第二个数是2 的立方减2,第三个数是3的立方减3,第四个数是4 的立方减4,依此类推,空格处应为6 的立方减6,即210.●双重数列【例题15】257,178,259,173,261,168,263,()A 275B 279C 164D 163【解答】答案为D.通过考察数字排列的特征,我们会发现,第一个数较大,第二个数较小,第三个数较大,第四个数较小,...也就是说,奇数项的都是大数,而偶数项的都是小数.可以判断,这是两项数列交替排列在一起而形成的一种排列方式.在这类题目中,规律不能在邻项之间寻找,而必须在隔项中寻找.我们可以看到,奇数项是257,259,261,263,是一种等差数列的排列方式.而偶数项是178,173,168,(),也是一个等差数列,所以括号中的数应为168-5=163.顺便说一下,该题中的两个数列都是以等差数列的规律排列,但也有一些题目中两个数列是按不同规律排列的,不过题目的实质没有变化.两个数列交替排列在一列数字中,也是数字推理测验中一种较常见的形式.只有当你把这一列数字判断为多组数列交替排列在一起时,才算找到了正确解答这道题的方向,你的成功就已经80%了.●简单有理化式二、解题技巧数字推理题的解题方法数字推理题难度较大,但并非无规律可循,了解和掌握一定的方法和技巧,对解答数字推理问题大有帮助.1 快速扫描已给出的几个数字,仔细观察和分析各数之间的关系,尤其是前三个数之间的关系,大胆提出假设,并迅速将这种假设延伸到下面的数,如果能得到验证,即说明找出规律,问题即迎刃而解;如果假设被否定,立即改变思考角度,提出另外一种假设,直到找出规律为止.2 推导规律时,往往需要简单计算,为节省时间,要尽量多用心算,少用笔算或不用笔算.3 空缺项在最后的,从前往后推导规律;空缺项在最前面的,则从后往前寻找规律;空缺项在中间的可以两边同时推导.4 若自己一时难以找出规律,可用常见的规律来“对号入座”,加以验证.常见的排列规律有:(1)奇偶数规律:各个数都是奇数(单数)或偶数(双数);(2)等差:相邻数之间的差值相等,整个数字序列依次递增或递减.(3)等比:相邻数之间的比值相等,整个数字序列依次递增或递减;如:2 4 8 16 32 64()这是一个“公比”为2(即相邻数之间的比值为2)的等比数列,空缺项应为128.(4)二级等差:相邻数之间的差或比构成了一个等差数列;如:4 2 2 3 6 15相邻数之间的比是一个等差数列,依次为:0.5、1、1.5、2、2.5.(5)二级等比数列:相邻数之间的差或比构成一个等比数理;如:0 1 3 7 15 31()相邻数之间的差是一个等比数列,依次为1、2、4、8、16,空缺项应为63.(6)加法规律:前两个数之和等于第三个数,如例题23;(7)减法规律:前两个数之差等于第三个数;如:5 3 2 1 1 0 1()相邻数之差等于第三个数,空缺项应为-1.(8)乘法(除法)规律:前两个数之乘积(或相除)等于第三个数;(9)完全平方数:数列中蕴含着一个完全平方数序列,或明显、或隐含;如:2 3 10 15 26 35()1*1+1=2, 2*2-1=3,3*3+1=10,4*4-1=15......空缺项应为50.(10)混合型规律:由以上基本规律组合而成,可以是二级、三级的基本规律,也可能是两个规律的数列交叉组合成一个数列.如:1 2 6 15 31()相邻数之间的差是完全平方序列,依次为1、4、9、16,空缺项应为31+25=56.公务员考试数字推理题汇总1、15,18,54,(),210A 106B 107C 123D 1121、答案是C能被3 整除嘛2、1988 的1989 次方+1989 的1988 的次方.. 