锻造工艺概述
- 格式:docx
- 大小:42.19 KB
- 文档页数:8
锻造工艺介绍范文锻造工艺是一种通过受控制的变形和压力施加来改变材料形状和性能的金属加工方法。
它是一种非常古老的工艺,早在公元前3000年埃及时期,人们就开始使用锤子锻造金属了。
在现代工业生产中,锻造工艺被广泛应用于汽车、航空航天、机械制造等各个行业。
在锻造工艺中,最常见的方法是通过对金属材料施加压力来改变其形状。
通常情况下,锻造过程可以分为两种主要类型:手工锻造和机械锻造。
手工锻造是最古老的锻造方法之一,它通常涉及到使用锤子、铁锩和其他类似工具来对金属进行变形。
在手工锻造过程中,操作工人需要根据设计图纸和要求,将金属材料加热至适当温度后,使用锤子不断敲击和造型,以达到所需的形状和尺寸。
机械锻造是一种使用机械力来进行金属变形的锻造方法。
它通常使用大型锻压机或冲压机来施加高压力和力量,以快速、高效地加工金属材料。
机械锻造可以进一步分为几种类型,包括冷锻、温锻和热锻。
冷锻是在室温下对金属材料进行压制和变形,常用于生产高精度和高强度的金属零件。
相比其他锻造方法,冷锻可以提供更好的表面质量和细致的尺寸控制。
在冷锻过程中,金属材料通常经过预加热,以减少冷工变形的能量消耗。
温锻是在金属材料低于其熔点,但高于室温时进行的锻造过程。
通过在适当的温度下变形金属材料,可以降低材料的加工硬度和提高其延展性。
温锻广泛应用于生产汽车零部件和航空航天部件等高性能应用。
热锻是在金属材料高于其熔点时进行的锻造过程。
热锻通常应用于较难变形的材料,以及需要在高温下保持良好塑性的材料。
通过加热金属材料,热锻可以提高材料的塑性和变形能力,从而实现更复杂的形状和尺寸要求。
除了冷锻、温锻和热锻,还有其他特殊的锻造工艺,如精密锻造、轧制锻造和模锻。
精密锻造是一种在非常小尺寸的金属零件上进行的高精度锻造过程,以实现更精细的形状和尺寸控制。
轧制锻造是一种将金属材料通过连续轧制和锤击来改变其形状和尺寸的锻造工艺。
模锻是一种通过在金属材料中使用专门设计的模具来实现精确形状和尺寸要求的锻造过程。
锻造基础知识介绍锻造是一种通过加热金属至其塑性温度,然后进一步以力量和压力形成所需形状的金属加工工艺。
在工业领域,锻造被广泛应用于制造各种产品,如汽车零部件、航空航天零件、建筑材料等。
了解锻造的基础知识是从事这一行业的关键。
首先,让我们了解一些常用的锻造工艺。
1. 锻造类型锻造可以分为以下几种类型:- 手工锻造:这是最古老的锻造方法之一,通过人工使用锤子、锻挤器等工具对金属进行锤击、压制和拉伸来改变其形状。
- 机械压力锻造:这种锻造方法使用机械力量来施加压力和变形金属,常见的机械压力锻造设备包括液压机、螺旋压力机、冲床等。
- 热锻造:通过加热金属至其塑性温度,然后利用机械力量施加压力和变形金属。
热锻造可以进一步分为自由锻造和闭模锻造。
2. 锻造材料锻造可用于加工的材料包括:- 钢:钢是最常用的锻造材料之一,因其具有良好的塑性和高强度,在锻造过程中容易改变形状。
- 铝:铝具有较低的熔点和良好的导热性,常用于制造航空航天零件和汽车零部件等。
- 铜:铜具有良好的导电性和导热性,在锻造过程中容易改变形状,被广泛应用于电子和电气工业。
3. 锻造工艺在进行锻造操作之前,需要进行以下准备工作:- 选择合适的锻造材料和工艺。
- 准备模具和设备。
锻造工艺的基本步骤包括:- 加热:将金属材料加热至其塑性温度,以使其易于塑性变形。
- 锻打:使用锤子、压力机或锻压机等设备施加压力和力量,使金属材料变形成所需形状。
- 冷却:在锻造完成后,将金属材料冷却以增加其硬度和强度。
4. 锻造的优点和缺点锻造作为一种金属加工工艺,具有以下优点:- 提高材料的力学性能和物理性能。
- 可以生产具有复杂形状的零部件。
- 提高材料的密度和致密性。
然而,锻造也有一些缺点:- 锻造设备和工艺复杂,需要专门的设备和技术。
- 锻造成本较高,特别是对于小批量生产。
- 锻造过程中可能会出现金属材料内部缺陷和变形。
在锻造基础知识介绍中,我们了解了锻造的不同类型、应用材料、基本工艺和优缺点。
锻造工艺与模具设计一、锻造工艺概述锻造是指通过施加压力将金属材料变形成所需形状的一种加工方法。
锻造工艺包括预制备、加热、锤击、冷却等多个环节。
通过不同的锻造工艺,可以生产出各种形状和尺寸的零件。
