ds18b20工作原理
- 格式:docx
- 大小:36.48 KB
- 文档页数:2
DS18B20的工作原理:DS18B20单线数字温度传感器是DALLAS半导体公司开发的适配微处理器的智能温度传感器。
它具有3脚TO-92小体积封装形式。
温度测量范围为-55℃--+125℃,可进行9-12位的编程,分辨率可达0.0625。
被测温度用符号扩展的16位数字量方式串行输出。
工作电压支持3V-5.5V,CPU只需一根端口线就能与诸多DS18B20通信,占用微处理器的端口较少。
DS18B20采用3脚TO-92封装,引脚排列如图:DQ:数字信号端;GND:电源地;VDD:电源输入端DS18B20的内部框图如图:主要由寄生电源、64位激光ROM与单线接口、温度传感器、高速暂存器、触发寄存器、存储与控制逻辑、8位循环冗余校验码发生器组成。
测温电路原理:低温度系数振荡器用于产生稳定的频率f,振荡频率受温度的影响很小,高温度系数振荡器将被测温度转化成频率信号,随温度变化其振荡频率明显改变。
图中还隐含着计数门,当计数门打开时,DS18B20就对低温度振荡器产生的时钟脉冲进行计数,进而完成温度测量。
计数门的开启时间由高温度系数振荡器来决定。
每次测量前,首先将-55℃所对应的基数分别置入减法计数器、温度寄存器中。
在计数门关闭之前若计数器已减至零,温度寄存器中的数值就增加0.5℃。
然后,计数器依斜率累加器的状态置入新的数值,再对时钟计数,然后减至零,温度寄存器值又增加0.5℃。
只要计数门仍未关闭,就重复上诉过程,直至温度寄存器值达到被测温度值。
温度传感器的应用背景:当今社会已经完全进入了电子信息化,温度控制器在各行各业中已经得到了充分的利用。
具有对温度进行实时监控的功能,保证机器,测量仪器等等的正常运坐,他最大的特点是能实时监控周围温度的高低,并能同时控制电机运作来改变温度。
现阶段运用于国内大部分家庭,系统效率越来越高,成本也越来越低。
并可以根据其性质进行相应的改进运用于不同场合进行温度监测控制,比如仓库里、汽车里、电脑等等,带来大量的经济效益。
DS18B20的工作原理DS18B20是一款数字温度传感器,它采用单总线接口进行通信,并且具有高精度、低功耗和可编程分辨率的特点。
在本文中,我将详细介绍DS18B20的工作原理,包括其硬件结构和通信协议。
1. 硬件结构DS18B20由温度传感器、控制逻辑和存储器组成。
温度传感器采用基于硅的温度传感器技术,能够测量环境温度并将其转换为数字信号。
控制逻辑负责控制传感器的工作模式和数据传输。
存储器用于存储温度传感器的惟一标识符和用户可编程的配置寄存器。
2. 工作原理DS18B20采用单总线接口进行通信,这意味着它只需要一个引脚来进行数据传输和控制。
传感器和主控设备之间的通信是通过发送和接收脉冲来实现的。
在通信开始之前,主控设备会发送复位脉冲,以确保传感器处于正确的工作状态。
接下来,主控设备发送指令给传感器,指令包括读取温度、写入配置等操作。
传感器根据指令执行相应的操作,并将结果发送回主控设备。
为了确保数据的准确性,DS18B20采用了一种叫做1-Wire协议的通信协议。
在这个协议中,数据是通过脉冲的持续时间来表示的。
逻辑“0”的脉冲持续时间较短,而逻辑“1”的脉冲持续时间较长。
主控设备和传感器之间的通信是通过发送和接收这些脉冲来实现的。
3. 数据传输DS18B20的数据传输包括三个阶段:复位、命令和数据。
在复位阶段,主控设备发送一个复位脉冲,以确保传感器处于正确的工作状态。
在命令阶段,主控设备发送指令给传感器。
指令包括读取温度、写入配置等操作。
传感器根据指令执行相应的操作,并将结果发送回主控设备。
在数据阶段,传感器将温度数据转换为数字信号,并通过单总线接口发送给主控设备。
主控设备接收到数据后,可以进行进一步的处理和显示。
4. 应用领域由于DS18B20具有高精度、低功耗和可编程分辨率的特点,它在许多领域得到了广泛应用。
在工业领域,DS18B20可用于温度监测和控制系统,如温度计、温度报警器等。
在农业领域,DS18B20可用于温室、畜牧场等环境温度的监测和控制。
DS18B20的工作原理DS18B20是一种数字温度传感器,它采用单总线接口进行通信,并且具有高精度和可靠性。
DS18B20的工作原理基于温度对半导体材料电阻值的影响。
DS18B20传感器内部包含一个温度传感器和一个数字转换器。
温度传感器是基于PN结的二极管,其电阻值与温度呈负温度系数。
当温度升高时,半导体材料的电阻值减小,反之亦然。
DS18B20传感器通过单总线接口与主控设备进行通信。
在通信过程中,主控设备发送指令给传感器,传感器将温度数据转换成数字信号并发送回主控设备。