个位数是多少呢?2、答:应该也是找规律的吧,1988 的4 次个位就是6,六的任何次数都是六,所以,1988 的1999 次数个位和1988的一次相等,也就是8后面那个相同的方法个位是1忘说一句了,6 乘8 个位也是83、1/2,1/3,2/3,6/3,( ),54/36A 9/12,B 18/3 ,C 18/6 ,D 18/363、C (1/3)/(1/2)=2/3 以此类推4、4,3,2,0,1,-3,( )A -6 ,B -2 ,C 1/2 ,D 04、c 两个数列4,2,1-〉1/2(依次除以2);3,0,-35、16,718,9110,()A 10110,B 11112,C 11102,D 101115、答案是11112从左往右数第一位数分别是:5、7、9、11从左往右数第二位数都是:1从左往右数第三位数分别是:6、8、10、126、3/2,9/4,25/8,( )A 65/16,B 41/8,C 49/16,D 57/86、思路:原数列可化为1 又1/2, 2 又1/4, 3 又1/8.故答案为4 又1/16 = 65/167、5,( ),39,60,105.A.10B.14C.25D.307、答案B.5=2^2+1,14=4^2-2,39=6^2+3,60=8^2-4,105=10^2+58、8754896×48933=()A.428303315966B.428403225876C.428430329557D.4284033259688、答直接末尾相乘,几得8,选D.9、今天是星期二,55×50 天之后().A.星期一B.星期二C.星期三D.星期四9 、解题思路:从55 是7 的倍数减1,50 是7 的倍数加1,快速推出少1 天.如果用55×50÷7=396 余6,也可推出答案,但较费时10、一段布料,正好做12 套儿童服装或9 套成人服装,已知做3 套成人服装比做2 套儿童服装多用布6 米,这段布有多长?A 24B 36 C54 D 4810、思路:设儿童为x,成人为y,则列出等式12X=9Y 2X=3Y-6得出,x=3,则布为3*12=36,选B11、有一桶水第一次倒出其中的6 分之一,第二次倒出3 分之一,最后倒出4 分之一,此时连水带桶有20 千克,桶重为5 千克,,问桶中最初有多少千克水?A 50B 80C 100D 3611、答5/6*2/3*3/4X=15 得出,x=36 答案为D12、甲数比乙数大25%,则乙数比甲数小()A 20%B 30%C 25%D 33%12、已X,甲1.25X ,结果就是0.25/1.25=20% 答案为A13、一条街上,一个骑车人和一个步行人相向而行,骑车人的速度是步行人的3 倍,每个隔10 分钟有一辆公交车超过一个行人.每个隔20 分钟有一辆公交车超过一个骑车人,如果公交车从始发站每隔相同的时间发一辆车,那么间隔几分钟发一辆公交车?A 10B 8C 6 D413、B14、某校转来6 名新生,校长要把他们安排在三个班,每班两人,有多少中安排方法?A 18B 24C 36D 4614、无答案公布sorry 大家来给些答案吧15、某人把60000 元投资于股票和债券,其中股票的年回报率为6%,债券的年回报率为10%.如果这个人一年的总投资收益为4200 元,那么他用了多少钱买债券?A. 45000B. 15000C. 6000D. 480015、0.06x+0.1y=4200 , x+y=60000, 即可解出.答案为B16、一粮站原有粮食272 吨,上午存粮增加25%,下午存粮减少20%,则此时的存粮为( )吨.A. 340B. 292C. 272D. 26816、272*1.25*0.8=272 答案为C17、3 2 5\3 3\2 ( )A.7/5 B.5/6 C.3/5 D.3/417、分数变形:A 数列可化为:3/1 4/2 5/3 6/4 7/518、1\7 1\26 1\63 1\124 ( )18、依次为2^3-1,3^3-1,..,得出6^3-119、-2 ,-1,1,5 ()29(2000 年题)A.17B.15C.13D.1119、依次为2^3-1,3^3-1,..,得出6^3-120、5 9 15 17 ( )A 21B 24C 32D 3420、思路:5 和15 差10,9 和17 差8,那15 和( ?)差65+10=15 9+8=17 15+6=2121、81301512(){江苏的真题}A10B8C13D1421、81/3+3=30,30/3+5=15,15/3+7=12,12/3+9=13 答案为132222、3,2,53,32,( )A 75B 5 6C 35D 3422、思路:小公的讲解2,3,5,7,11,13,17.....