二、模具设计概述模具是指用于制造产品的专用工具,通常由上下两个部分组成。
模具设计需要考虑到产品的尺寸、形状等因素,以及生产效率和成本等因素。
合理的模具设计可以提高生产效率和产品质量。
三、锻造前准备1. 材料选择:根据零件要求选择适当的材料。
2. 钢坯切割:根据零件图纸进行钢坯切割,并进行初步加工。
3. 热处理:对钢坯进行热处理,使其达到适当的温度。
4. 模具准备:根据零件要求设计并制作合适的模具。
四、加热将钢坯放入电阻炉中进行加热,使其达到适当温度。
加热温度应该控制在合适范围内,以免影响零件质量。
五、锤击将加热后的钢坯放入模具中,进行锤击。
锤击力度应该适当,以免过度变形或破裂。
在锤击过程中要注意调整温度和压力,以保证零件的质量。
六、冷却在锻造完成后,需要对零件进行冷却。
冷却速度应该适当,以避免产生裂纹或变形。
七、模具设计要点1. 模具结构:模具应该采用合理的结构设计,以便于生产操作和维护。
2. 材料选择:选择合适的材料可以提高模具的使用寿命和生产效率。
3. 模具加工精度:模具加工精度应该达到要求,以保证产品质量。
4. 模具调试:在使用前需要对模具进行调试,并根据实际情况进行调整。
5. 模具维护:定期对模具进行维护和保养,可以延长其使用寿命和提高生产效率。
八、总结通过合理的锻造工艺和模具设计,可以生产出高质量的零件,并提高生产效率和降低成本。
在实际生产中,需要根据具体情况进行调整和改进,以达到最佳效果。
锻造工艺的概念和分类
锻造工艺是一种通过施加力量和热量将金属材料变形成所需形状的制造方法。
锻造工艺可以分为以下几种分类:
1. 锻造温度分类:根据输入能量的形式,可以将锻造工艺分为冷锻、热锻和半热锻三类。
冷锻是在室温下进行的锻造工艺;热锻是在高温下进行的锻造工艺,其温度通常在再结晶温度以上;半热锻是介于冷锻和热锻之间的温度下进行的锻造工艺。
2. 锻造设备分类:根据施加力量的方式和设备的类型,可以将锻造工艺分为手工锻造、机械压力锻造、液压锻造和气动锻造等几类。
3. 锻造方法分类:根据金属材料在锻造过程中的变形方式,可以将锻造工艺分为自由锻造、模锻、粉末冶金锻造和特殊锻造等几类。
自由锻造是指将金属材料置于锻模之间施加锻击力来实现变形的锻造方法;模锻是在金属材料周围设置一定形状的模具,通过挤压和压缩变形金属来实现锻造的工艺;粉末冶金锻造是通过将金属粉末和粘结剂混合后进行成型和锻造的工艺;特殊锻造是指一些特殊的锻造方法,如旋压锻、横剪锻、搓锻等。
4. 锻造产品分类:根据产品的形状和用途,可以将锻造工艺分为轴类锻件、盘类锻件、复杂形状锻件和板类锻件等几类。
轴类锻件主要是指长度大于直径的圆柱体形锻件,如轴、销、凸轮等;盘类锻件主要是指直径大于长度的扁圆形锻件,如齿轮、法兰等;复杂形状锻件主要是指形状复杂、截面变化较大的锻
件;板类锻件主要是指长宽比大于3的薄板形锻件。
以上是常见的锻造工艺的分类,根据具体情况和需求,还可以进一步细分和分类。
锻造——锻造方法与工艺锻造是通过对金属材料进行加热和塑性变形的一种加工方法,通过锻造可以改变金属材料的形状和性能。
锻造方法和工艺是指在具体的锻造过程中,采取的各种技术措施和操作方法。
下面将详细介绍锻造的方法和工艺。
锻造方法主要分为手工锻造、机械锻造和液压锻造。
1.手工锻造:手工锻造是最早发展的锻造方法,也是最基本的锻造方法。
手工锻造主要是通过人工操作来完成金属材料的加工。
操作方法包括用锤子敲打、弯曲、拉伸和压缩等。
手工锻造的优点是操作简单、灵活性好,适用于小批量的生产,缺点是劳动强度大、生产效率低。
2.机械锻造:机械锻造是在锻造过程中使用机械设备来完成金属材料的加工。
机械锻造主要包括压力机锻造、冲击锻造和旋转锻造等。
压力机锻造是利用压力机的运动和压力来完成金属材料的塑性变形。
冲击锻造是利用冲击力瞬间使金属材料发生塑性变形。
旋转锻造是将金属材料固定在旋转工作台上,通过旋转工作台和切削刀具的相对运动,使金属材料发生塑性变形。
机械锻造的优点是生产效率高、加工精度高,适用于大批量的生产,缺点是设备投资大、工艺复杂。
3.液压锻造:液压锻造是利用液压力来完成金属材料的塑性变形。
液压锻造主要包括液压锤锻造和液压机锻造。
液压锤锻造是通过液压锤的冲击力来完成金属材料的塑性变形。
液压机锻造是通过液压机的压力来完成金属材料的塑性变形。
