高中数学选修计数原理概率知识点总结
- 格式:doc
- 大小:358.50 KB
- 文档页数:5
高二选修一概率知识点概率是数学中一个非常重要的概念,而在高二选修一中,我们将进一步学习有关概率的知识。
本文将详细介绍高二选修一中的概率知识点,帮助同学们更好地理解和掌握这些知识。
一、概率基础概念1.1 概率的定义概率是描述某个事件发生可能性大小的数值。
用P(A)表示事件A发生的概率,其取值范围在0到1之间,其中0表示事件不可能发生,1表示事件必然发生。
1.2 样本空间和事件样本空间(Ω)是指所有可能结果组成的集合,一个样本空间中的元素称为样本点,而事件则是样本空间的子集,表示一类可能结果的集合。
1.3 事件的性质(1)对立事件:如果事件A发生,则事件A的对立事件A'不发生,反之亦然。
(2)互斥事件:如果事件A发生,则事件B不能发生,反之亦然。
(3)必然事件和不可能事件:样本空间Ω和空集∅分别为必然事件和不可能事件。
二、概率的计算方法2.1 等可能概率如果样本空间Ω中的每个样本点发生的可能性相等,那么事件A的概率P(A)可由下式计算:P(A) = A的样本点数/ Ω的样本点数。
2.2 几何概率对于几何概率,我们将事件A的概率定义为事件A所占的样本空间Ω的面积与整个样本空间Ω的面积之比。
这种方法通常用于处理一些连续型问题,如抛掷硬币、掷骰子等。
2.3 条件概率在事件B已经发生的情况下,事件A发生的概率称为条件概率,表示为P(A|B)。
条件概率的计算方法为:P(A|B) = P(A∩B) / P(B)。
2.4 独立事件如果事件A的发生与事件B的发生没有相互关系,那么事件A 和事件B是独立事件。
对于独立事件,有P(A∩B) = P(A) * P(B)。
三、概率运算规则3.1 加法定理对于任意两个事件A和B,有P(A∪B) = P(A) + P(B) - P(A∩B)。
当A和B互斥时,P(A∪B) = P(A) + P(B)。
3.2 乘法定理对于任意两个事件A和B,有P(A∩B) = P(A) * P(B|A)。
高二选修2-3概率与统计知识点在高二数学的选修课中,学生将学习到概率与统计这一重要的数学领域。
概率与统计是数学中一门与实际生活息息相关的学科,它帮助我们了解和分析事件的可能性和数据的分布规律。
本文将介绍高二选修2-3概率与统计的知识点。
1. 随机事件与概率随机事件是指在相同的条件下,可能发生也可能不发生的事件。
概率是描述随机事件发生可能性大小的数值,通常用一个介于0到1之间的数来表示。
概率的计算可以通过频率法、古典概型和几何概型等方法进行。
2. 条件概率与独立事件条件概率是指在已知某一事件发生的条件下,另一事件发生的概率。
条件概率的计算可以利用乘法法则得出。
如果两个事件的发生与对方无关,则称它们为独立事件。
独立事件的概率计算可以利用乘法法则简化。
3. 排列与组合排列是指从一组不同的元素中按一定的顺序选取若干个元素的方式。
组合是指从一组不同的元素中无序选取若干个元素的方式。
排列和组合的计算可以通过阶乘等方法进行。
4. 随机变量与概率分布随机变量是指随机试验结果的数值表示。
它可以分为离散型随机变量和连续型随机变量。
概率分布是描述随机变量可能取值及其对应概率的函数。
常见的概率分布有离散型概率分布如二项分布和泊松分布,以及连续型概率分布如正态分布和指数分布。
5. 期望与方差期望是随机变量取值的加权平均值,反映了随机变量的平均水平。
方差是随机变量取值与其期望值之间的差异程度的度量,用来描述随机变量的波动情况。
期望和方差的计算可以利用概率分布函数进行。
6. 统计推断与假设检验统计推断是根据样本数据对总体进行估计和推断的过程。
假设检验是通过对样本数据进行统计推断来判断对总体的某个假设是否成立。
常用的统计推断方法有点估计、区间估计和假设检验等。
以上是高二选修2-3概率与统计的主要知识点。
通过学习这些知识,学生可以更好地理解和应用概率与统计在实际问题中的作用,例如预测天气变化、分析市场需求等。
概率与统计不仅是数学领域的重要内容,也是培养学生分析问题和决策能力的重要途径。
高三选修概率知识点总结概率是数学中一个重要的概念,也是高中数学的一门选修课程,它涉及到对事件发生的可能性进行量化和刻画。
在高三阶段,学生需要系统地掌握和应用概率知识,为此,本文将对高三选修概率知识点进行总结。
不同的概率知识点将逐一进行讲解,以便帮助高三学生全面理解和运用概率知识。
一、基本概念1. 实验与样本空间:介绍实验的概念,样本空间的定义和表示方法。
2. 事件与事件的概率:解释什么是事件,事件的概率的定义和性质。
3. 必然事件与不可能事件:了解必然事件与不可能事件的定义与性质。
二、事件的关系与运算1. 事件的包含与等价:讲解事件的包含与等价关系,以及它们的性质。
2. 事件的并、交与差:介绍事件的并、交和差的概念,以及它们的计算方法和性质。
3. 互斥事件与对立事件:定义互斥事件和对立事件,探讨它们的关系与性质。
三、概率计算1. 经典概型计算:介绍经典概型的概念和计算方法,以及它适用的条件。
2. 几何概型计算:解析几何概型的概念和计算方法,探讨在不同情况下的应用。
3. 条件概率与事件独立:阐述条件概率的定义和计算方法,以及事件的独立性的概念和判断条件。
4. 全概率公式与贝叶斯公式:介绍全概率公式和贝叶斯公式的推导和应用场景。
5. 排列与组合的概率计算:解释排列与组合在概率计算中的应用,探讨使用排列与组合计算概率的方法。
四、概率分布1. 离散型随机变量:介绍离散型随机变量的概念和概率分布律的性质,讨论与其相关的重要概率分布(如二项分布、几何分布等)的性质和应用。
2. 连续型随机变量:解析连续型随机变量的概念和概率密度函数的性质,探讨与其相关的重要概率分布(如正态分布等)的性质和应用。
五、统计与概率1. 统计的基本概念:介绍统计的基本概念,包括总体、样本、样本容量、频数、频率等。
2. 随机变量的期望与方差:解释随机变量的期望与方差的概念和计算方法,讨论与之相关的性质。
3. 大数定律和中心极限定理:阐述大数定律和中心极限定理的概念和数学表达式。
计数原理知识点总结高中一、基本原理计数原理的基本原理包括加法原理和乘法原理。
1. 加法原理加法原理是指当一个事件可以分解为几个不相容的部分时,这个事件的总数等于各部分的事件数之和。
加法原理可以用于求解排列组合等问题。
举例: 一个班上有男生20人、女生25人,那么班上的学生总数为20+25=45人。
2. 乘法原理乘法原理是指当一个事件要发生的步骤可以划分为若干个子事件时,这个事件发生的总次数等于各子事件发生次数的乘积。
举例: 要在4x4的格子中按照某种规则走,从左上角到右下角,每一步只能向右或者向下移动,那么一共有6步,每一步有两种选择,那么总共有2^6=64种不同的走法。
二、排列组合排列和组合是计数原理中的两个重要概念,它们是用来计算不同元素的排列和组合的方法。
1. 排列在数学中,排列的定义是指从若干不同的元素中取出一部分进行排列,排列的顺序是有意义的。
对于n个元素中取出m个元素进行排列,共有n(n-1)(n-2)...(n-m+1)种排列,记作A(n,m)。