变成2,3,53,32,75,53,32,117,75,53,32......3,2,(这是一段,由2 和3 组成的),53,32(这是第二段,由2、3、5 组成的)75,53,32(这是第三段,由2、3、5、7 组成的),117,75,53,32()这是由2、3、5、7、11 组成的)不是,首先看题目,有2,3,5,然后看选项,最适合的是75(出现了7,有了7 就有了质数列的基础),然后就找数字组成的规律,就是复合型数字,而A 符合这两个规律,所以才选A2,3,5,后面接什么?按题干的规律,只有接7 才是成为一个常见的数列:质数列,如果看BCD 接4 和6 的话,组成的分别是2,3,5,6(规律不简单)和2,3,5,4(4 怎么会在5 的后面?也不对)质数列就是由质数组成的从2 开始递增的数列23、2,3,28,65,( )A 214B 83C 414D 31423、无思路!暂定思路为:2*65+3*28=214,24、0 ,1,3 ,8 ,21,( ) ,14424、0+3=1*3,1+8=3*3,3+21=8*3,21+144=?*3.得出?=55.25、2,15,7,40,77,( )A96 ,B126,C138,,D15625、这题有点变态,不讲了,看了没有好处26、4,4,6,12,(),9026、答案30.4/4=1,6/12=1/2,?/90=1/327、56,79,129,202 ()A、331B、269C、304D、33327、不知道思路,经过讨论:79-56=23 129-79=50 202-129=73因为23+50=73,所以下一项和差必定为50+73=123-202=123,得出?=325,无此选项!28、2,3,6,9,17,()A 19B 27C 33D 4528、三个相加成数列,3 个相加为11,18,32,7 的级差则此处级差应该是21,则相加为53,则53-17-9=27 答案,分别是27.29、5,6,6,9,(),90A 12,B 15,C 18,D 2129、答案为C思路:5×6/5=6,6*6/4=9,6*9/3=18(5-3)*(6-3)=6(6-3)*(6-3)=9(6-3)*(9-3)=1830、16 17 18 20 ()A21B22C23D2430、思路:22、23 结果未定,等待大家答复!31、9、12、21、48、()31、答案为1299+3=12 ,12+3 平方=21 ,21+3 立方=4832、172、84、40、18、()32、答案为7172/2-2=84 84/2-2=40 40/2-2=18 18/2-2=7答案分成三部分:。
【关键字】思路、方法、规律、关系数字推理题(含解题方法)[1]-1,0,1,2,9,()A、11B、82C、729D、730答案是D(-1)的三次+1=0,0的三次+1=1,1的三次+1=2,2的三次+1=9,9的三次+1=730[2]7 ,63 ,( ),511A. 216B. 215C.189D.217答案是B依次是2, 4, 6, 8 的3次方减14,5,( ),14,23,37[A]6[B]7[C]8[D]9(思路:前两个数相加等于第三数)6,3,3,( ),3,-3[A]0[B]1[C]2[D]3(思路:前两个数相减等于第三数)6,9,( ),24,39[A]10B]11[C]13[D]15(思路:前两个数相加等于第三数)-2 -1 1 5 (C)29(2000年题)A.17B.15C.13D.11(思路:后数减前一个数等于2的0、1、2、3方)6 18 ( ) 78 126 (2001年题)A.40B.42C.44D.46(思路:后数减前一个数分别为12的1倍、2倍、3倍)375 127 248 -121 ( )A. 369B. 127C. -127D.-369(思路:后两个数相加和为前一个数。
)1 2 2 4()32A、4B、6C、8D、16(思路:前两个数相乘得后一个数)2/5 4/9 6/13 8/17 ()A、10/19B、11/21C、9/20D、10/21(思路:分子为偶数列,分母为公差是4的数列)155 132 109 86 ()A、23B、55C、63D、43(思路:此为一组公差为23的等差数列)1/2,1/3,2/3,6/3,(9/12,18/3,18/6,18/36),54/36第三项等于第二项乘以第一项的倒数2*1/3=2/3, 3*2/3=6/3, ….答案为3/2÷6/3=3即18/34,3,2,0,1,-3,(-6,-2,1/2,0)交*数列。