液压锻造的优点是操作简单、加工精度高,适用于对形状复杂的金属零件进行加工,缺点是生产效率低。
在锻造过程中,通常还需要采用以下几项工艺措施来提高锻造质量和合格率。
1.加热工艺:金属材料在进行锻造前需要通过加热来改变其组织结构和提高其塑性。
加热工艺包括预热和锻造温度的控制。
预热是在金属材料进行锻造前对其进行加热,预热可以减少金属材料的冷作硬化程度和塑性降低程度,使其更易于塑性变形。
锻造温度的控制是根据金属材料的熔点和塑性变形温度范围来确定,过低的温度会影响塑性变形,过高的温度会导致烧结和变形不均匀。
锻造工艺的概念
锻造工艺是指利用压力将金属材料加工成所需形状的一种金属加工方法。
在锻造过程中,金属材料被置于模具之间,然后施加压力,使其变形并最终达到所需的形状。
这个过程可以通过多种方式实现,包括手动敲打、机械锤击、液压或气动压力等。
锻造工艺可以用于生产各种各样的金属制品,例如汽车零件、航空零件、建筑结构等。
它是一种高效且精确的加工方法,能够在较短时间内生产出高质量的产品。
此外,由于锻造过程中金属材料受到的应力较小,因此其机械性能和耐久性都比其他加工方法更好。
在进行锻造工艺之前,需要对所需产品进行设计,并选择合适的材料和模具。
然后将金属材料放置在模具之间,并施加适当的压力以使其变形。
随着变形过程的进行,需要不断调整和控制温度和压力等参数以确保最终产品符合要求。
总体而言,锻造工艺是一项重要的金属加工方法,其高效性和精确性使其成为许多行业中不可或缺的工艺之一。
锻造的概念一、锻造的概念:1、锻造是一种金属加工工艺,指的是将金属坯料加热至适当温度,然后通过锤击、挤压或冲击等手段,使其塑性变形并改变其形状、尺寸和性能,以获得所需零件的过程。
2、锻造是一种金属加工工艺,通过改变金属的形状和结构,改善其性能和组织结构,提高其强度、硬度、韧性和耐腐蚀性等。
锻造过程可以通过不同的方式实现,如自由锻、模锻、辗环等。
3、锻造是一种重要的金属加工工艺,可以改善金属组织和性能、生产预制件、制造工具和模具、修复损坏的零件等。
随着科技的发展,锻造工艺也在不断改进和创新,为现代工业的发展提供了强有力的支持。
4、锻造的过程包括自由锻和模锻两种方式。
自由锻是指在没有模具的情况下,通过锤击、挤压等手段将金属坯料变形成为所需形状和尺寸的零件。
而模锻则是在模具中进行的锻造过程,通过模具的形状和尺寸来控制金属坯料的变形,从而获得所需形状和尺寸的零件。
5、锻造工艺在机械制造、航空航天、汽车制造等领域都有广泛的应用,是一种重要的金属加工方法。
随着科技的发展,锻造工艺也在不断改进和优化,以适应新的市场需求和提高生产效率。
6、其中,智能锻造是一种新型的锻造技术,它结合了传统锻造工艺和计算机技术、智能控制技术等先进技术,通过对锻造过程中各种参数的高效监控和智能分析,实现对锻造工艺的优化和精细控制,从而提高零部件产品质量、降低生产成本、提高生产效率和生产安全性。
二、锻造的主要作用:1、改善金属组织和性能:锻造可以改变金属的内部结构和组织,使其更加均匀和致密,从而提高其力学性能和物理性能。
通过锻造,可以消除金属内部的缺陷和孔隙,减少其内部的应力集中和微观裂纹,提高其抗疲劳、抗腐蚀等性能。
2、生产预制件:锻造可以生产出各种形状和尺寸的预制件,这些预制件可以在后续的机械加工、热处理等工艺中进一步加工和处理,从而获得所需的产品。
锻造预制件具有精度高、表面光洁度好等优点,可以提高产品的质量和生产效率。
3、制造工具和模具:锻造可以用于制造各种工具和模具,如凿子、锤子、铣刀等。
锻造工艺简介锻造工艺啊,那可老有历史了。
在很久很久以前,咱们的老祖宗就开始鼓捣这东西啦。
你想啊,最开始的时候,人们就发现把金属敲敲打打能让它变得更结实,还能变成自己想要的形状。
这就像是在跟金属交朋友,告诉它:“嘿,小金属,你得变成这个样儿。
”然后就拿着小锤子,一下一下地敲。
锻造工艺其实就是一种通过对金属施加压力,让它变形的方法。
这里面的门道可多着呢。
比如说,有自由锻造。
这自由锻造就像是给金属一个自由发挥的空间,但同时又得听咱工匠的指挥。
工匠们就拿着大锤子或者用压力机,对着一块金属原料就开始整活。
他们就像神奇的魔法师,心里想着要做一个锄头,就开始在金属上“画蓝图”。
一锤子下去,金属就凹下去一块,再一锤子,又有了新的形状。