2. 组合组合是指从若干不同的元素中取出一部分进行组合,组合的顺序是没有意义的。
对于n个元素中取出m个元素进行组合,共有C(n,m) = n!/((n-m)!m!)种组合。
排列和组合在实际问题中有着广泛的应用,比如在组合学、密码学等领域,都会涉及到排列和组合的计算。
因此,掌握排列和组合的相关知识是非常重要的。
三、分配原理分配原理是指把若干个不同的物体分给若干个相异的盒子的方法,它与排列和组合有着密切的联系。
分配原理也是计数原理中的重要内容之一,可以在实际问题中得到广泛的应用。
举例: 有10个苹果和3个盒子,要求将这10个苹果分给这3个盒子,每个盒子至少有一个苹果,求分法的总数。
按照分配原理,将10个苹果放入3个盒子,总共有${{10-1}\choose{3-1}}=36$种不同的分法。
分配原理在实际问题中也有着广泛的应用,比如在计算机科学中的任务调度、网络流量控制等方面都会用到分配原理的相关知识。
高中数学概率知识点总结一、概率的基本概念1.1 概率的定义在日常生活中,我们经常会遇到很多不确定的事件,比如掷骰子的结果、抽奖的中奖情况等等。
而概率就是用来描述这些不确定事件发生的可能性的。
概率可以理解为某件事情发生的可能性大小,通常用一个介于0和1之间的数值来表示,其中0表示不可能发生,1表示一定会发生。
1.2 样本空间和事件在进行概率计算时,通常需要确定一个样本空间,即所有可能发生的结果的集合。
比如掷一枚骰子,样本空间为{1,2,3,4,5,6}。
事件则是样本空间的一个子集,表示我们关心的那部分结果。
比如“出现奇数点数”的事件为{1,3,5}。
1.3 古典概率和频率概率古典概率是指在所有可能结果等可能时,事件发生的概率即为事件发生的次数与样本空间元素总数的比值。
而频率概率是指在实际观察中,某一事件发生的次数与总次数的比值。
古典概率适用于理论计算,而频率概率适用于实际观测。
1.4 概率的性质概率具有以下几个重要性质:(1)非负性:任何事件的概率都大于等于0;(2)规范性:全集事件的概率为1;(3)可列可加性:对于两个互不相容的事件,它们的概率之和等于这两个事件并起来的概率。
二、概率的计算方法2.1 古典概率的计算在古典概率中,当每个事件发生的可能性相等时,概率等于事件发生的次数除以总事件数,即P(A)=n(A)/n(S)。
2.2 几何概率的计算几何概率是通过几何模型中的面积、长度或体积来计算概率的方法。
比如说,在一个正方形的面积中,事件发生的可能性可以表示为事件的面积与总面积的比值。
2.3 频率概率的计算频率概率是通过实验次数和事件发生次数的比值来计算概率的方法,即P(A)=n(A)/n。
2.4 排列和组合排列是指从n个不同元素中取出m个元素,按一定的次序排成一列,不同元素的个数为n!/(n-m)!。
组合是指从n个不同元素中取出m个元素,不考虑次序的情况,不同元素的个数为n!/(m!(n-m)!)。
第十一章计数原理与概率、随机变量及其分布第一节分类加法计数原理与分步乘法计数原理两个计数原理(1)每类方法都能独立完成这件事,它是独立的、一次的,且每次得到的是最后结果,只需一种方法就可完成这件事.(2)各类方法之间是互斥的、并列的、独立的.(1)每一步得到的只是中间结果,任何一步都不能独立完成这件事,只有各个步骤都完成了才能完成这件事.(2)各步之间是相互依存的,并且既不能重复也不能遗漏.二、常用结论1.完成一件事可以有n类不同方案,各类方案相互独立,在第1类方案中有m1种不同的方法,在第2类方案中有m2种不同的方法……在第n类方案中有m n种不同的方法.那么,完成这件事共有N=m1+m2+…+m n种不同的方法.2.完成一件事需要经过n个步骤,缺一不可,做第1步有m1种不同的方法,做第2步有m2种不同的方法……做第n步有m n种不同的方法.那么,完成这件事共有N=m1×m2×…×m n种不同的方法.考点一分类加法计数原理1.在所有的两位数中,个位数字大于十位数字的两位数的个数为________.解析:按十位数字分类,十位可为1,2,3,4,5,6,7,8,共分成8类,在每一类中满足条件的两位数分别有8个,7个,6个,5个,4个,3个,2个,1个,则共有8+7+6+5+4+3+2+1=36个两位数.答案:362.如图,从A 到O 有________种不同的走法(不重复过一点).解析:分3类:第一类,直接由A 到O ,有1种走法;第二类,中间过一个点,有A →B →O 和A →C →O 2种不同的走法;第三类,中间过两个点,有A →B →C →O 和A →C →B →O 2种不同的走法.由分类加法计数原理可得共有1+2+2=5种不同的走法.答案:53.若椭圆x 2m +y 2n=1的焦点在y 轴上,且m ∈{1,2,3,4,5},n ∈{1,2,3,4,5,6,7},则这样的椭圆的个数为________.解析:当m =1时,n =2,3,4,5,6,7,共6个;当m =2时,n =3,4,5,6,7,共5个;当m =3时,n =4,5,6,7,共4个;当m =4时,n =5,6,7,共3个;当m =5时,n =6,7,共2个.故共有6+5+4+3+2=20个满足条件的椭圆.答案:204.如果一个三位正整数如“a 1a 2a 3”满足a 1<a 2且a 2>a 3,则称这样的三位数为凸数(如120,343,275等),那么所有凸数的个数为________.解析:若a 2=2,则百位数字只能选1,个位数字可选1或0,“凸数”为120与121,共2个.若a 2=3,则百位数字有两种选择,个位数字有三种选择,则“凸数”有2×3=6(个).若a 2=4,满足条件的“凸数”有3×4=12(个),…,若a 2=9,满足条件的“凸数”有8×9=72(个).所以所有凸数有2+6+12+20+30+42+56+72=240(个).答案:240考点二 分步乘法计数原理[典例精析](1)已知集合M ={-3,-2,-1,0,1,2},P (a ,b )(a ,b ∈M )表示平面上的点,则P 可表示坐标平面上第二象限的点的个数为( )A.6B.12C.24D.36(2)有6名同学报名参加三个智力项目,每项限报一人,且每人至多参加一项,则共有________种不同的报名方法.[解析] (1)确定第二象限的点,可分两步完成:第一步确定a,由于a<0,所以有3种方法;第二步确定b,由于b>0,所以有2种方法.由分步乘法计数原理,得到第二象限的点的个数是3×2=6.(2)每项限报一个,且每人至多参加一项,因此可由项目选人,第一个项目有6种选法,第二个项目有5种选法,第三个项目有4种选法,根据分步乘法计数原理,可得不同的报名方法共有6×5×4=120(种).[答案](1)A(2)120[解题技法]利用分步乘法计数原理解决问题的策略(1)利用分步乘法计数原理解决问题时要注意按事件发生的过程来合理分步,即分步是有先后顺序的,并且分步必须满足:完成一件事的各个步骤是相互依存的,只有各个步骤都完成了,才算完成这件事.(2)分步必须满足的两个条件:一是各步骤相互独立,互不干扰;二是步与步之间确保连续,逐步完成.