3,0,-3一组;4,2,1,1/2一组。
数字推理题500道详解【1】7,9,-1,5,( )A、4;B、2;C、-1;D、-3分析:选D,7+9=16;9+(-1)=8;(-1)+5=4;5+(-3)=2 , 16,8,4,2等比【2】3,2,5/3,3/2,( )A、1/4;B、7/5;C、3/4;D、2/5分析:选B,可化为3/1,4/2,5/3,6/4,7/5,分子3,4,5,6,7,分母1,2,3,4,5【3】1,2,5,29,()A、34;B、841;C、866;D、37分析:选C,5=12+22;29=52+22;( )=292+52=866【4】2,12,30,()A、50;B、65;C、75;D、56;分析:选D,1×2=2;3×4=12;5×6=30;7×8=()=56【5】2,1,2/3,1/2,()A、3/4;B、1/4;C、2/5;D、5/6;分析:选C,数列可化为4/2,4/4,4/6,4/8,分母都是4,分子2,4,6,8等差,所以后项为4/10=2/5,【6】4,2,2,3,6,()A、6;B、8;C、10;D、15;分析:选D,2/4=0.5;2/2=1;3/2=1.5;6/3=2;0.5,1,1.5, 2等比,所以后项为2.5×6=15【7】1,7,8,57,()A、123;B、122;C、121;D、120;分析:选C,12+7=8;72+8=57;82+57=121;【8】4,12,8,10,()A、6;B、8;C、9;D、24;分析:选C,(4+12)/2=8;(12+8)/2=10;(8+10)/2=9【9】1/2,1,1,(),9/11,11/13A、2;B、3;C、1;D、7/9;分析:选C,化成1/2,3/3,5/5 ( ),9/11,11/13这下就看出来了只能是(7/7)注意分母是质数列,分子是奇数列。
【10】95,88,71,61,50,()A、40;B、39;C、38;D、37;分析:选A,思路一:它们的十位是一个递减数字9、8、7、6、5 只是少开始的4 所以选择A。
【1】7,9,-1,5,( )A、4;B、2;C、-1;D、-3分析:选D,7+9=16;9+(-1)=8;(-1)+5=4;5+(-3)=2 , 16,8,4,2等比【2】3,2,5/3,3/2,( )A、1/4;B、7/5;C、3/4;D、2/5分析:选B,可化为3/1,4/2,5/3,6/4,7/5,分子3,4,5,6,7,分母1,2,3,4,5【3】1,2,5,29,()A、34;B、841;C、866;D、37分析:选C,5=12+22;29=52+22;( )=292+52=866【4】2,12,30,()A、50;B、65;C、75;D、56;分析:选D,1×2=2;3×4=12;5×6=30;7×8=()=56【5】2,1,2/3,1/2,()A、3/4;B、1/4;C、2/5;D、5/6;分析:选C,数列可化为4/2,4/4,4/6,4/8,分母都是4,分子2,4,6,8等差,所以后项为4/10=2/5,【6】4,2,2,3,6,()A、6;B、8;C、10;D、15;分析:选D,2/4=0.5;2/2=1;3/2=1.5;6/3=2;0.5,1,1.5, 2等比,所以后项为2.5×6=15【7】1,7,8,57,()A、123;B、122;C、121;D、120;分析:选C,12+7=8;72+8=57;82+57=121;【8】4,12,8,10,()A、6;B、8;C、9;D、24;分析:选C,(4+12)/2=8;(12+8)/2=10;(8+10)/2=9【9】1/2,1,1,(),9/11,11/13A、2;B、3;C、1;D、7/9;分析:选C,化成1/2,3/3,5/5 ( ),9/11,11/13这下就看出来了只能是(7/7)注意分母是质数列,分子是奇数列。