DS18B20传感器采用一种称为“1-Wire”的通信协议。
这种协议允许多个DS18B20传感器通过单根总线进行连接,每个传感器都有唯一的64位ROM代码,用于区分不同的传感器。
在通信过程中,主控设备向总线发送复位脉冲,然后传感器会回应存在脉冲。
主控设备发送指令给传感器,传感器根据指令进行相应的操作,例如读取温度值。
传感器将温度值转换为数字信号,并通过总线发送给主控设备。
DS18B20传感器具有高精度和可靠性。
它可以测量范围从-55°C到+125°C,并且具有±0.5°C的温度精度。
传感器内部有一个温度转换器,可以将温度转换为12位的数字信号,提供更高的精度。
DS18B20传感器还具有一些其他特性,例如可编程分辨率和温度报警功能。
可编程分辨率允许用户选择不同的温度精度,从9位到12位。
温度报警功能可以设置上下限温度值,当温度超过或低于设定值时,传感器将触发警报。
总结一下,DS18B20的工作原理是基于温度对半导体材料电阻值的影响。
它通过单总线接口与主控设备通信,采用1-Wire通信协议。
传感器内部有一个温度传感器和数字转换器,可以将温度转换为数字信号并发送给主控设备。
DS18B20具有高精度、可靠性和一些额外的特性,使其在许多应用中被广泛使用。
DS18B20 工作原理DS18B20 的读写时序和测温原理与DS1820 相同,只是得到的温度值的位数因分辨率不同而不同,且温度转换时的延时时间由2s 减为750ms。
DS18B20 测温原理如图3 所示。
图中低温度系数晶振的振荡频率受温度影响很小,用于产生固定频率的脉冲信号送给计数器1。
高温度系数晶振随温度变化其振荡率明显改变,所产生的信号作为计数器2 的脉冲输入。
计数器1 和温度寄存器被预置在-55℃所对应的一个基数值。
计数器1 对低温度系数晶振产生的脉冲信号进行减法计数,当计数器1 的预置值减到0 时,温度寄存器的值将加1,计数器1 的预置将重新被装入,计数器1 重新开始对低温度系数晶振产生的脉冲信号进行计数,如此循环直到计数器2 计数到0 时,停止温度寄存器值的累加,此时温度寄存器中的数值即为所测温度。
图3 中的斜率累加器用于补偿和修正测温过程中的非线性,其输出用于修正计数器1 的预置值。
DS18B20 测温原理框图DS18B20 有4 个主要的数据部件:(1)光刻ROM 中的64 位序列号是出厂前被光刻好的,它可以看作是该DS18B20 的地址序列码。
64 位光刻ROM 的排列是:开始8 位(28H)是产品类型标号,接着的48 位是该DS18B20 自身的序列号,最后8 位是前面56 位的循环冗余校验码(CRC=X8+X5+X4+1)。
光刻ROM 的作用是使每一个DS18B20 都各不相同,这样就可以实现一根总线上挂接多个DS18B20 的目的。
(2)DS18B20 中的温度传感器可完成对温度的测量,以12 位转化为例:用16 位符号扩展的二进制补码读数形式提供,以0.0625℃/LSB 形式表达,其中S 为符号位。
DS18B20 温度值格式表这是12 位转化后得到的12 位数据,存储在18B20 的两个8 比特的RAM 中,二进制中的前面5 位是符号位,如果测得的温度大于0,这5 位为0,只要将测到的数值乘于0.0625 即可得到实际温度;如果温度小于0,这5 位为1,测到的数值需要取反加1 再乘于0.0625 即可得到实际温度。
DS18B20的工作原理DS18B20是一款数字温度传感器,具有高精度、低功耗、数字输出等特点。
它采用了独特的1-Wire接口技术,可以通过单一的数据线进行通信和供电,非常适合在各种环境中进行温度监测和控制。
DS18B20的工作原理如下:1. 温度测量原理:DS18B20利用半导体材料的温度特性来测量温度。
它内部集成为了一个温度传感器,该传感器基于温度对硅芯片内部电压的影响进行测量。
当温度升高时,硅芯片内部的电压也会随之变化,通过测量这个变化的电压,就可以得到温度的数值。
2. 1-Wire接口技术:DS18B20采用了独特的1-Wire接口技术,这意味着它只需要一根数据线进行通信和供电。
在通信过程中,DS18B20会将温度数据转换为数字信号,并通过数据线传输给主控设备。
同时,主控设备也可以通过数据线向DS18B20发送指令,控制其工作模式和参数设置。
3. 工作电源:DS18B20可以通过1-Wire接口从主控设备获取电源,也可以通过外部提供的电源进行供电。
当通过1-Wire接口供电时,DS18B20会从数据线上提取能量,并利用内部的电源管理电路进行稳定的工作。
这种设计使得DS18B20在低功耗模式下工作,非常适适合于电池供电的应用场景。