这个过程可不容易,全靠工匠的经验和手感。
还有模锻呢。
这模锻就像是给金属准备了一个小房子,让它在这个特定的房子里变形。
这个小房子就是模具啦。
把金属放到模具里,然后施加压力,金属就只能按照模具的形状来变化。
这就好比是给金属定了个小规矩,它得乖乖听话。
模锻出来的东西,形状可标准了,就像复制粘贴一样,每个都长得差不多。
这在批量生产的时候可太有用了,比如说汽车零件啥的,用模锻的话,就能做出好多一模一样的零件,效率杠杠的。
锻造工艺对金属的性能提升那也是相当厉害。
你想啊,原本的金属可能有点软趴趴的,或者内部有点小缺陷。
经过锻造这么一折腾,金属内部的结构就变得更紧密了。
就像咱们人一样,经过锻炼,身体就变得更结实了。
锻造后的金属,它的强度、韧性啥的都提高了不少。
这要是用来做武器或者工具,那质量可不得嗷嗷好啊。
在锻造的过程中啊,温度也是个关键因素。
有些金属得在热乎的时候锻造,这就叫热锻。
热锻的时候,金属就像个听话的小娃娃,很容易就被改变形状。
就像咱们冬天的时候,身体热乎乎的,活动起来就比较灵活。
还有冷锻呢,冷锻就比较考验金属的本事了,也考验工匠的技术。
冷锻出来的东西,表面质量有时候会更好,精度也高。
不过锻造工艺也不是那么好掌握的。
锻造工艺概述锻造工艺,这可是一门相当有料的技术!咱先来说说啥是锻造工艺。
简单来讲,锻造就是通过对金属材料施加压力,让它变成我们想要的形状和性能的过程。
就好比揉面团,我们用力去揉,就能让面团变成我们期望的样子。
我记得有一次去一家小型的锻造厂参观,那场景真是让我印象深刻。
一走进厂房,就听到“哐哐哐”的声音,震耳欲聋。
巨大的机器轰鸣着,工人们在炽热的炉火旁忙碌着。
我看到一块红彤彤的铁块被夹出来,放在了锻造台上。
师傅拿着大锤子,一下又一下地敲打着,汗水顺着他的额头不停地流。
每一次敲打,铁块都像是在痛苦地“颤抖”,但也正是这一次次的敲打,让铁块逐渐有了形状。
锻造工艺的种类那也是不少的。
有自由锻造,这就像是自由发挥,想怎么打就怎么打,不过对师傅的技术要求可高了;还有模锻,就是把金属材料放在模具里,压一压就成型,效率挺高;还有胎膜锻造,结合了前面两种的优点。
锻造工艺的优点那可多了去了。
通过锻造,金属材料内部的组织会变得更加紧密,就像我们把一堆松散的沙子压实一样,这样做出来的零件强度高、韧性好,不容易出问题。
而且锻造还能让金属纤维顺着零件的形状分布,就像给零件穿上了一层坚固的“铠甲”,让它更能承受外力的冲击。
比如说汽车的曲轴,那就是经过锻造工艺制造出来的。
要是没有经过锻造,这曲轴在发动机里高速运转的时候,说不定哪天就“罢工”了。
还有飞机的起落架,承受着那么大的冲击力,要是锻造工艺不过关,那后果可不堪设想。
锻造工艺的过程也不简单。
首先得选好材料,就像做菜得选好食材一样。
然后把材料加热到合适的温度,太热了不行,太冷了也不行,这火候得掌握好。
接下来就是锻造了,这是最关键的步骤,得有经验的师傅才能干好。
最后还得进行后续的处理,比如热处理、机加工等等。
在锻造的过程中,温度的控制特别重要。
温度太高,金属材料容易氧化,表面就会变得粗糙;温度太低,材料又变得太硬,不好加工。
我看到那个师傅在锻造的时候,眼睛一直盯着温度计,时刻关注着温度的变化,那认真的样子,让我觉得他就像是在照顾一个刚出生的婴儿。
紫铜锻造工艺
一、工艺概述
紫铜锻造工艺是一种工艺,用于制造紫铜零件和刀具。
该工艺可以将原材料热转变为刀具或紫铜零件,它需要技术熟练的工艺流程来制造出所需的零件或刀具。
紫铜锻造工艺可以根据客户的需求进行定制,以满足不同的应用要求。
二、工艺规程
1.首先,将铜材料放入特制的锻造炉中,并将炉温调节到适当的温度,以便对材料进行熔炼。
2.然后,将熔炼的铜材料放入锻造模具,实现对材料的成型和定形。
3.接着,将模具中的紫铜块放入精加工系统,实现紫铜块的加工和精加工,以达到所要求的精度和表面形貌。
4.最后,将加工后的紫铜块从模具中取出,进行必要的检查和抛光,以确保紫铜块可以满足所有要求。
三、紫铜锻造工艺的优点
1. 高精度:紫铜锻造工艺可以制造出具有非常高精度的紫铜零件和刀具,在技术应用上可以满足各种高度复杂的规格要求。
2.高强度:紫铜锻件的强度比普通铜锻件的强度高得多,在紫铜块内部结构更加紧密,具有良好的韧性和耐磨性。