[题组训练]1.如图,某电子器件由3个电阻串联而成,形成回路,其中有6个焊接点A,B,C,D,E,F,如果焊接点脱落,整个电路就会不通.现发现电路不通,那么焊接点脱落的可能情况共有________种.解析:因为每个焊接点都有脱落与未脱落两种情况,而只要有一个焊接点脱落,则电路就不通,故共有26-1=63种可能情况.答案:632.从-1,0,1,2这四个数中选三个不同的数作为函数f(x)=ax2+bx+c的系数,则可组成________个不同的二次函数,其中偶函数有________个(用数字作答).解析:一个二次函数对应着a,b,c(a≠0)的一组取值,a的取法有3种,b的取法有3种,c的取法有2种,由分步乘法计数原理知共有3×3×2=18(个)二次函数.若二次函数为偶函数,则b=0,同上可知共有3×2=6(个)偶函数.答案:186考点三两个计数原理的综合应用[典例精析](1)如图所示的五个区域中,现有四种颜色可供选择,要求每一个区域只涂一种颜色,相邻区域所涂颜色不同,则不同的涂色方法种数为()A.24B.48C.72D.96(2)如果一条直线与一个平面垂直,那么称此直线与平面构成一个“正交线面对”.在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是()A.48B.18C.24D.36(3)如果一条直线与一个平面平行,那么称此直线与平面构成一个“平行线面组”.在一个长方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“平行线面组”的个数是()A.60B.48C.36D.24[解析](1)分两种情况:①A,C不同色,先涂A有4种,C有3种,E有2种,B,D各有1种,有4×3×2=24种涂法.②A,C同色,先涂A有4种,E有3种,C有1种,B,D各有2种,有4×3×2×2=48种涂法.故共有24+48=72种涂色方法.(2)第1类,对于每一条棱,都可以与两个侧面构成“正交线面对”,这样的“正交线面对”有2×12=24(个);第2类,对于每一条面对角线,都可以与一个对角面构成“正交线面对”,这样的“正交线面对”有12个.所以正方体中“正交线面对”共有24+12=36(个).(3)长方体的6个表面构成的“平行线面组”的个数为6×6=36,另含4个顶点的6个面(非表面)构成的“平行线面组”的个数为6×2=12,故符合条件的“平行线面组”的个数是36+12=48.[答案](1)C(2)D(3)B[解题技法]1.利用两个计数原理解决应用问题的一般思路(1)弄清完成一件事是做什么.(2)确定是先分类后分步,还是先分步后分类.(3)弄清分步、分类的标准是什么.(4)利用两个计数原理求解.2.涂色、种植问题的解题关注点和关键(1)关注点:首先分清元素的数目,其次分清在不相邻的区域内是否可以使用同类元素.(2)关键:是对每个区域逐一进行,选择下手点,分步处理.[题组训练]1.如图所示,用4种不同的颜色涂入图中的矩形A,B,C,D中,要求相邻的矩形涂色不同,则不同的涂法有________种.解析:按要求涂色至少需要3种颜色,故分两类:一是4种颜色都用,这时A有4种涂法,B有3种涂法,C有2种涂法,D有1种涂法,共有4×3×2×1=24(种)涂法;二是用3种颜色,这时A,B,C的涂法有4×3×2=24(种),D只要不与C同色即可,故D有2种涂法,所以不同的涂法共有24+24×2=72(种).答案:722.如图所示,在连接正八边形的三个顶点而成的三角形中,与正八边形有公共边的三角形有________个(用数字作答).解析:把与正八边形有公共边的三角形分为两类:第一类,有一条公共边的三角形共有8×4=32(个).第二类,有两条公共边的三角形共有8个.由分类加法计数原理知,共有32+8=40(个).答案:40[课时跟踪检测]A级1.集合P={x,1},Q={y,1,2},其中x,y∈{1,2,3,…,9},且P⊆Q.把满足上述条件的一对有序整数对(x,y)作为一个点的坐标,则这样的点的个数是()A.9B.14C.15D.21解析:选B当x=2时,x≠y,点的个数为1×7=7.当x≠2时,∵P⊆Q,∴x=y.∴x可从3,4,5,6,7,8,9中取,有7种方法.因此满足条件的点共有7+7=14(个).2.某班新年联欢会原定的6个节目已排成节目单,开演前又增加了3个新节目,如果将这3个新节目插入节目单中,那么不同的插法种数为()A.504B.210C.336D.120解析:选A分三步,先插第一个新节目,有7种方法,再插第二个新节目,有8种方法,最后插第三个节目,有9种方法.故共有7×8×9=504种不同的插法.3.已知两条异面直线a,b上分别有5个点和8个点,则这13个点可以确定不同的平面个数为()A.40B.16C.13D.10解析:选C分两类情况讨论:第1类,直线a 分别与直线b 上的8个点可以确定8个不同的平面;第2类,直线b 分别与直线a 上的5个点可以确定5个不同的平面.根据分类加法计数原理知,共可以确定8+5=13个不同的平面.4.从集合{1,2,3,4,…,10}中,选出5个数组成子集,使得这5个数中任意两个数的和都不等于11,则这样的子集有( )A.32个B.34个C.36个D.38个解析:选A 将和等于11的放在一组:1和10,2和9,3和8,4和7,5和6.从每一小组中取一个,有C 12=2(种).共有2×2×2×2×2=32(个)子集.5.从集合{1,2,3,…,10}中任意选出三个不同的数,使这三个数成等比数列,这样的等比数列的个数为( )A.3B.4C.6D.8解析:选D 当公比为2时,等比数列可为1,2,4或2,4,8;当公比为3时,等比数列可为1,3,9;当公比为32时,等比数列可为4,6,9.同理,公比为12,13,23时,也有4个.故共有8个等比数列.6.将1,2,3,…,9这9个数字填在如图所示的空格中,要求每一行从左到右、每一列从上到下分别依次增大,当3,4固定在图中的位置时,填写空格的方法为( )A.6种B.12种C.18种D.24种解析:选A 根据数字的大小关系可知,1,2,9的位置是固定的,如图所示,则剩余5,6,7,8这4个数字,而8只能放在A 或B 处,若8放在B 处,则可以从5,6,7这3个数字中选一个放在C 处,剩余两个位置固定,此时共有3种方法,同理,若8放在A 处,也有3种方法,所以共有6种方法.7.(2019·郴州模拟)用六种不同的颜色给如图所示的六个区域涂色,要求相邻区域不同色,则不同的涂色方法共有( )A.4 320种B.2 880种C.1 440种D.720种解析:选A 分步进行:1区域有6种不同的涂色方法,2区域有5种不同的涂色方法,3区域有4种不同的涂色方法,4区域有3种不同的涂色方法,6区域有4种不同的涂色方法,5区域有3种不同的涂色方法.根据分步乘法计数原理可知,共有6×5×4×3×3×4=4 320(种)不同的涂色方法.3 4 12 D 34 A C B 98.