4. 温度精度和分辨率:DS18B20具有高精度的温度测量能力,可以达到±0.5℃的精度。
同时,它还可以根据需要进行温度分辨率的设置,可选的分辨率包括9位、10位、11位和12位。
分辨率越高,测量的温度范围越小,但精度也相应提高。
5. 多个DS18B20的连接:由于DS18B20采用了1-Wire接口技术,可以通过将多个DS18B20连接在同一条数据线上,实现多个温度传感器的同时测量。
每一个DS18B20都有一个惟一的64位ROM代码,通过这个代码可以区分不同的传感器。
主控设备可以通过发送指令来选择特定的传感器进行温度测量。
总结:DS18B20是一款采用1-Wire接口的数字温度传感器,具有高精度、低功耗、数字输出等特点。
DS18B20的工作原理DS18B20是一种数字温度传感器,可以通过一根单线串行总线与微处理器或者其他设备进行通信。
它采用了数字温度传感技术,可以准确地测量环境温度,并将温度数据以数字形式传输给主设备。
DS18B20的工作原理如下:1. 温度测量原理:DS18B20使用了一个精确的温度传感器,该传感器基于温度对半导体材料电阻值的影响。
在DS18B20中,温度传感器是由一对金属电极和一个细丝电阻器组成的。
当温度升高时,电阻值增加,反之亦然。
通过测量电阻值的变化,可以确定环境温度。
2. 单线串行总线通信:DS18B20通过单线串行总线与主设备通信,这意味着只需要一根数据线就可以实现数据传输。
通信过程中,主设备发送指令给DS18B20,DS18B20将温度数据以数字形式传输回主设备。
这种通信方式简化了硬件连接,降低了成本。
3. 温度转换和精度:DS18B20将温度数据转换为数字形式,并以12位精度表示。
它可以测量的温度范围为-55℃至+125℃,精度为±0.5℃。
DS18B20还具有可编程的分辨率功能,可以选择9位、10位、11位或者12位的温度分辨率。
4. 供电和工作模式:DS18B20可以通过总线路线提供供电,也可以通过外部电源提供供电。
它还具有多种工作模式,包括连续转换模式和温度警报模式。
在连续转换模式下,DS18B20可以周期性地测量温度并发送数据。
在温度警报模式下,DS18B20可以设置上下限温度阈值,当温度超过或者低于设定阈值时,会触发警报信号。
总结:DS18B20是一种数字温度传感器,采用了数字温度传感技术。
它通过测量温度对半导体材料电阻值的影响来测量环境温度,并将温度数据以数字形式传输给主设备。
DS18B20具有单线串行总线通信、温度转换和精度、供电和工作模式等特点。
它在许多领域中被广泛应用,如气象监测、工业自动化、家用电器等。
其高精度和简单的硬件连接使其成为一种理想的温度传感器。
DS18B20的工作原理
DS18B20传感器使用一根三线总线与控制器进行通信。
这根总线上有
一个唯一的ROM代码,用于识别DS18B20传感器。
控制器可以通过总线向
传感器发送指令,以获取温度值。
传感器可采用独立供电,也可以从总线
上获取便携供电,传输数据使用可调制频率脉冲编码技术。
传感器测量温度时,先将一定时间的电流通过温度传感器,根据材料
特性,温度传感器的电阻值与温度成正比。
然后,通过电阻测量,测量传
感器两端的电压,并利用该电压计算出温度值。
传感器将通过总线向控制器发送温度值,由模数转换器将电阻值转换
为数字形式。
控制器接收到数字温度值后,可以进一步将其转换为实际温
度值,并进行相应的处理和显示。
DS18B20传感器具有很高的精度和稳定性。
它的温度测量范围广,通
常为-55到+125摄氏度。
传感器的精度可以达到0.5摄氏度,分辨率为
12位。
此外,DS18B20传感器还具有多种应用接口和配置选项,以满足不
同的应用需求。
总结来说,DS18B20传感器的工作原理是利用半导体材料的电阻随温
度变化而变化的特性,通过测量电阻值来推断温度。
它通过总线与控制器
进行通信,并使用模数转换器将测量到的电阻值转换为数字形式的温度值。
传感器具有高精度、稳定性和灵活性的特点,广泛应用于各种温度测量领域。
DS18B20的工作原理DS18B20是一种数字温度传感器,广泛应用于各种温度测量场合。
它采用一线通信协议,具有高精度和可编程分辨率等优点。
本文将介绍DS18B20的工作原理,以帮助读者更好地理解这种传感器的工作机制。
一、DS18B20的基本结构1.1 DS18B20传感器由温度传感器、存储器和控制逻辑电路组成。
1.2 温度传感器采用数字式温度传感器,具有高精度和快速响应特性。
1.3 存储器用于存储传感器的唯一标识号和温度数据。
二、DS18B20的工作原理2.1 DS18B20采用单总线通信协议,通过一根数据线进行数据传输。
2.2 传感器通过内部ADC将模拟温度信号转换为数字信号,并存储在存储器中。