3.表面美观:紫铜锻件具有漂亮的表面外观,在日常使用中能够保持更好的表面质量,这使得它们可以用于装饰,也很受欢迎。
4.操作方便:紫铜锻造工艺可以在生产线上实现大规模自动化生产,大大减少了人工操作的时间和成本,提高了生产效率。
锻造工艺方式方法锻造是一种通过加热金属材料后进行塑性变形的工艺,其目的是获得所需的形状和尺寸,并提高材料的机械性能。
在锻造过程中,金属材料通常会被加热至其塑性温度以上,然后施加外力来改变其形状。
锻造工艺方式和方法主要包括锤击锻造、压力锻造、转矩锻造和挤压锻造等。
锤击锻造是一种传统的锻造工艺,它利用锻锤对金属材料进行变形。
在锤击锻造中,金属材料被加热至适当温度后,放置在锻锤工作台上,锻锤将其重复击打以改变其形状。
这种方式适用于制造较大、较重的金属零件,如汽车发动机曲轴。
压力锻造是一种利用机械压力对金属材料进行塑性变形的工艺。
它通常使用液压机或机械压力机,将金属材料放置在工作台上,施加压力来改变其形状。
压力锻造可以用于制造各种形状和尺寸的金属零件,如齿轮、连杆等。
转矩锻造是一种应用于锻造大型轴类零件的方法。
它是通过将金属材料夹持在一对旋转的杆件之间,然后施加扭矩来使其塑性变形。
这种方式可以制造出大直径的轴类零件,如风电机组主轴。
挤压锻造是一种在两个模具之间通过压力使金属材料挤压成为所需形状的工艺。
这种方式适用于制造复杂形状的零件,如铁路轨枕等。
在锻造过程中,还可以使用不同的锻造技术,如冷锻、热锻和等温锻造。
冷锻是在室温下进行的锻造,适用于低碳钢和合金钢等强韧性较好的材料。
热锻是在高温下进行的锻造,可以增强金属材料的塑性,适用于锻造高碳钢和不锈钢等材料。
等温锻造是在材料到达准确的温度后进行的锻造,以确保材料在整个锻造过程中保持稳定的温度。
总而言之,锻造工艺方式和方法根据金属材料的要求和所需零件的形状尺寸的不同而选择,通过锤击、压力、转矩和挤压等方式塑性变形金属材料,从而制造出高强度、高精度的金属零件。
锻造工艺介绍
锻造工艺,是指利用金属的塑性,使之成为具有一定形状、尺寸和性能的工件,以达到改变其形状、尺寸或改善其组织性能的方法。
锻造是在常温下,利用金属或非金属的塑性变形,使之产生塑性流动、压力加工或两者并用的加工方法。
锻造工艺有自由锻、模锻、冷锻、挤压等。
在自由锻中,坯料被压缩成坯,其形状和尺寸可得到控制;在模锻中,坯料被加热到锻造温度并在模锻压力作用下成形;在挤压中,挤压模具和金属从变形模腔中挤出而获得各种形状的工件。
锻造是用锻件所具有的塑性变形来代替原金属材料中的部分结晶应力或结晶压力,从而改变原材料内部组织结构以提高其性能和使用寿命的一种加工方法。
锻造按其作用不同可分为机械锻造(或称机械加工)和热锻造(或称热加工)。
锻造是使金属坯料产生塑性变形以获得一定形状和尺寸锻件的方法。
在金属塑性变形过程中,由于变形程度不同,可获得不同形状和尺寸的锻件。
锻造分为自由锻和模锻两种。
— 1 —
自由锻是利用金属塑性变形后产生的弹性回复力使锻件成形的一种方法。
— 2 —。
锻造工艺的历史锻造是一种古老而重要的金属加工工艺,其历史可以追溯到古代文明。
以下是锻造工艺的历史概述:1.早期锻造:早期的锻造工艺可以追溯到公元前近3000年的铜器时代。
在这个时期,人们开始使用石器工具和木制模具,通过锤打将金属(主要是铜)锻造成各种形状,制作出刀剑、饰品等物品。
2.青铜时代:随着对金属工艺的进一步掌握,青铜时代的到来带动了金属的广泛应用。
铜合金的制备和锻造技术的提高使人们能够制作更为复杂和坚固的器物,如青铜器、武器和工具。
3.铁器时代:铁器时代的到来标志着金属工艺的一个重大进步。
铁的开采和冶炼技术的发展使得铁成为一种广泛应用的金属。
锻造铁器的技术进一步提高,制作了更坚固、更锋利的武器和工具,如铁剑、铁犁等。
4.古代文明:在古代文明中,如希腊、罗马、埃及和中国等,锻造技术得到了不断的发展。
这些文明的工匠通过改良工具、引入新的锻造技术,创造出许多具有艺术性和实用性的金属制品。
5.中世纪和文艺复兴:中世纪时期,锻造技术在欧洲继续发展。
锻造成为制造武器和护甲的重要工艺,同时在建筑、艺术和工业领域也得到广泛应用。
文艺复兴时期,对古代文化的研究和技术的创新促进了锻造工艺的进一步发展。
6.工业革命:18世纪的工业革命带来了机械化和工业化的浪潮,影响了锻造工艺。
新的机械设备和先进的冶炼技术使得大规模的金属生产成为可能,推动了现代锻造工业的形成。