(2019·惠州调研)我们把各位数字之和为6的四位数称为“六合数”(如2 013是“六合数”),则“六合数”中首位为2的“六合数”共有()A.18个B.15个C.12个D.9个解析:选B由题意知,这个四位数的百位数,十位数,个位数之和为4.由4,0,0组成3个数,分别为400,040,004;由3,1,0组成6个数,分别为310,301,130,103,013,031;由2,2,0组成3个数,分别为220,202,022;由2,1,1组成3个数,分别为211,121,112,共有3+6+3+3=15(个).9.在某一运动会百米决赛上,8名男运动员参加100米决赛.其中甲、乙、丙三人必须在1,2,3,4,5,6,7,8八条跑道的奇数号跑道上,则安排这8名运动员比赛的方式共有________种.解析:分两步安排这8名运动员.第一步:安排甲、乙、丙三人,共有1,3,5,7四条跑道可安排.故安排方式有4×3×2=24(种).第二步:安排另外5人,可在2,4,6,8及余下的一条奇数号跑道上安排,所以安排方式有5×4×3×2×1=120(种).故安排这8人的方式共有24×120=2 880(种).答案:2 88010.有A,B,C型高级电脑各一台,甲、乙、丙、丁4个操作人员的技术等级不同,甲、乙会操作三种型号的电脑,丙不会操作C型电脑,而丁只会操作A型电脑.从这4个操作人员中选3人分别去操作这三种型号的电脑,则不同的选派方法有________种(用数字作答).解析:由于丙、丁两位操作人员的技术问题,要完成“从4个操作人员中选3人去操作这三种型号的电脑”这件事,则甲、乙两人至少要选派一人,可分四类:第1类,选甲、乙、丙3人,由于丙不会操作C型电脑,分2步安排这3人操作的电脑的型号,有2×2=4种方法;第2类,选甲、乙、丁3人,由于丁只会操作A型电脑,这时安排3人分别去操作这三种型号的电脑,有2种方法;第3类,选甲、丙、丁3人,这时安排3人分别去操作这三种型号的电脑,只有1种方法;第4类,选乙、丙、丁3人,同样也只有1种方法.根据分类加法计数原理,共有4+2+1+1=8种选派方法.答案:8B级1.把3封信投到4个信箱,所有可能的投法共有()A.24种B.4种C.43种D.34种解析:选C第1封信投到信箱中有4种投法;第2封信投到信箱中也有4种投法;第3封信投到信箱中也有4种投法.只要把这3封信投完,就做完了这件事情,由分步乘法计数原理可得共有43种投法.2.用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40 000大的偶数共有()A.144个B.120个C.96个D.72个解析:选B由题意可知,符合条件的五位数的万位数字是4或5.当万位数字为4时,个位数字从0,2中任选一个,共有2×4×3×2=48个偶数;当万位数字为5时,个位数字从0,2,4中任选一个,共有3×4×3×2=72个偶数.故符合条件的偶数共有48+72=120(个).3.如图是一个由四个全等的直角三角形与一个小正方形拼成的大正方形,现在用四种颜色给这四个直角三角形区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不相同,则不同的涂色方法有()A.24种B.72种C.84种D.120种解析:选C如图,设四个直角三角形顺次为A,B,C,D,按A―→B―→C―→D顺序涂色,下面分两种情况:(1)A,C不同色(注意:B,D可同色、也可不同色,D只要不与A,C同色,所以D可以从剩余的2种颜色中任意取一色):有4×3×2×2=48种不同的涂法.(2)A,C同色(注意:B,D可同色、也可不同色,D只要不与A,C同色,所以D可以从剩余的3种颜色中任意取一色):有4×3×1×3=36种不同的涂法.故共有48+36=84种不同的涂色方法.4.(2018·湖南十二校联考)若m,n均为非负整数,在做m+n的加法时各位均不进位(例如:134+3 802=3 936),则称(m,n)为“简单的”有序对,而m+n称为有序对(m,n)的值,那么值为1 942的“简单的”有序对的个数是________.解析:第1步,1=1+0,1=0+1,共2种组合方式;第2步,9=0+9,9=1+8,9=2+7,9=3+6,…,9=9+0,共10种组合方式;第3步,4=0+4,4=1+3,4=2+2,4=3+1,4=4+0,共5种组合方式;第4步,2=0+2,2=1+1,2=2+0,共3种组合方式.根据分步乘法计数原理,值为1 942的“简单的”有序对的个数是2×10×5×3=300.答案:300-3,-2,-1,0,1,2,若a,b,c∈M,则:5.已知集合M={}(1)y=ax2+bx+c可以表示多少个不同的二次函数;(2)y=ax2+bx+c可以表示多少个图象开口向上的二次函数.解:(1)a的取值有5种情况,b的取值有6种情况,c的取值有6种情况,因此y=ax2+bx+c可以表示5×6×6=180个不同的二次函数.(2)y=ax2+bx+c的图象开口向上时,a的取值有2种情况,b,c的取值均有6种情况,因此y=ax2+bx+c可以表示2×6×6=72个图象开口向上的二次函数.。
高中数学概率知识点总结概率是数学中的一个重要分支,主要研究随机事件的发生规律以及概率的计算方法。
在高中数学中,我们主要学习了概率的基本概念、概率的计算方法以及概率在实际问题中的应用。
本文将对这些知识点进行总结和归纳。
一、概率的基本概念1. 随机事件和样本空间:在概率中,我们把可能发生的事件称为随机事件,用字母表示。
样本空间是一组可能出现的结果的集合,用S表示。
2. 必然事件和不可能事件:必然事件是指在任何实验中一定会发生的事件,概率为1;不可能事件是指在任何实验中都不会发生的事件,概率为0。
3. 事件的互斥和对立事件:如果两个事件不能同时发生,我们称它们互斥事件;如果两个事件中一个发生,另一个一定不发生,我们称它们为对立事件。
二、概率的计算方法1. 频率法:频率是指某个事件在大量实验中发生的次数与总实验次数的比值。
当实验次数足够大时,频率可以逼近真实概率。
2. 几何法:几何法通过几何图形的面积比来计算概率。
对于等可能的随机事件,可以通过图形的面积比来求得概率。
3. 组合数学方法:对于有限个数的样本空间和等可能的随机事件,我们可以使用组合数学的知识来计算概率,如排列、组合等。
4. 事件的加法原理:如果A和B是两个随机事件,则事件A或事件B发生的概率等于事件A和事件B发生概率之和减去事件A和事件B同时发生的概率。
5. 事件的乘法原理:如果A和B是两个相互独立的随机事件,则事件A和B同时发生的概率等于事件A发生的概率乘以事件B发生的概率。
三、概率在实际问题中的应用1. 古典概率:古典概率是指当样本空间中各个结果发生的概率相等时,事件A发生的概率等于事件A包含的有利结果数除以样本空间中结果的总数。
2. 条件概率:条件概率是指在已知事件B发生的条件下,事件A发生的概率。
条件概率通常用P(A|B)表示,其中P(A|B)表示在事件B发生的前提下事件A发生的概率。
3. 贝叶斯定理:贝叶斯定理是一种根据已知条件下的概率推算出另一事件发生的概率的方法。
高中数学概率统计知识点总结高中数学概率统计是数学中的一门重要学科,它研究了随机事件的发生规律以及通过统计方法对数据进行分析和推断的技巧。