【10】95,88,71,61,50,()A、40;B、39;C、38;D、37;分析:选A,思路一:它们的十位是一个递减数字9、8、7、6、5 只是少开始的4 所以选择A。
国家公务员考试行测冲刺备考举一反三灵活解答规律特征型图形推理题近年来国家公务员考试的难度在不断加大,反映在图形推理中就是规律越来越复杂隐蔽。
相比于数学运算、资料分析,图形推理似乎并无取巧之处。
这也造成了很多考生反映的图形推理完全没有思路,做了很多练习但临场就发懵的现状。
中公教育专家认为,突破图形推理,适度的练习是必要的,但关键在于通过这些练习学会举一反三。
图形问题在考察内容上主要分为:规律特征型推理思路、平面图形的空间还原与立体图形的平面展开、拼图及图形拆分与组合、意指型图形。
其中,以规律特征型推理思路考察得最为广泛和普遍,也是让考生最为头疼的题型。
在此,中公教育专家结合例题对这一类型的题目进行深入分析,正确引导考生的解题思路。
例题1:答案:B。
解题思路:定位此题,为组合图形的变化,故思维圈定于图形内部分割部分数;内部图形与外部图形的替代关系;图形求同。
图形内部分割部分数:第一组图的部分数分别为三部分、两部分、两部分,第二组图的部分数分别为九部分、三部分,不具有数字规律性,故此思维被否定。
内部图形与外部图形的替代关系:第一组图形中,图形一的外面正方形在图形二中移到内部,图形二中的六边形在图形三中并未发生替代关系,故此思维被否定。
图形求同:在第一组图中,均含有正方形,在第二组图中,均含有圆形,对照选项,只有B项含有圆形,可得题解。
例题2:答案:D。
解题思路:此题为细节变化问题,故思维圈定为前后图对比寻找细节差异。
第一图与第二图比较可发现,箭头方向发生变化、左边的小线段从最下面减少一条,对比第二图与第三图,箭头方向又发生变化、右边的小线段从最上面减少一条,即可推得可能性规律,以第三、四幅图进行验证,符合,对照选项,可得题解为D。
例题3:答案:C。
解题思路:定位此题为图形种类的变化,故思维圈定为某一或某几个图形的数量呈现规律性变化、每个图形总数量的恒定。
某一或某几个图形的数量呈现规律性变化:前五个图出现的六种图形的数量并未符合任何规律性分布,故此思维被否定。
数字推理及数学运算:1. 3,—1,5,1,()A. 3B. 7C. 25D. 64解: 两数之和形成2,4,6,8 的等差数列(注:也可以是两数之差、积、商或乘方)。
2. 8,10,14,18,()A. 24B. 32C. 26D. 20解:道理基本同上。
前两数之和与后两数之和形成6,8,10的等差数列。
3. 1/3,6,1,12,()A. 5/3B. 8/3C. 10D. 22解:1除以3,2乘以3,3除以3,4乘以3,5除以3。
递增自然数奇数项除以3,偶数项乘以3。
4. 3,2,8,12,28,()A. 15B. 32C. 27D. 52解:第一个数乘以2加上第二个数的和等于第三个数(注:也可以是第一个数乘以2减去第二个数的差等于第三个数)。
5. 7,10,16,22,()A. 28B. 32C. 34D. 45解:2*3+1=7,3*3+1=10,5*3+1=16,7*3+1=22,11*3+1=34(注:质数的3倍加1的和)。
6.1,16,27,16,5,()A. 36B. 25C. 1D. 14解: 1的5次方,2的4次方,3的3次方,4的2次方,5的1次方,6的0方(自然数递增,方数递减;相近的题型也可以是自然数递减,方数递增)7. 4,3/2,20/27,7/16,36/125,()A. 39/144B. 11/54C. 68/169D. 7解: 27是3的3次方,125是5的5次方;4可看成4/1,3/2可看成12/8,7/16可看成28/64,由此可推出分子是4*1,4*3,4*5,4*7,4*9,4*11,分母是递增自然数的3次方。
8.1,3,4,1,9,()A. 5B. 11C. 14D. 64解: 前数减去后数的差的平方等第三个数。
(注:也可以是前数加上后数的和的平方等于第三个数)。
9.2,3,1,2,6,7,()A. 9B. 5C. 11D. 24解: 相邻3个数的和形成0,3,6,9的等差数列2+3+1=6;3+1+2=6;1+2+6=9;2+6+7=15;6+7+?=24。