7.现代锻造:在现代,锻造工艺得到了极大的发展,涉及到多种金属,包括钢、铝、铜等。
电力锻造和数控锻造等先进技术的引入使得锻造过程更加精密和高效。
总体而言,锻造工艺经历了漫长的历史发展过程,从最早的手工操作到现代的自动化和机械化生产,为人类提供了丰富多彩、实用耐用的金属制品。
中国的锻造工艺与文化传承中国的锻造工艺是一种博大精深的传统工艺,其历史可以追溯到数千年前的商代。
锻造包括了很多方面的知识和技能,例如几何学、力学、材料学、化学等等。
随着现代科技的不断发展,锻造工艺已经得到了极大的改善和提升,但其历史和文化意义却始终保持不变,并且在不断传承和发扬光大。
一、中国古代锻造工艺概述中国的锻造工艺可以追溯到商代时期。
商代时期的青铜器就是使用锤敲打与铸造的方式锻造而成的。
7000年前,中国人已经开始使用青铜器,铁器的使用则开始于春秋战国时期。
铁器的应用为锻造工艺的发展带来了巨大的提升。
汉朝时期,中国的锻造工艺达到了很高的水平,当时的铁器、铜器、金器和银器都展示了非常高超的工艺。
二、锻造工艺的特点1、材料与设计锻造工艺所使用的材料包括了铁、铜、合金等多种金属材料。
在铁的锻造工艺中,选材至关重要。
所选的材料需要具备良好的塑性和可锻性,同时还要保证不易变形和开裂。
此外,锻造工艺对设计的要求很高,设计需要考虑到材料的特性和锤击时产生的冲力,这样才能确保久经考验、具有美观性和实用性的传统作品成功锻造完成。
2、古老的工艺步骤中国的锻造工艺包括了多个步骤,其具体流程包括了材料的选择、设计、制模、模铸、浇铸、切割、成型、修饰等。
而其中,锻造工艺更是使用多种技术来调整铸造的金属,并使其具备良好的样式和形状,同时还需保证其强度、韧性和其他性能。
3、传统技艺的传承中国的锻造工艺有着非常悠久的历史。
其在发展过程中吸收了许多古老传统技艺的精华,不断创新使得这一艺术传统得以得以在当今依然得到延续和传承。
三、锻造文化的价值1、美学价值中国的锻造工艺精湛的技术和良好的设计被视为高度的艺术实践。
其无论是在制作上还是在使用上都体现了极高的美学价值。
其中,大量的文化符号在锻造工艺中得到了体现,如“龙”、“凤”、“熊猫”、“麒麟”等等。
2、历史价值通过锻造工艺,我们可以了解到许多古代文化和历史事件。
例如,许多考古发现中的文物都是通过锻造技术得以保存下来的。
锻造工艺概述锻造是利用锻压机械对金属坯料施加压力,使其产生塑性变形,以获得具有一定机械性能、一定形状和尺寸的锻件的加工方法。
锻造和冲压同属塑性加工性质,统称锻压。
锻造是机械制造中常用的成形方法。
通过锻造能消除金属的铸态疏松、焊合孔洞,锻件的机械性能一般优于同样材料的铸件。
机械中负载高、工作条件严峻的重要零件,除形状较简单的可用轧制的板材、型材或焊接件外,多采用锻件。
锻造按坯料在加工时的温度可分为冷锻和热锻。
冷锻一般是在室温下加工,热锻是在高于坯料金属的再结晶温度上加工。
有时还将处于加热状态,但温度不超过再结晶温度时进行的锻造称为温锻。
不过这种划分在生产中并不完全统一。
钢的再结晶温度约为460℃,但普遍采用800℃作为划分线,高于800℃的是热锻;在300~800℃之间称为温锻或半热锻。
锻造按成形方法则可分为自由锻、模锻、冷镦、径向锻造、挤压、成形轧制、辊锻、辗扩等。
坯料在压力下产生的变形基本不受外部限制的称自由锻,也称开式锻造;其他锻造方法的坯料变形都受到模具的限制,称为闭模式锻造。
成形轧制、辊锻、辗扩等的成形工具与坯料之间有相对的旋转运动,对坯料进行逐点、渐近的加压和成形,故又称为旋转锻造。
锻造用料主要是各种成分的碳素钢和合金钢,其次是铝、镁、铜、钛等及其合金。
材料的原始状态有棒料、铸锭、金属粉末和液态金属。
一般的中小型锻件都用圆形或方形棒料作为坯料。
棒料的晶粒组织和机械性能均匀、良好,形状和尺寸准确,表面质量好,便于组织批量生产。
只要合理控制加热温度和变形条件,不需要大的锻造变形就能锻出性能优良的锻件。
铸锭仅用于大型锻件。
铸锭是铸态组织,有较大的柱状晶和疏松的中心。
因此必须通过大的塑性变形,将柱状晶破碎为细晶粒,将疏松压实,才能获得优良的金属组织和机械性能。
经压制和烧结成的粉末冶金预制坯,在热态下经无飞边模锻可制成粉末锻件。
锻件粉末接近于一般模锻件的密度,具有良好的机械性能,并且精度高,可减少后续的切削加工。