2.3 控制逻辑电路通过单总线协议与主控器通信,读取存储器中的温度数据并传输给主控器。
三、DS18B20的精度和分辨率3.1 DS18B20具有高精度,温度测量精度可达±0.5°C。
3.2 传感器的分辨率可通过配置寄存器进行设置,可选9位、10位、11位或12位分辨率。
3.3 高分辨率能够提供更精确的温度测量结果,但会增加传输数据的长度和时间。
四、DS18B20的应用领域4.1 DS18B20广泛应用于温度监测系统、气象站、温室控制等领域。
4.2 由于其数字化输出和高精度特性,DS18B20在工业自动化和实验室测量中也得到广泛应用。
4.3 DS18B20传感器的小尺寸和低功耗使其适用于需要长期监测温度的场合。
五、DS18B20的优势和劣势5.1 DS18B20具有高精度、数字输出和可编程分辨率等优点。
5.2 传感器的单总线通信协议简化了系统设计和布线。
5.3 传感器的劣势是在极端条件下可能会受到干扰,影响温度测量的准确性。
综上所述,DS18B20是一种功能强大的数字温度传感器,具有高精度和可编程分辨率等优点。
通过深入了解其工作原理和特性,可以更好地应用于各种温度测量场合,为工程和科研提供可靠的温度数据支持。
DS18B20的工作原理DS18B20是一种数字温度传感器,采用了单总线数据传输协议,具有精确度高、稳定性好、体积小等特点。
本文将详细介绍DS18B20的工作原理。
DS18B20传感器由三个主要部分组成:温度传感器、模数转换器和总线接口电路。
温度传感器是由一对金属导线组成的温度变化元件,通过测量导线电阻的变化来获取温度信息。
模数转换器将模拟信号转换为数字信号,以便于处理和传输。
总线接口电路负责与主控设备进行通信。
DS18B20传感器通过单总线数据传输协议与主控设备进行通信。
在通信过程中,主控设备向传感器发送指令,传感器根据指令执行相应的操作,并将结果返回给主控设备。
传感器的工作模式可以通过指令进行设置,包括温度测量模式和电源模式等。
在温度测量模式下,主控设备发送温度转换指令给传感器,传感器开始进行温度测量。
传感器通过内部的温度传感器测量温度,并将测量结果转换为数字信号。
转换完成后,传感器将数字信号发送给主控设备,主控设备通过解析数字信号获取温度值。
DS18B20传感器的精确度由其分辨率决定。
分辨率是指传感器能够测量的温度范围内温度变化的最小单位。
DS18B20传感器支持多种分辨率,包括9位、10位、11位和12位。
分辨率越高,传感器的精确度越高,但相应地,传输的数据量也会增加。
DS18B20传感器的电源模式可以通过指令进行设置。
传感器支持两种电源模式:供电模式和断电模式。
在供电模式下,传感器一直处于工作状态,可以随时进行温度测量。
在断电模式下,传感器处于低功耗状态,只有在接收到指令时才会从低功耗状态唤醒并进行温度测量。
DS18B20传感器的总线接口电路采用了单总线数据传输协议。
单总线数据传输协议是一种串行通信协议,通过一根数据线实现数据的传输和通信。
传感器和主控设备通过数据线进行双向通信,传感器通过数据线发送数据给主控设备,主控设备通过数据线发送指令给传感器。
总结:DS18B20是一种数字温度传感器,采用了单总线数据传输协议。
DS18B20的工作原理引言概述:DS18B20是一种数字温度传感器,具有精确度高、体积小、功耗低等特点,被广泛应用于各种温度测量场景。
本文将详细介绍DS18B20的工作原理及其相关特点。
一、温度传感原理1.1 热敏电阻原理DS18B20采用热敏电阻作为温度传感元件。
热敏电阻的电阻值随温度的变化而变化,其本质是利用材料在温度变化下的电阻变化特性来测量温度。
1.2 热敏电阻的特性热敏电阻的电阻值与温度呈负相关关系,即温度升高时电阻值下降,温度降低时电阻值上升。
这种特性使得热敏电阻可以通过测量电阻值的变化来间接测量温度。
1.3 DS18B20的温度测量原理DS18B20通过将热敏电阻与一个精确的参考电阻进行比较,利用电阻的变化来测量温度。
通过测量电阻值的变化,DS18B20可以准确地计算出当前的温度值,并以数字信号的形式输出。
二、数字温度传感器的工作原理2.1 单总线通信DS18B20采用单总线通信方式,即通过一个引脚同时实现数据传输和电源供应。
这种通信方式简化了电路设计,提高了系统的可靠性。
2.2 温度转换过程DS18B20在进行温度转换时,会向传感器发送一个转换命令。
传感器接收到命令后,会进行温度测量,并将测量结果存储在内部寄存器中。
用户可以通过读取寄存器的方式获取温度值。
2.3 精确度和分辨率DS18B20具有高精确度和可调节的分辨率。