下面我将对高中数学概率统计的知识点进行总结,帮助大家更好地掌握这门学科。
一、概率1. 随机事件的基本概念:随机事件是指在一定条件下,可能发生也可能不发生的事件。
2. 事件的运算:事件的和、积、差、余事件。
3. 事件的等价关系:互不相容事件、互斥事件、对立事件。
4. 事件的概率:频率对概率的定义、概率的性质。
5. 概率空间:试验的样本空间、随机事件、样本点、概率空间的性质。
二、概率计算1. 频率与概率:计算频率、计算概率。
2. 概率的计算法则:加法法则、减法法则、乘法法则、全概率公式、贝叶斯定理。
3. 排列与组合:排列、组合的计算公式。
三、随机变量及其分布律1. 随机变量的基本概念:随机变量是指试验结果的一个实函数,它的取值不确定,但取值的范围是确定的。
2. 随机变量的分布律:离散随机变量、连续随机变量、概率密度函数、分布函数。
3. 随机变量的数字特征:数学期望、方差、标准差。
四、常见离散型随机变量1. 伯努利分布:定义、数学期望、方差。
2. 二项分布:定义、数学期望、方差。
3. 泊松分布:定义、数学期望、方差。
五、常见连续型随机变量1. 均匀分布:定义、数学期望、方差。
2. 正态分布:定义、标准正态分布、数学期望、方差。
3. 指数分布:定义、数学期望、方差。
六、大数定律与中心极限定律1. 大数定律:大数定律是指随着试验次数的增加,样本均值会稳定地接近于总体均值。
2. 中心极限定律:中心极限定律指的是当样本容量足够大时,样本均值的分布近似服从正态分布。
七、统计推断1. 统计参数与统计量:总体参数、样本参数、抽样分布。
2. 点估计与区间估计:点估计、区间估计的概念与计算方法。
3. 假设检验:原假设与备择假设、显著性水平、拒绝域、接受域。
4. 卡方检验:卡方分布、卡方检验的计算方法。
高三选修概率知识点概率是数学中的一门重要分支,也是高中数学中的一项重要选修内容。
它是研究随机事件发生可能性的数学理论,可以帮助人们在面对不确定性时做出明智的决策。
下面将介绍高三选修概率知识点的相关内容。
一、概率基本概念概率是随机事件发生的可能性大小的度量,用一个介于0和1之间的实数表示,事件发生的可能性越大,概率值越接近1;事件发生的可能性越小,概率值越接近0。
二、样本空间与事件样本空间是指随机试验的所有可能结果构成的集合。
事件是样本空间的子集,表示我们所关心的结果。
事件的概率可以通过事件中的有利结果个数与样本空间中的总结果个数之比来计算。
三、概率的计算方法1. 古典概率:适用于各种结果相互等可能且试验方式相同的情况。
计算公式为:P(A) = 有利结果个数 / 总结果个数。
2. 几何概率:适用于连续事件或无法通过计数得出有利结果个数的情况。
计算公式为:P(A) = 有利区域的面积 / 总区域的面积。
3. 统计概率:适用于大量重复实验并统计频率的情况。
计算公式为:P(A) = 发生事件A的次数 / 总实验次数。
四、事件关系与概率运算1. 互斥事件:两个事件A和B不能同时发生,其概率运算为:P(AB) = P(A) + P(B)。
2. 对立事件:两个事件A和A'互为对立事件,即A发生的概率与A'不发生的概率相等,其概率运算为:P(A) + P(A') = 1。
3. 独立事件:两个事件A和B相互独立,即事件A的发生与事件B的发生无关,其概率运算为:P(AB) = P(A) × P(B)。
五、条件概率当已知事件A发生的前提下,事件B发生的概率称为条件概率,计算公式为:P(B|A) = P(AB) / P(A)。
其中,P(B|A)读作“在A发生的条件下B发生的概率”。
六、全概率公式与贝叶斯定理全概率公式可以帮助我们计算一个复杂事件的概率。
设A1、A2、...、An是一组互不相容的事件,且它们的并事件为全样本空间S。
高中数学概率知识点总结及公式高中数学概率知识点总结及公式概率是数学中一个重要的分支,广泛应用于各个领域,尤其是在统计学、经济学和工程学中。
在高中数学中,概率是一个重要的学习内容,涵盖了许多基本概念和公式。
本文将对高中数学中的概率知识点进行总结,并介绍相关的公式。
一、概率的基本概念1.试验:指对某个随机现象的观察、测量或实验,例如掷硬币、抽卡等等。
2.样本空间:指试验所有可能结果的集合,通常用S表示。
3.事件:指样本空间中的一个子集,通常用A、B、C等表示。
4.基本事件:指样本空间中的一个点,即某个具体结果。
5.概率:指某个事件发生的可能性大小,通常用P(A)表示,0 ≤ P(A) ≤ 1。
二、概率的计算方法1.古典概型:当样本空间中的基本事件具有等可能性时,可以采用古典概型计算概率。
例如掷硬币,硬币正反面各有一个基本事件,且两者等可能,所以正面出现的概率为1/2。
2.频率概率:通过进行大量试验,统计某个事件发生的频率,来近似计算概率。
例如抛硬币1000次,统计正面出现的次数,用正面出现的次数除以总次数,可以得到正面出现的频率,近似估计正面出现的概率。
3.几何概率:通过分析几何模型,计算概率。
例如在正方形纸片上随机投针,可以通过纸片上针与横线相交的概率来计算π的近似值。
三、概率的性质1.互斥事件:指两个事件不可能同时发生,两个事件的交集为空集。
例如掷骰子,事件A为出现偶数,事件B为出现奇数,显然A和B是互斥事件。
2.对立事件:指两个事件互为补事件,即一个事件发生的概率等于它的对立事件不发生的概率,两个事件的和为样本空间。
例如抽一张扑克牌,事件A为红桃,事件B为非红桃,显然A和B互为对立事件。
3.独立事件:指两个事件的发生与否互不影响,一个事件的发生不影响另一个事件发生的概率。
例如掷两个骰子,事件A为第一个骰子出现奇数,事件B为第二个骰子出现奇数,显然A和B是独立事件。
四、概率的计算公式1.加法法则:对于互斥事件A和B,有P(A∪B) = P(A) +P(B)。
高中概率有关知识点总结概率是描述随机事件发生可能性的数学工具。
在高中数学课程中,概率是一个重要的知识点,学生需要掌握概率的基本概念、计算方法和应用技巧。
下面我们将针对高中概率知识点进行总结,主要包括概率的基本概念、基本概率问题、条件概率和贝叶斯定理、排列组合与概率、随机变量和分布以及极限定理等内容。
一、概率的基本概念1. 随机事件和样本空间随机事件是指在一次试验中可能发生的一个或一组结果,而样本空间则是所有可能结果的集合。
例如,投硬币的结果可以是正面或反面,所以样本空间Ω={正面,反面}。
在概率问题中,我们通常用样本空间来描述随机事件的可能结果。
2. 事件的概率事件A的概率P(A)表示事件A发生的可能性大小,它是一个介于0和1之间的实数。
概率的最基本性质是非负性和规范性。
即对于任意事件A,0≤P(A)≤1,并且P(Ω)=1。
3. 古典概率和频率概率古典概率是指根据事件发生的理论可能性来计算概率,如抛硬币、掷骰子等。
频率概率是指通过实际试验的结果来计算概率,如抛硬币100次,统计正面朝上的次数。
二、基本概率问题1. 互斥事件和对立事件互斥事件是指两个事件不可能同时发生,如掷骰子出现1点和出现2点。