粉末锻件内部组织均匀,没有偏析,可用于制造小型齿轮等工件。
但粉末的价格远高于一般棒材的价格,在生产中的应用受到一定限制。
对浇注在模膛的液态金属施加静压力,使其在压力作用下凝固、结晶、流动、塑性变形和成形,就可获得所需形状和性能的模锻件。
液态金属模锻是介于压铸和模锻间的成形方法,特别适用于一般模锻难于成形的复杂薄壁件。
不同的锻造方法有不同的流程,其中以热模锻的工艺流程最长,一般顺序为:锻坯下料;锻坯加热;辊锻备坯;模锻成形;切边;中间检验,检验锻件的尺寸和表面缺陷;锻件热处理,用以消除锻造应力,改善金属切削性能;清理,主要是去除表面氧化皮;矫正;检查,一般锻件要经过外观和硬度检查,重要锻件还要经过化学成分分析、机械性能、残余应力等检验和无损探伤。
锻压是锻造和冲压的合称,是利用锻压机械的锤头、砧块、冲头或通过模具对坯料施加压力,使之产生塑性变形,从而获得所需形状和尺寸的制件的成形加工方法。
在锻造加工中,坯料整体发生明显的塑性变形,有较大量的塑性流动;在冲压加工中,坯料主要通过改变各部位面积的空间位置而成形,其内部不出现较大距离的塑性流动。
锻压主要用于加工金属制件,也可用于加工某些非金属,如工程塑料、橡胶、陶瓷坯、砖坯以及复合材料的成形等。
锻压和冶金工业中的轧制、拔制等都属于塑性加工,或称压力加工,但锻压主要用于生产金属制件,而轧制、拔制等主要用于生产板材、带材、管材、型材和线材等通用性金属材料。
人类在新石器时代末期,已开始以锤击天然红铜来制造装饰品和小用品。
中国约在公元前2000多年已应用冷锻工艺制造工具,如甘肃武威皇娘娘台齐家文化遗址出土的红铜器物,就有明显的锤击痕迹。
商代中期用陨铁制造武器,采用了加热锻造工艺。
春秋后期出现的块炼熟铁,就是经过反复加热锻造以挤出氧化物夹杂并成形的。
最初,人们靠抡锤进行锻造,后来出现通过人拉绳索和滑车来提起重锤再自由落下的方法锻打坯料。
14世纪以后出现了畜力和水力落锤锻造。
1842年,英国的内史密斯制成第一台蒸汽锤,使锻造进入应用动力的时代。
以后陆续出现锻造水压机、电机驱动的夹板锤、空气锻锤和机械压力机。
夹板锤最早应用于美国内战(1861~1865)期间,用以模锻武器的零件,随后在欧洲出现了蒸汽模锻锤,模锻工艺逐渐推广。
到19世纪末已形成近代锻压机械的基本门类。
20世纪初期,随着汽车开始大量生产,热模锻迅速发展,成为锻造的主要工艺。
20世纪中期,热模锻压力机、平锻机和无砧锻锤逐渐取代了普通锻锤,提高了生产率,减小了振动和噪声。
随着锻坯少无氧化加热技术、高精度和高寿命模具、热挤压,成形轧制等新锻造工艺和锻造操作机、机械手以及自动锻造生产线的发展,锻造生产的效率和经济效果不断提高。
冷锻的出现先于热锻。
早期的红铜、金、银薄片和硬币都是冷锻的。
冷锻在机械制造中的应用到20世纪方得到推广,冷镦、冷挤压、径向锻造、摆动辗压等相继发展,逐渐形成能生产不需切削加工的精密制件的高效锻造工艺。
早期的冲压只利用铲、剪、冲头、手锤、砧座等简单工具,通过手工剪切、冲孔、铲凿、敲击使金属板材(主要是铜或铜合金板等)成形,从而制造锣、铙、钹等乐器和罐类器具。
随着中、厚板材产量的增长和冲压液压机和机械压力机的发展,冲压加工也在19世纪中期开始机械化。
1905年美国开始生产成卷的热连轧窄带钢,1926年开始生产宽带钢,以后又出现冷连轧带钢。
同时,板、带材产量增加,质量提高,成本降低。
结合船舶、铁路车辆、锅炉、容器、汽车、制罐等生产的发展,冲压已成为应用最广泛的成形工艺之一。
锻压主要按成形方式和变形温度进行分类。
按成形方式锻压可分为锻造和冲压两大类;按变形温度锻压可分为热锻压、冷锻压、温锻压和等温锻压等。
热锻压是在金属再结晶温度以上进行的锻压。
提高温度能改善金属的塑性,有利于提高工件的内在质量,使之不易开裂。
高温度还能减小金属的变形抗力,降低所需锻压机械的吨位。
但热锻压工序多,工件精度差,表面不光洁,锻件容易产生氧化、脱碳和烧损。
冷锻压是在低于金属再结晶温度下进行的锻压,通常所说的冷锻压多专指在常温下的锻压,而将在高于常温、但又不超过再结晶温度下的锻压称为温锻压。
温锻压的精度较高,表面较光洁而变形抗力不大。
在常温下冷锻压成形的工件,其形状和尺寸精度高,表面光洁,加工工序少,便于自动化生产。
许多冷锻、冷冲压件可以直接用作零件或制品,而不再需要切削加工。