其精确度可以达到±0.5℃,分辨率可调节为9位、10位、11位或者12位,分别对应0.5℃、0.25℃、0.125℃和0.0625℃的分辨率。
三、DS18B20的电气特性3.1 供电电压DS18B20的供电电压范围为3V至5.5V,可以适应不同的电源系统。
3.2 通信速率DS18B20的通信速率可以选择为标准速率(最高16.25kbps)或者高速速率(最高100kbps),可以根据实际需求进行设置。
3.3 工作温度范围DS18B20的工作温度范围为-55℃至+125℃,可以适应各种极端环境下的温度测量需求。
ds18b20温度传感器工作原理
DS18B20是一种数字温度传感器,它通过一根单一的数据总线进行工作。
传感器内部有一个精确的温度传感器和数字转换器。
以下是DS18B20温度传感器的工作原理:
1. 单线总线通信:DS18B20传感器使用单一的数据总线进行通信。
该总线不仅用于传输数据,还用于为传感器提供电源。
通过这种方式,可以减少传感器的引脚数量,使其适用于各种微控制器和嵌入式系统。
2. 温度测量:传感器内部有一个温度传感器,该传感器可以测量实时环境温度。
它使用精确的电阻和温度-电压转换技术,以确保温度测量的准确性和稳定性。
3. 数据转换:DS18B20传感器将温度测量结果转换为数字信号。
传感器内部的模数转换器将模拟信号转换为数字码,以便于传感器与主控制器之间的通信和处理。
4. ROM存储器:每个DS18B20传感器都有一个唯一的64位ROM存储器。
这个ROM存储器包含传感器的唯一序列号、制造商信息和其他相关信息。
这些信息可以用来识别传感器并设置其工作参数。
5. 通信协议:DS18B20传感器使用一种称为1-Wire协议的通信协议与主控制器进行通信。
该协议在传感器和主控制器之间建立一种基于时间的序列通信方式,主控制器上的软件可以通过这种协议与传感器进行数据传输、配置和控制。
总而言之,DS18B20温度传感器通过单一的数据总线进行通信,并使用内部的温度传感器和数字转换器测量环境温度。
它通过ROM存储器保存唯一的序列号和其他信息,使用1-Wire 协议与主控制器进行通信。
DS18B20的工作原理DS18B20是一款数字温度传感器,广泛应用于各种温度测量领域。
本文将详细介绍DS18B20的工作原理,包括引言概述、正文内容和总结。
引言概述:DS18B20是一种数字温度传感器,采用单总线接口进行通信,具有高精度、低功耗和可编程分辨率等特点。
它可以通过软件控制进行温度测量,并将测量结果以数字形式输出。
下面将从五个大点来阐述DS18B20的工作原理。
正文内容:1. 传感器结构1.1 传感器的外部结构DS18B20由一个外壳、一个温度传感器和一个控制电路组成。
外壳通常采用不锈钢材料,具有良好的防水性能。
温度传感器位于外壳内部,可以感知环境温度。
控制电路负责解析传感器输出,并将结果以数字形式传输给外部设备。
1.2 传感器的内部结构传感器内部包含一个温度传感器芯片、一个存储器和一个控制逻辑电路。
温度传感器芯片采用特殊材料,具有温度敏感性。
存储器用于存储传感器的序列号和校准数据。
控制逻辑电路负责控制传感器的工作模式和数据传输。
2. 温度测量原理2.1 温度传感器的工作原理DS18B20的温度传感器采用基于硅的温度传感器技术。
当温度变化时,传感器内部的电阻值也会发生变化。
温度传感器芯片通过测量电阻值的变化来感知环境温度。
2.2 温度的数字化传感器测量到的温度值是模拟信号,需要经过模数转换器进行数字化处理。
DS18B20内部的控制逻辑电路负责将模拟信号转换为数字信号,并进行校准和温度计算。
2.3 温度数据的传输DS18B20采用单总线接口进行通信。
传感器通过单总线将温度数据传输给外部设备。
传输过程中,传感器和外部设备通过一系列的通信协议进行数据交换,确保数据的准确传输。
3. 工作模式3.1 温度转换模式DS18B20可以通过软件控制进行温度转换。
在转换模式下,传感器会测量环境温度,并将测量结果存储在存储器中。
外部设备可以通过读取存储器中的数据来获取温度信息。
3.2 睡眠模式传感器可以进入睡眠模式以节省能量。
ds18b20温度传感器工作原理
DS18B20温度传感器是一种数字温度传感器,它基于热电效
应来测量温度。
该传感器由一个精密的温度传感器和一个数字转换器组成。
以下是DS18B20温度传感器的工作原理:
1. 热电效应:DS18B20温度传感器利用热电效应来测量温度。
当两个不同材料的接触点形成温度梯度时,就会产生电动势。
传感器中的温度传感器部分采用的材料对温度变化非常敏感,因此产生的电动势可以反映出温度的变化。
2. 温度传感器:DS18B20温度传感器中的温度传感器部分是
由一个特殊的材料制成的。