对立事件是指两个事件之一一定会发生,如掷骰子出现奇数点和出现偶数点。
2. 独立事件独立事件是指一个事件的发生不受另一个事件的影响,例如两次掷硬币结果是独立的。
3. 事件的联合概率事件A和事件B同时发生的概率记作P(A∩B),它表示事件A和事件B共同发生的可能性。
如果事件A和事件B是独立事件,则P(A∩B)=P(A)P(B)。
4. 事件的互补概率事件A的互补事件是指A不发生的事件,记作A',其概率为P(A')=1-P(A)。
三、条件概率和贝叶斯定理事件A在事件B发生的条件下发生的概率称为事件A在事件B的条件下的概率,记作P(A|B)。
它表示在已知事件B发生的情况下,事件A发生的可能性大小。
2. 乘法法则有两个事件A和B,事件A和B都发生的概率可以用条件概率表示为P(A∩B)=P(A|B)P(B)。
高中数学概率知识点总结在高中数学中,概率是一个重要的知识点,它不仅在数学学科中有着广泛的应用,也与我们的日常生活息息相关。
下面就让我们一起来详细梳理一下高中数学概率的相关知识。
一、随机事件与概率1、随机事件随机事件是指在一定条件下,可能出现也可能不出现,而在大量重复试验中具有某种规律性的事件。
比如掷骰子出现的点数、明天是否下雨等。
2、概率的定义概率是用来描述随机事件发生可能性大小的数值。
对于一个随机事件 A,其概率 P(A)的值介于 0 到 1 之间。
如果 P(A) = 0,则事件 A 几乎不可能发生;如果 P(A) = 1,则事件 A 一定会发生;如果 0 < P(A) < 1,则事件 A 有可能发生。
3、古典概型古典概型是一种最简单的概率模型。
具有以下两个特点:(1)试验中所有可能出现的基本事件只有有限个。
(2)每个基本事件出现的可能性相等。
在古典概型中,事件 A 的概率 P(A) =事件 A 包含的基本事件个数÷总的基本事件个数。
4、几何概型几何概型是另一种常见的概率模型。
特点是试验中所有可能出现的结果(基本事件)有无限多个,每个基本事件发生的可能性相等。
其概率的计算通常与长度、面积、体积等几何度量有关。
二、事件的关系与运算1、事件的包含关系如果事件 A 发生必然导致事件 B 发生,那么称事件 B 包含事件 A,记作 A⊆B。
2、事件的相等关系如果 A⊆B 且 B⊆A,那么称事件 A 与事件 B 相等,记作 A = B。
3、并事件(和事件)事件 A 或事件 B 至少有一个发生的事件称为事件 A 与事件 B 的并事件,记作 A∪B。
4、交事件(积事件)事件 A 和事件 B 同时发生的事件称为事件 A 与事件 B 的交事件,记作A∩B。
5、互斥事件如果事件 A 与事件 B 不能同时发生,那么称事件 A 与事件 B 互斥,其含义是A∩B =∅。
6、对立事件若两个互斥事件A、B 必有一个发生,则称事件A、B 为对立事件,记作 A =。
选修2-3定理概念及公式总结第一章基数原理1.分类计数原理:做一件事情,完成它可以有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种不同的方法,……,在第n 类办法中有n m 种不同的方法那么完成这件事共有 N=m 1+m 2+……+m n 种不同的方法2.分步计数原理:做一件事情,完成它需要分成n 个步骤,做第一步有m 1种不同的方法,做第二步有m 2种不同的方法,……,做第n 步有m n 种不同的方法,那么完成这件事有N=m 1×m 2×……m n 种不同的方法 分类要做到“不重不漏”,分步要做到“步骤完整”3.两个计数原理的区别:如果完成一件事,有n 类办法,不论哪一类办法中的哪一种方法,都能独立完成这件事,用分类计数原理,如果完成一件事需要分成几个步骤,各步骤都不可缺少,需要完成所有步骤才能完成这件事,是分步问题,用分步计数原理.4.排列:从n 个不同的元素中取出m 个(m ≤n)元素并按一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.(1)排列数: 从n 个不同的元素中取出m 个(m ≤n)元素的所有排列的个数.用符号m n A 表示 (2)排列数公式:)1()2)(1(+-⋅⋅⋅--=m n n n n A mn用于计算, 或m nA )!(!m n n -=()n m N m n ≤∈*,, 用于证明。
nnA =!n =()1231⨯⨯⨯⨯- n n =n(n-1)! 规定0!=1 5.组合:一般地,从n 个不同元素中取出m ()m n ≤个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合(1)组合数: 从n 个不同元素中取出m ()m n ≤个元素的所有组合的个数,用mn C 表示(2)组合数公式: (1)(2)(1)!m m n nm m A n n n n m C A m ---+== 用于计算,或)!(!!m n m n C m n -=),,(n m N m n ≤∈*且 用于证明。
概率的知识点总结高中一、基本概念1.概率的定义概率是指某种事情发生的可能性大小。
在数学上,通常用一个数值来表示概率,这个数值一般在0到1之间,0表示不可能事件,1表示必然事件,其他数值表示发生的可能性大小。
2.试验与随机事件概率是从随机试验中引入的概念。
随机试验是指具有下面性质的试验:1)可在相同的条件下重复进行;2)每次试验的结果是不确定的。
试验可能有多种结果,每种结果称为一种随机事件。
3.样本空间、随机事件和概率样本空间是指随机试验的所有可能结果的集合,用S表示。
随机事件是样本空间的子集,用A、B等字母表示,表示一些可能发生的结果。
概率则是对各种随机事件发生的可能性大小的描述,用P(A)表示。
4.必然事件、不可能事件、独立事件与互斥事件必然事件是指一定发生的事件,概率为1;不可能事件是指一定不发生的事件,概率为0。
独立事件是指事件A的发生不影响事件B的发生,P(AB) = P(A)P(B);互斥事件是指事件A的发生导致事件B不发生,反之亦然。
5.相互独立的随机事件对于两个相互独立的事件A和B,有P(AB) = P(A)P(B)。
对于n个相互独立的随机事件A1,A2,…,An,有P(A1A2…An) = P(A1)P(A2)…P(An)。
6.条件概率当某一事件发生的前提下,另一事件发生的概率称为条件概率,用P(B|A)表示,表示在已知事件A发生的条件下,事件B发生的概率。
条件概率的计算公式为P(B|A) =P(AB)/P(A)。
7.全概率公式和贝叶斯定理全概率公式是指对某一事件A的概率P(A)进行分解成若干个不相交事件发生的条件概率相乘之和。
贝叶斯定理是指对某一事件A的条件概率P(B|A)进行计算,也可以用全概率公式进行推导。
8.随机变量与概率分布随机变量是对随机试验结果的数量特征的数学描述,包括离散随机变量和连续随机变量。
概率分布是指随机变量在各个取值上所对应的概率。
9.大数定律和中心极限定理大数定律是指随机试验的次数增加时,随机事件的频率将收敛于其概率。
概率计数原理知识点总结一、概率计数原理的基本概念1.1 概率的基本概念在介绍概率计数原理之前,我们首先要了解概率的基本概念。