但冷锻时,因金属的塑性低,变形时易产生开裂,变形抗力大,需要大吨位的锻压机械。
等温锻压是在整个成形过程中坯料温度保持恒定值。
等温锻压是为了充分利用某些金属在等一温度下所具有的高塑性,或是为了获得特定的组织和性能。
等温锻压需要将模具和坯料一起保持恒温,所需费用较高,仅用于特殊的锻压工艺,如超塑成形。
锻压可以改变金属组织,提高金属性能。
铸锭经过热锻压后,原来的铸态疏松、孔隙、微裂等被压实或焊合;原来的枝状结晶被打碎,使晶粒变细;同时改变原来的碳化物偏析和不均匀分布,使组织均匀,从而获得内部密实、均匀、细微、综合性能好、使用可靠的锻件。
锻件经热锻变形后,金属是纤维组织;经冷锻变形后,金属晶体呈有序性。
锻压是使金属进行塑性流动而制成所需形状的工件。
金属受外力产生塑性流动后体积不变,而且金属总是向阻力最小的部分流动。
生产中,常根据这些规律控制工件形状,实现镦粗拔长、扩孔、弯曲、拉深等变形。
锻压出的工件尺寸精确、有利于组织批量生产。
模锻、挤压、冲压等应用模具成形的尺寸精确、稳定。
可采用高效锻压机械和自动锻压生产线,组织专业化大批量或大量生产。
锻压的生产过程包括成形前的锻坯下料、锻坯加热和预处理;成形后工件的热处理、清理、校正和检验。
常用的锻压机械有锻锤、液压机和机械压力机。
锻锤具有较大的冲击速度,利于金属塑性流动,但会产生震动;液压机用静力锻造,有利于锻透金属和改善组织,工作平稳,但生产率低;机械压力机行程固定,易于实现机械化和自动化。
未来锻压工艺将向提高锻压件的内在质量、发展精密锻造和精密冲压技术、研制生产率和自动化程度更高的锻压设备和锻压生产线、发展柔性锻压成形系统、发展新型锻压材料和锻压加工方法等方面发展。
提高锻压件的内在质量,主要是提高它们的机械性能(强度、塑性、韧性、疲劳强度)和可靠度。
这需要更好地应用金属塑性变形理论;应用内在质量更好的材料;正确进行锻前加热和锻造热处理;更严格和更广泛地对锻压件进行无损探伤。
少、无切削加工是机械工业提高材料利用率、提高劳动生产率和降低能源消耗的最重要的措施和方向。
锻坯少、无氧化加热,以及高硬、耐磨、长寿模具材料和表面处理方法的发展,将有利于精密锻造、精密冲压的扩大应用。
─中频感应加热锻造炉主要特点:1、用于铜棒、铁棒、铝棒材加热;2、超小体积,可移动,占地仅0.6平方米,方便与任何锻、轧设备配合使用;3、安装、调试和操作非常方便,一学即会;4、感应加热,使棒料在极短的时间内加热到所需温度,极大地减少金属氧化,既省料又提高锻造质量;5、中频加热Φ15以上棒料,更透热、更均匀、更快速;6、24小时不间断工作;7、自动送料;8、省电、环保、降低成本和人力开支;9、方便更换炉体,以适应棒料整体加热或端部加热的不同要求;10、采用超小型的中频感应加热电源,与传统中频电源截然不同;主要型号和适用范围:T某Z-3535KW锻造炉T某Z-4545KW锻造炉推荐用于Φ15-30长度40MM左右短棒料加热推荐用于Φ15-50棒料加热T某Z-110110KW锻造推荐用于Φ25-50棒料加炉热T某Z-7070KW锻造炉棒料中频感应加热锻造炉组成:1、35-110KW中频加热电源2、补偿电容箱3、整料或端料加热圈及机构4、气功送料机构5、工作台热模锻技术新发展中国加入WTO,市场国际化、采购全球化必将给中国的制造业带来巨大的商机,特别是汽车、航天制造业;国家计委、科技部共同发布的《当前优先发展的高技术产业化重点领域指南》已确定了汽车领域优先发展的重点产业主要集中在汽车零部件制造业。
汽车工业的“小型化、轻量化和高速化”发展方向,为中国的锻造行业提供了极大的发展机遇,汽车上的零件60%是用锻压方法生产的。
有关专家分析指出:美国、日本、德国的汽车工业如此发达,得益于其锻压技术及设备的领先地位。
我国的锻造工业要适应入世后国际竞争的需要,必须用高新技术武装自己,提升自己,坚定不移地走“精密化、专业化、现代化”的强身之路。
我国汽车工业发展目前已呈现多元化倾向,特别是家用轿车的发展,为适应不同消费者的要求,轿车市场已呈现多品牌、多品种共同发展的格局,必然造成了锻件需求的多样化,为了适应市场的需求,锻压行业近十年还应优先考虑如何令生产更具柔性,以适应多品种、小批量“及时生产”要求。
二、锻造行业的技术进步锻造行业的技术进步主要表现在新材料、新工艺、新设备的应用。