该材料具有温度敏感性,当温度变化时,该材料会产生电动势。
这个电动势可以通过传感器的引脚进行读取和转换。
3. 数字转换器:DS18B20温度传感器具有内置的数字转换器。
这个数字转换器可以将从温度传感器获得的电压信号转换为数字信号。
数字信号可以直接读取和处理,而无需进行模拟信号转换。
4. 串行总线通信:DS18B20温度传感器通过一种称为One-
Wire总线的串行通信协议与主控制器进行通信。
传感器和主
控制器之间只需使用单一的数据线进行通信,使得传感器的连接变得简单方便。
总结起来,DS18B20温度传感器工作原理是利用热电效应测
量温度,并通过温度传感器和数字转换器来转换和读取温度信号。
该传感器通过One-Wire总线与主控制器进行通信。
ds18b20工作原理DS18B20是一种数字温度传感器,它可以通过一根数据线进行温度的采集和传输。
DS18B20工作原理的核心是利用温度对半导体材料电阻的影响来实现温度的测量。
接下来,我们将详细介绍DS18B20的工作原理。
首先,DS18B20内部包含了一个温度传感器芯片,该芯片采用了数字信号输出的方式。
在DS18B20内部,有一个模拟-数字转换器(ADC),它可以将模拟信号转换为数字信号。
当DS18B20受到温度的影响时,芯片内部的电阻会发生变化,进而改变了电压信号的大小。
ADC会将这个模拟信号转换为数字信号,然后通过数据线输出给外部设备。
其次,DS18B20采用了一种叫做“单总线”(One Wire)的通信协议。
这意味着DS18B20只需要一根数据线就可以完成温度的采集和传输。
在通信过程中,DS18B20会将温度数据以数字信号的形式发送给外部设备。
外部设备可以通过读取数据线上的数字信号来获取温度信息。
此外,DS18B20还具有一些特殊的功能,比如温度的精度调节、温度报警功能等。
通过这些功能,DS18B20可以满足不同场景下的温度监测需求。
总的来说,DS18B20的工作原理是基于半导体材料电阻随温度变化的特性,利用ADC将模拟信号转换为数字信号,并通过单总线通信协议将温度数据传输给外部设备。
同时,DS18B20还具有一些特殊的功能,可以满足不同场景下的温度监测需求。
在实际应用中,DS18B20被广泛应用于各种温度监测系统中,比如智能家居、工业自动化等领域。
由于其简单、稳定、精准的特点,DS18B20在温度监测领域具有很高的性价比,受到了广泛的认可和应用。
综上所述,DS18B20是一种基于半导体材料电阻特性的数字温度传感器,其工作原理是通过ADC将模拟信号转换为数字信号,并通过单总线通信协议将温度数据传输给外部设备。
在实际应用中,DS18B20具有简单、稳定、精准的特点,被广泛应用于各种温度监测系统中。
1.DS18B20的工作原理① DS18B20数字温度传感器概述DS18B20数字温度传感器是DALLAS公司生产的1-Wire,即单总线器件,具有线路简单,体积小的特点。
因此用它来组成一个测温系统,具有线路简单,在一根通信线,可以挂很多这样的数字温度计,十分方便。
DS18B20产品的特点●只要求一个端口即可实现通信。
●在DS18B20中的每个器件上都有独一无二的序列号。
●实际应用中不需要外部任何元器件即可实现测温。
●测量温度范围在-55.C到+125.C之间。
●数字温度计的分辨率用户可以从9位到12位选择。
●内部有温度上、下限告警设置。
TO-92封装的DS18B20的引脚排列见右图,其引脚功能描述见表序号名称引脚功能描述1 GND 地信号2 DQ 数字输入输出引脚,开漏单总线接口引脚,当使用寄生电源时,可向电源提供电源3 VDD 可选择的VDD引脚,当工作于寄生电源时,该引脚必须接地表3-2DS18B20详细引脚功能描述②DS18B20的内部结构DS18B20的内部框图下图所示,DS18B20 的内部有64 位的ROM 单元,和9 字节的暂存器单元。
64位ROM存储器件独一无二的序列号。
暂存器包含两字节(0和1字节)的温度寄存器,用于存储温度传感器的数字输出。
暂存器还提供一字节的上线警报触发(T H)和下线警报触发(TL)寄存器(2和3字节),和一字节的配置寄存器(4字节),使用者可以通过配置寄存器来设置温度转换的精度。
暂存器的5、6和7字节器件内部保留使用。
第八字节含有循环冗余码(CRC )。
使用寄生电源时,DS18B20不需额外的供电电源;当总线为高电平时,功率由单总线上的上拉电阻通过DQ引脚提供;高电平总线信号同时也向内部电容CPP充电,CPP 在总线低电平时为器件供电。
(字节5~8 就不用看了)。
图为暂存器A.温度寄存器(0和1字节)DS18B20中的温度传感器可完成对温度的测量,以12位转化为例:用16位符号扩展的二进制补码读数形式提供,以0.0625℃/LSB形式表达,其中S为符号位。