数字推理及数学运算:1. 3,— 1, 5, 1,( )A. 3B. 7C. 25D. 64解: 两数之和形成 2, 4, 6, 8 的等差数列 (注:也可以是两数之差、积、商或乘方)。
2.8,10,14,18,()A. 24B. 32C. 26D. 20解:道理基本同上。
前两数之和与后两数之和形成 6, 8, 10 的等差数列。
3. 1/3, 6, 1, 12,( )A. 5/3B. 8/3C. 10D. 22解:1 除以 3, 2 乘以 3, 3 除以 3, 4 乘以 3, 5 除以 3。
递增自然数奇数项除以 3,偶数项乘以 3。
4. 3, 2, 8, 12, 28,( )A. 15B. 32C. 27D. 52解:第一个数乘以 2 加上第二个数的和等于第三个数 (注:也可以是第一个数乘以 2 减去第二个数的差等于第三个数)。
5.7,10,16,22,()A. 28B. 32C. 34D. 45解:2*3+1=7, 3*3+1=10, 5*3+1=16, 7*3+1=22, 11*3+1=34 (注:质数的 3 倍加 1 的和)。
6.1, 16, 27, 16, 5,( )A. 36B. 25C. 1D. 14解: 1 的 5 次方, 2 的 4 次方, 3 的 3 次方, 4 的 2 次方, 5 的 1 次方, 6 的 0 方 ( 自然数递增,方数递减;相近的题型也可以是自然数递减,方数递增)7.4,3/2,20/27,7/16,36/125,()A. 39/144B. 11/54C. 68/169D. 7解: 27 是 3 的 3 次方, 125 是 5 的 5 次方;4 可看成 4/1, 3/2 可看成 12/8,7/16 可看成 28/64,由此可推出分子是 4*1, 4*3, 4*5, 4*7, 4*9, 4*11,分母是递增自然数的 3 次方。
8.1,3,4,1,9,()A. 5B. 11C. 14D. 64解: 前数减去后数的差的平方等第三个数。
【1】7,9 ,-1 ,5,( )A、4;B、2;C、-1 ;D、-3分析:选D,7+9=16 ;9+ (-1 )=8 ;(-1 )+5=4 ;5+ (-3 )=2 , 16 ,8 ,4,2 等比【2】3,2,5/3 ,3/2 ,( )A、1/4 ;B、7/5 ;C、3/4 ;D、2/5分析:选B,可化为3/1 ,4/2 ,5/3 ,6/4 ,7/5, 分子3,4,5,6 ,7,分母1,2,3,4,5【3】1,2,5,29,()A、34;B、841 ;C、866 ;D、37分析:选C,5=1 2 +2 2;29=5 2+2 2 ;( )=29 2 +5 2=866【4】2,12,30,()A、50;B、65 ;C、75 ;D、56 ;分析:选D,1×2=2 ;3×4=12 ;5×6=30 ;7×8= ()=56【5】2,1,2/3 ,1/2 ,()A、3/4 ;B、1/4 ;C、2/5 ;D、5/6 ;分析:选C,数列可化为4/2 ,4/4 ,4/6 ,4/8 ,分母都是 4 ,分子2,4,6 ,8 等差,所以后项为4/10=2/5 ,【6】4,2,2,3,6,()A、6;B、8;C、10 ;D、15;分析:选D,2/4=0.5 ;2/2=1 ;3/2=1.5 ;6/3=2 ;0.5,1,1.5, 2 等比,所以后项为 2.5×6=15【7】1,7,8,57,()A、123 ;B、122 ;C、121 ;D、120 ;分析:选C,12 +7=8 ;72+8=57 ;82 +57=121 ;【8】4,12,8,10,()A、6;B、8;C、9;D、24 ;分析:选C,(4+12)/2=8 ;(12+8)/2=10 ;(8+10)/2=9【9】1/2 ,1,1,(),9/11,11/13A、2;B、3;C、1;D、7/9 ;分析:选C,化成1/2,3/3,5/5 ( ),9/11,11/13 这下就看出来了只能是(7/7) 注意分母是质数列,分子是奇数列。
【10】95,88 ,71,61 ,50 ,()A、40 ;B、39 ;C、38 ;D、37 ;分析:选A,思路一:它们的十位是一个递减数字9、8、7、6、5 只是少开始的 4 所以选择A。