概率是描述某一事件发生可能性的数学量,通常用P(A)表示。
它的取值范围是0到1之间。
当P(A)等于0时,表示事件A的发生概率为0,即事件A不会发生;当P(A)等于1时,表示事件A的发生概率为1,即事件A必然会发生;当P(A)在0和1之间时,表示事件A的发生可能性介于0和1之间。
1.2 排列和组合在概率计数原理中,排列和组合是两个重要的概念。
排列是指从n个不同元素中取出m(m<=n)个元素并按照一定的顺序排列的方法数,它的计算公式是Anm=n!/(n-m)!。
组合是指从n个不同元素中取出m(m<=n)个元素的所有组合的方法数,它的计算公式是Cnm=n!/(m!*(n-m)!)。
1.3 全概率公式和贝叶斯定理在概率计数原理中,还有两个重要的概念是全概率公式和贝叶斯定理。
全概率公式是指对于一个事件A,如果它可以被划分为若干个互不相交的事件B1,B2,...,Bn,那么事件A 的概率可以表示为P(A)=Σi=1~nP(Bi)P(A|Bi)。
贝叶斯定理是指在已知事件B的条件下,事件A的概率可以表示为P(A|B)=P(B|A)P(A)/P(B)。
全概率公式和贝叶斯定理在概率计数原理中有重要的应用。
二、概率计数原理的应用方法2.1 多项式定理在概率计数原理中,多项式定理是一种重要的应用方法。
它是指对于一个n元事件,它的所有可能情况的发生概率之和等于1,即P(A1)+P(A2)+...+P(An)=1。
多项式定理在解决复杂事件的概率计算问题时非常有用。
2.2 置换和抽样在概率计数原理中,置换和抽样是两种常用的应用方法。
置换是指从n个不同元素中取出m(m<=n)个元素进行排列的方法数,它的计算公式是Anm=n!/(n-m)!。
抽样是指从n个不同元素中取出m(m<=n)个元素的所有可能的组合的方法数,它的计算公式是Cnm=n!/(m!*(n-m)!。
高中数学中的概率计算知识点总结概率是数学中一个重要的分支,也是我们日常生活中经常涉及的概念。
在高中数学学科中,概率计算作为一个基础内容,被广泛地应用于各个领域。
本文将对高中数学中的概率计算知识点进行总结和归纳。
一、基本概念1. 试验和随机事件在概率计算中,试验是指重复进行的具有明确结果的过程,随机事件则是试验中可能发生的一种结果。
2. 样本空间和事件样本空间是指试验的所有可能结果组成的集合,事件是样本空间的子集。
3. 概率和频率概率是指某个事件发生的可能性,在理论上可以通过统计方法进行估算,频率是指某个事件在多次试验中发生的次数与总次数的比值。
4. 必然事件和不可能事件必然事件是指一定会发生的事件,不可能事件是指不会发生的事件。
二、概率计算方法1. 等可能概型当一个试验的样本空间中的每个样本发生的概率相等时,称此试验为等可能概型。
在等可能概型中,计算某个事件发生的概率可以直接通过事件中有利样本数与总样本数的比值得出。
2. 排列与组合当试验的样本空间中的样本数较多时,我们常常需要使用排列与组合的方法来计算事件发生的概率。
排列是指从一组对象中按照一定的次序选取若干个对象,组合是指从一组对象中选取若干个对象,不考虑其次序。
3. 条件概率条件概率是指在已知某个事件发生的条件下,另一个事件发生的概率。
条件概率的计算可以通过利用事件的交、并运算以及概率的运算规律得出。
4. 乘法定理和全概率公式乘法定理适用于事件的联合概率计算,全概率公式适用于事件的条件概率计算。
在实际问题中,乘法定理和全概率公式常常结合使用。
三、概率计算实例1. 抛硬币问题投掷一枚硬币,问正面朝上的概率是多少?根据等可能概型的计算方法可知,正面朝上的概率为1/2。
2. 生日悖论假设一个教室里有23位学生,问至少有两位学生生日相同的概率是多少?根据排列与组合的计算方法可知,至少有两位学生生日相同的概率为50.73%。
3. 病人与诊断已知某种疾病在人群中的发生率是1%,诊断该疾病的准确率是99%,误诊率是1%,问一个人被诊断为患有该疾病,其实际确实患有该疾病的概率是多少?根据条件概率的计算方法可知,该概率约为49%。
高中数学中的概率计数知识点总结概率计数是高中数学中重要的一个分支,它研究的是事件发生的可能性。
在实际生活中,我们经常需要利用概率计数来解决各种问题。
本文将对高中数学中的概率计数知识点进行总结,并提供一些相关的例题进行说明。
一、排列组合在概率计数中,排列组合是最基础的概念之一。
排列指的是从给定的元素集合中选取若干不同的元素按照一定的顺序排列成一组,而组合指的是不考虑顺序的选取。
排列和组合的计算通常依赖于阶乘的性质。
例题1:有6个人参加篮球比赛,其中要选出3人组成一支队伍,问有多少种不同的组合方式?解:这是一个组合问题,根据组合的计算公式,可得答案为C(6,3)=20种。
例题2:某班学生有20人,其中有10人参加篮球比赛,另外10人参加足球比赛。
现从每个比赛项目中分别选出3人组成一支队伍,问有多少种不同的组合方式?解:这是一个求两个组合数量的问题,根据乘法原理,可得答案为C(10,3) × C(10,3) = 5040种。
二、事件的概率概率是研究事件发生可能性的数值指标,它的取值范围在0到1之间。
当事件的概率接近于1时,表示发生该事件的可能性很大,当概率接近于0时,则表示发生该事件的可能性很小。
例题3:一枚骰子投掷一次,问点数为偶数的概率是多少?解:根据一枚骰子共有6个可能的结果,其中点数为偶数的有3个,所以概率为3/6=1/2。
例题4:一袋中有红、白、蓝三色球各若干个,从袋中随机取出一球,事件A表示取得红球,事件B表示取得白球,问事件A和事件B同时发生的概率是多少?解:根据事件A和事件B的定义,可知它们同时发生意味着从袋中取出的是既是红球又是白球的球。
假设红、白、蓝三色球的数量分别为m、n、k个,则概率为(m/n) × (n/(m+n+k)) = m/(m+n+k)。
三、条件概率条件概率是指在已知某一事件发生的前提下,另一事件发生的概率。
它的计算通常依赖于乘法定理。
例题5:某班学生中,男生和女生的人数分别为30人和20人,随机抽取一名学生,问该学生为男生的概率是多少?解:学生总数为50人,男生人数为30人,所以概率为30/50=3/5。
选修2-3定理概念及公式总结
第一章基数原理
1.分类计数原理:做一件事情,完成它可以有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种不同的方法,……,在第n 类办法中有n m 种不同的方法 N=m 1+m 2+……+m n 种不同的方法
2.分步计数原理:做一件事情,完成它需要分成n 个步骤,做第一步有m 1种不同的方法,做第二步有m 2种不同的方法,……,做第n 步有m n 种不同的方法,那么完成这件事有N=m 1×m 2×……m n 种不同的方法 分类要做到“不重不漏”,分步要做到“步骤完整”
3.两个计数原理的区别:
如果完成一件事,有n 类办法,不论哪一类办法中的哪一种方法,都能独立完成这件事,用分类计数原理,
如果完成一件事需要分成几个步骤,各步骤都不可缺少,需要完成所有步骤才能完成这件事,是分步问题,用分步计数原理.