1.DS18B20的工作原理●①DS18B20数字温度传感器概述●DS18B20数字温度传感器是DALLAS公司生产的1-Wire,即单总线器件,具有线路简单,体积小的特点。
因此用它来组成一个测温系统,具有线路简单,在一根通信线,可以挂很多这样的数字温度计,十分方便。
DS18B20产品的特点●只要求一个端口即可实现通信。
●在DS18B20中的每个器件上都有独一无二的序列号。
●实际应用中不需要外部任何元器件即可实现测温。
●测量温度范围在-55.C到+125.C之间。
●数字温度计的分辨率用户可以从9位到12位选择。
●内部有温度上、下限告警设置。
序号名称引脚功能描述1 GND 地信号2 DQ 数字输入输出引脚,开漏单总线接口引脚,当使用寄生电源时,可向电源提供电源3 VDD 可选择的VDD引脚,当工作于寄生电源时,该引脚必须接地表3-2DS18B20详细引脚功能描述②DS18B20的内部结构DS18B20的内部框图下图所示,DS18B20 的内部有64 位的ROM 单元,和9 字节的暂存器单元。
64位ROM存储器件独一无二的序列号。
暂存器包含两字节(0和1字节)的温度寄存器,用于存储温度传感器的数字输出。
暂存器还提供一字节的上线警报触发(T H)和下线警报触发(TL)寄存器(2和3字节),和一字节的配置寄存器(4字节),使用者可以通过配置寄存器来设置温度转换的精度。
暂存器的5、6和7字节器件内部保留使用。
第八字节含有循环冗余码(CRC )。
使用寄生电源时,DS18B20不需额外的供电电源;当总线为高电平时,功率由单总线上的上拉电阻通过DQ引脚提供;高电平总线信号同时也向内部电容CPP充电,CPP在总线低电平时为器件供电。
(字节5~8 就不用看了)。
图为暂存器A.温度寄存器(0和1字节)DS18B20中的温度传感器可完成对温度的测量,以12位转化为例:用16位符号扩展的二进制补码读数形式提供,以0.0625℃/LSB形式表达,其中S为符号位。
一、DS18B20温度传感器工作原理(热电阻工作原理)DS18B20温度传感器工作原理框图如图所示:DS18B20温度传感器工作原理框图图中低温度系数晶振的振荡频率受温度影响很小,用于产生固定频率的脉冲信号送给计数器1。
高温度系数晶振随温度变化其振荡频率明显改变,所产生的信号作为计数器2的脉冲输入。
计数器1和温度寄存器被预置在-55℃所对应的一个基数值。
计数器1对低温度系数晶振产生的脉冲信号进行减法计数,当计数器1的预置值减到0时,温度寄存器的值将加1,计数器1的预置将重新被装入,计数器1重新开始对低温度系数晶振产生的脉冲信号进行计数,如此循环直到计数器2计数到0时,停止温度寄存器值的累加,此时温度寄存器中的数值即为所测温度。
斜率累加器用于补偿和修正测温过程中的非线性,其输出用于修正计数器1的预置值。
二、DS18B20温度传感器的应用电路1.DS18B20温度传感器寄生电源供电方式电路图寄生电源方式特点:(1)进行远距离测温时,无须本地电源。
(2)可以在没有常规电源的条件下读取ROM。
(3)电路更加简洁,仅用一根I/O口实现测温。
(4)只适应于单一温度传感器测温情况下使用,不适于采用电池供电系统中。
DS18B20温度传感器寄生电源供电方式2.DS18B20温度传感器寄生电源强上拉供电方式电路图在强上拉供电方式下可以解决电流供应不足的问题,因此也适合于多点测温应用,缺点就是要多占用一根I/O口线进行强上拉切换。
DS18B20温度传感器寄生电源强上拉供电方式3.DS18B20温度传感器的外部电源供电方式外部电源供电方式是DS18B20温度传感器最佳的工作方式,工作稳定可靠,抗干扰能力强,而且电路也比较简单,可以开发出稳定可靠的多点温度监控系统,如图所示。
外部供电方式的多点测温电路图三、DS18B20温度传感器使用中注意事项(1)较小的硬件开销需要相对复杂的软件进行补偿,由于DS18B20温度传感器与微处理器间采用串行数据传送,因此,在对DS18B20进行读写编程时,必须严格地保证读写时序,否则将无法读取测温结果。
DS18B20的工作原理DS18B20是一种数字温度传感器,采用单总线接口进行通信。
它可以精确测量环境温度,并将温度值以数字形式传输给微控制器或者其他设备。
DS18B20是一种广泛应用于工业自动化、家用电器、医疗设备等领域的温度传感器。
DS18B20的工作原理如下:1. 温度测量原理:DS18B20采用了基于半导体的温度测量原理。
它内部集成为了温度传感器和模数转换器(ADC),可以将环境温度转换为数字信号。
DS18B20使用的是温度依赖的电阻器件,称为温度传感器。