思路二:95 - 9 - 5 = 81 ;88 - 8 - 8 = 72 ;71 - 7 - 1 = 63 ;61 - 6 - 1 = 54 ;50 - 5 - 0 = 45 ;40 - 4 - 0 = 36 ,构成等差数列。
【11】2,6,13,39,15,45,23,( )A. 46 ;B. 66 ;C. 68 ;D. 69 ;分析:选D,数字 2 个一组,后一个数是前一个数的 3 倍【12】1,3,3,5,7,9,13,15(),()A:19,21 ;B:19,23 ;C:21,23 ;D:27 ,30 ;分析:选C,1,3,3,5 ,7,9 ,13 ,15 (21 ),(30 )=> 奇偶项分两组1、3、7、13、21 和3、5 、9、15 、23 其中奇数项1、3、7、13 、21=> 作差2、4 、6、8 等差数列,偶数项3、5、9 、15 、23=> 作差2、4、6、8 等差数列【13】1,2,8,28,()A.72 ;B.100;C.64;D.56;分析:选B,1×2+2 ×3=8 ;2×2+8 ×3=28 ;8×2+28 ×3=100【14】0,4,18,(),100A.48 ;B.58 ;C.50 ;D.38 ;分析:A,思路一:0 、4、18 、48 、100=> 作差=>4 、14 、30 、52=> 作差=>10 、16 、22 等差数列;思路二:1 3-1 2=0 ;23-2 2 =4 ;33 -3 2=18 ;43 -4 2=48 ;53 -5 2=100 ;思路三:0 ×1=0 ;1×4=4 ;2×9=18 ;3×16=48 ;4×25=100 ;思路四:1 ×0=0 ;2×2=4 ;3×6=18 ;4×12=48 ;5×20=100 可以发现:0,2,6,(12),20 依次相差2,4,(6),8,思路五:0=1 2×0;4=2 2×1;18=3 2×2;( )=X 2 ×Y;100=5 2×4 所以()=4 2×3【15】23,89,43,2,()A.3;B.239 ;C.259 ;D.269 ;分析:选A,原题中各数本身是质数,并且各数的组成数字和2+3=5 、8+9=17 、4+3=7 、2 也是质数,所以待选数应同时具备这两点,选 A【16】1,1, 2, 2, 3, 4, 3, 5, ( )分析:思路一:1,(1,2),2,(3,4 ),3,(5,6)=> 分1、2、3 和(1,2),(3,4 ),(5,6 )两组。
思路二:第一项、第四项、第七项为一组;第二项、第五项、第八项为一组;第三项、第六项、第九项为一组=>1,2,3;1,3,5;2,4,6=> 三组都是等差【17】1,52, 313,174,( )A.5;B.515 ;C.525 ;D.545 ;分析:选B,52 中5 除以 2 余1(第一项);313 中31 除以 3 余1( 第一项);174 中17 除以 4 余1(第一项);515 中51 除以5 余1(第一项)【18】5, 15, 10, 215, ( )A、415 ;B、-115 ;C、445 ;D、-112 ;答:选B,前一项的平方减后一项等于第三项,5×5-15=10 ;15×15-10=215 ;10 ×10-215=-115【19】-7,0, 1, 2, 9, ( )A、12;B、18 ;C、24 ;D、28 ;答:选D,-7=(-2) 3+1 ;0=(-1) 3 +1 ;1=0 3 +1 ;2=1 3+1 ;9=2 3+1 ;28=3 3 +1【20】0,1,3,10,( )A、101 ;B、102 ;C、103 ;D、104 ;答:选B,思路一:0×0+1=1 ,1×1+2=3 ,3×3+1=10 ,10 ×10+2=102 ;思路二:0( 第一项)2+1=1( 第二项) 12 +2=3 32 +1=10 102 +2=102, 其中所加的数呈1,2,1,2 规律。