!
4.排列:从n 个不同的元素中取出m 个(m ≤n)元素并按一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.
(1)排列数: 从n 个不同的元素中取出m 个(m ≤n)元素的所有排列的个数.用符号m n A 表示 (2)排列数公式:)1()2)(1(+-⋅⋅⋅--=m n n n n A m
n
用于计算, 或m n
A )!
(!
m n n -=()
n m N m n ≤∈*,, 用于证明。
n
n
A =!n =()1231⨯⨯⨯⨯- n n =n(n-1)! 规定0!=1 5.组合:一般地,从n 个不同元素中取出m ()m n ≤个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合
(1)组合数: 从n 个不同元素中取出m ()m n ≤个元素的所有组合的个数,用m
n C 表示
[
(2)组合数公式: (1)(2)(1)
!
m m n n
m m A n n n n m C A m ---+== 用于计算,
或)!
(!!
m n m n C m n -=
),,(n m N m n ≤∈*且 用于证明。
(3)组合数的性质:
①m n n m n C C -=.规定:10=n C ; ②m n C 1+=m n C +1-m n
C . ③ n C C n n n ==-11 ④1=n
n C
6.二项式定理及其特例:
(1)二项式定理()()
*--∈+++++=+N n b C b a C b a C a C b a n n n n n n n n n n
r r r 1
10
展开式共有n+1项,其中各项的系数{}()n C n ,,2,1,
0r r ∈叫做二项式系数。
?
(2)特例:1
(1)1n r r
n n
n x C x C x x +=++++
+.
7.二项展开式的通项公式: r r r 1r b a C T n n -+= (为展开式的第r+1项) 8.二项式系数的性质:
(1)对称性:在()n
b a +展开式中,与首末两端 “等距”的两个二项式系数相等,
即m
n n m n C C -=,直线2
n
r =
是图象的对称轴. (2)增减性与最大值:当2
1
r +<
n 时,二项式系数逐渐增大,由对称性知它的
后半部分是逐渐减小的,且在中间取得最大值。
当n 是偶数时,在中间一项2
2n +T 的二项式系数2n n
C 取得最大值;
当n 是奇数时,在中间两项2
1n +T ,2
3n +T 的二项式系数12n n
C
-,12n n
C
+取得最大值.
9.各二项式系数和: :
(1)=+++n 21
0n n n n C C C C n 2,
(2)1
5314202
-=+++=+++n n n n n n n C C C C C C .
10.各项系数之和:(采用赋值法)
例:求
()932y x -的各项系数之和
解:(
)992728190932y a y x a y x a x a y x ++++=-
令1,
1==y x
,则有()()132329
92109
-=-=++++=-a a a a y x ,
故各项系数和为-1
·
第二章 概率
知识点:
1、随机变量:如果随机试验可能出现的结果可以用一个变量X 来表示,并且X 是随着试验的结果的不同而变化,那么这样的变量叫做随机变量. 随机变量常用大写字母X 、Y 等或希腊字母ξ、η等表示。
2、离散型随机变量:在上面的射击、产品检验等例子中,对于随机变量X 所有可能的值能一一列举出来,这样的随机变量叫做离散型随机变量.
3、离散型随机变量的分布列:一般的,设离散型随机变量X 可能取的值为x 1,x 2,..... ,x i ,......,x n X 取每一个值 x i 的概率p 1,p 2,..... , p i ,......, p n ,则称表为离散型随机变量X 的概率分布,简称分布列
4、分布列性质① p i ≥0, i =1,2,… n ;② p 1 + p 2 +…+p n = 1.
、
5、二点分布:如果随机变量X 的分布列为:
其中0<p<1,q=1-p ,则称离散型随机变量X 服从参数p 的二点分布
6、超几何分布:一般地, 设总数为N 件的两类物品,其中一类有M 件,从所有物品中任取n(n ≤N)件,这n 件中所含这类物品件数X 是一个离散型随机变量,则它取值为m 时的概率为
为和中的较小的一个()(0,n M )m n m M N M
n
N
C C P X m m l l C --==≤≤, 7、条件概率:对任意事件A 和事件B ,在已知事件A 发生的条件下事件B 发生的概率,叫做
条件概率.记作P(B|A),读作A 发生的条件下B 的概率
8、公式:
.
0)(,)()
()|(>=
A P A P
B A P A B P
9、相互独立事件:事件A(或B)是否发生对事件B(或A)发生的概率没有影响,这样的两个事件
叫做相互独立事件。
(|)()P B A P B =
10、)
11、
n 次独立重复试验:在相同条件下,重复地做n 次试验,各次试验的结果相互独立,一般
就称它为n 次独立重复试验
11、二项分布: 设在n 次独立重复试验中某个事件A 发生的次数设为X .如果在一次试验中某事件发生的概率是p ,事件A 不发生的概率为q=1-p ,那么在n 次独立重复试验中 ,事件A
恰好发生k 次的概率是()k k n k
n P X k C p q -==(其中 k=0,1, ……,n )
于是可得随机变量X 的分布列如下:
这样的离散型随机变量X 服从参数为n ,p 二项分布,记作X ~B(n ,p) 。
12、数学期望:一般地,若离散型随机变量X 的概率分布为
则称1122()n n E X x p x p x p =++
+为离散型随机变量X 的数学期望或均值(简称为期望).
】
13、方差:22
21122()(())(())(())n n D X x E X p x E X p x E X p =-+-++-叫随机变量X
的方差,简称方差。
14、集中分布的期望与方差一览:
期望
方差
两点分布
()E X p = ()D X pq = ~
二项分布,X ~ B (n,p )
()E X np =
()D X npq =
15、正态分布:
若正态变量概率密度曲线的函数表达式为
】
)
,
(
,
2
1
)
(2
2
2
)
(
+∞
-∞
∈
=
-
-
x
e
x
f
x
σ
μ
σ
π
的图像,其中解析式中的实数、
μσ是参数,且0
σ>,、
μσ分别表示总体的期望与标准差.期望为μ与标准差为σ的正态分布通常记作2
(,)
μσ
N,正态变量概率密度曲线的函数的图象称为正态曲线。
16、正态曲线基本性质:
(1)曲线在x轴的上方,并且关于直线x=μ对称.
(2)曲线在x=μ时处于最高点,并且由此处向左、右两边无限延伸时,曲线逐渐降低,呈现“中间高,两边低”的形状.
(3)曲线的形状由σ确定.σ越大,曲线越“矮胖”,表示总体的分布越分散;
σ越小,曲线越“高瘦”,表示总体的分布越集中.
17、3σ原则:
容易推出,正变量在区间(2,2)
μσμσ
-+以外取值的概率只有%,在(3,3)
μσμσ
-+以外取值的概率只有% 由于这些概率很小,通常称这些情况发生为小概率事件.也就是说,通常认为这些情况在一次试验中几乎是不可能发生的.
(,)68.3%
Pμσμσ
-+=
(2,2)95.4%
Pμσμσ
-+=
(3,3)99.7%
Pμσμσ
-+=
超几何分布N,M,n()
nM
E X
N
=。