当温度升高时,温度传感器的电阻值会发生变化,DS18B20利用这种变化来测量温度。
2. 单总线通信:DS18B20采用了单总线通信协议,即通过单根数据线进行数据传输。
这种通信方式简化了连接和控制的复杂性,只需使用一个引脚即可实现数据的传输和控制。
在单总线通信中,DS18B20作为从设备,由主控制器发出指令,DS18B20接收指令并返回温度数据。
3. 工作原理:DS18B20的工作原理可以分为三个步骤:初始化、温度转换和读取温度。
3.1 初始化:在通信开始前,主控制器需要发送初始化指令来识别和准备DS18B20。
初始化指令包括发送复位脉冲和读取DS18B20的存在脉冲。
复位脉冲使DS18B20进入准备接收指令的状态,存在脉冲用于检测DS18B20是否存在于总线上。
3.2 温度转换:初始化完成后,主控制器发送温度转换指令给DS18B20。
温度转换指令包括启动温度转换和等待转换完成。
DS18B20接收到指令后,开始测量环境温度,并将结果存储在内部寄存器中。
温度转换时间取决于DS18B20的分辨率设置,普通为750ms到12秒不等。
3.3 读取温度:温度转换完成后,主控制器发送读取温度指令给DS18B20。
DS18B20将温度值以数字形式传输给主控制器。
主控制器接收到温度数据后,可以进行进一步的处理和显示。
4. 分辨率设置:DS18B20支持多种温度分辨率设置,包括9位、10位、11位和12位。
DS18B20的工作原理DS18B20是一种数字温度传感器,它采用单总线接口进行通信,并能够提供高精度的温度测量。
其工作原理如下:1. 基本原理:DS18B20采用了基于半导体的温度传感技术。
它内部集成了温度传感器、模数转换器和数字接口电路。
传感器通过测量半导体材料的电阻来获取温度信息,然后将其转换为数字信号输出。
2. 温度测量:DS18B20的温度测量是通过测量半导体材料的电阻来实现的。
半导体材料的电阻随着温度的变化而变化,DS18B20利用这一特性来确定温度。
其内部集成了一个精密的模数转换器,可以将电阻值转换为数字信号。
3. 单总线接口:DS18B20采用单总线接口进行通信,这意味着它只需要一条数据线即可完成数据传输。
通过控制数据线上的电平变化,可以实现与DS18B20的通信。
这种设计简化了连接和控制电路的复杂性。
4. 工作原理:DS18B20的工作原理可以分为三个步骤:初始化、温度转换和读取温度值。
- 初始化:主设备发送初始化命令,DS18B20响应并进入工作模式。
- 温度转换:主设备发送温度转换命令,DS18B20开始测量温度,并将结果存储在内部寄存器中。
- 读取温度值:主设备发送读取命令,DS18B20将温度值通过单总线接口发送给主设备。
5. 精度和分辨率:DS18B20具有高精度和可调节的分辨率。
它可以提供精度为±0.5℃的温度测量,并且可以通过设置分辨率来调整测量精度。
分辨率越高,测量精度越高,但测量时间也会增加。
6. 应用领域:DS18B20广泛应用于各种需要温度测量的领域,例如气象观测、工业自动化、家用电器等。
由于其数字接口和高精度的特性,它在温度监测和控制方面具有很大的优势。
总结:DS18B20是一种基于半导体技术的数字温度传感器,通过测量半导体材料的电阻来获取温度信息,并通过单总线接口与主设备进行通信。
它具有高精度、可调节的分辨率和广泛的应用领域。
在各种温度测量和控制场景中,DS18B20都是一种可靠且方便的选择。
ds18b20工作原理
DS18B20温度传感器是一种数字温度传感器,采用"1-wire"
(单总线)接口通信,其工作原理如下:
1. 传感器结构:DS18B20传感器由温度传感器芯片、电源线
和数据线组成。
芯片内部包含温度传感器、模数转换器和存储器。
2. 电源供电:传感器通过电源线从计算机、微控制器或其他设备中获取供电。
传感器的VDD和GND引脚用于供电。
3. 温度测量:传感器使用其内部温度传感器测量环境温度。
当温度变化时,传感器内部的温度传感器会产生电压变化。
4. 模数转换:传感器内部的模数转换器将温度传感器测量到的电压转换为数字信号。
转换后的数字信号可以在数据线上传输。
5. 通信协议:传感器使用1-wire接口协议进行通信。
该协议
允许使用单根数据线进行数据传输。
传感器通过数据线将温度数据发送给主控设备。
6. 数据读取:主控设备发送读取指令给传感器,传感器将温度数据通过数据线返回给主控设备。
主控设备可以通过读取传感器返回的数据来获取环境温度。
总结:DS18B20温度传感器工作原理基于温度传感器芯片和
模数转换器的结构,在供电后,传感器通过测量温度传感器的
电压变化来获取环境温度,并通过1-wire接口协议将温度数据传输给主控设备。