思路三:各项除以3,取余数=>0,1,0,1,0 ,奇数项都能被 3 整除,偶数项除 3 余1;【21】5,14,65/2,( ) ,217/2A.62 ;B.63 ;C. 64 ;D. 65 ;答:选B,5=10/2 ,14=28/2 , 65/2, ( 126/2), 217/2 ,分子=> 10=2 3+2 ;28=3 3+1 ;65=4 3+1 ;(126)=5 3+1 ;217=6 3 +1 ;其中2、1、1 、1、1 头尾相加=>1 、2、3 等差【22】124,3612,51020,()A、7084 ;B、71428 ;C、81632 ;D、91836 ;答:选B,思路一:124 是 1 、2、 4 ;3612 是 3 、6 、12 ;51020 是5、10 、20 ;71428 是7,14 28 ;每列都成等差。
思路二:124 ,3612 ,51020 ,(71428 )把每项拆成 3 个部分=>[1,2,4] 、[3,6,12] 、[5,10,20] 、[7,14,28]=> 每个[ ]中的新数列成等比。
思路三:首位数分别是1、3、5、(7 ),第二位数分别是:2 、6、10 、(14 );最后位数分别是:4、12 、20 、(28 ),故应该是71428 ,选B。
【23】1,1,2,6,24,( )A,25;B,27 ;C,120 ;D,125解答:选C。
思路一:(1+1 )×1=2 ,(1+2 )×2=6 ,(2+6 )×3=24 ,(6+24 )×4=120思路二:后项除以前项=>1 、2、3、4、5 等差【24】3,4,8,24,88,( )A,121 ;B,196 ;C,225 ;D,344解答:选D。
思路一:4=2 0 +3 ,8=2 2 +4 ,24=2 4 +8 ,88=2 6 +24 ,344=2 8 +88思路二:它们的差为以公比 2 的数列:4-3=2 0 ,8-4=2 2,24-8=2 4,88-24=2 6 ,?-88=2 8,?=344 。
【25】20,22,25,30,37,( )A,48;B,49 ;C,55 ;D,81解答:选A。
两项相减=>2 、3、5、7、11 质数列【26】1/9 ,2/27,1/27,( )A,4/27 ;B,7/9 ;C,5/18 ;D,4/243 ;答:选D,1/9,2/27,1/27,(4/243)=>1/9 ,2/27 ,3/81 ,4/243=> 分子,1、2、3 、4 等差;分母,9、27、81 、243 等比【27】√2,3,√28,√65,( )A,2 √14 ;B,√83 ;C,4√14 ;D,3√14 ;1 ;所以选√ 126 ,即D 3 √14【28】1,3,4,8,16,( )A、26;B、24 ;C、32 ;D、16 ;答:选C,每项都等于其前所有项的和1+3=4 ,1+3+4=8 ,1+3+4+8=16 ,1+3+4+8+16=32【29】2,1,2/3 ,1/2 ,( )A、3/4 ;B、1/4 ;C、2/5 ;D、5/6 ;答:选C ,2, 1 , 2/3 , 1/2 , (2/5 )=>2/1, 2/2, 2/3, 2/4 (2/5)=> 分子都为 2 ;分母,1、2 、3 、4 、5 等差【30】1,1,3,7 ,17 ,41 ,( )A.89;B.99 ;C.109 ;D.119 ;答:选B,从第三项开始,第一项都等于前一项的 2 倍加上前前一项。
2×1+1=3 ;2×3+1=7 ;2 ×7+3=17 ;;2 ×41+17=99【31】5/2 ,5 ,25/2 ,75/2 ,()答:后项比前项分别是2,2.5,3 成等差,所以后项为 3.5,()/(75/2 )=7/2 ,所以,()=525/4【32】6,15,35,77,( )A.106 ;B.117 ;C.136 ;D.163答:选D,15=6 ×2+3 ;35=15 ×2+5 ;77=35 ×2+7 ;163=77 ×2+9 其中3、5 、7、9 等差【33】1,3,3,6,7,12,15,( )A.17;B.27 ;C.30 ;D.24 ;答:选D,1,3,3,6,7,12 ,15 ,( 24 )=> 奇数项1、3、7、15=> 新的数列相邻两数的差为2、4、8 作差=> 等比,偶数项 3 、6 、12 、24 等比【34】2/3 ,1/2 ,3/7 ,7/18,()A、4/11 ;B、5/12 ;C、7/15 ;D、3/16分析:选A。