2012年中考数学模拟试题二
- 格式:doc
- 大小:226.50 KB
- 文档页数:7
2012年中考数学科模拟试题(考试时间:100分钟满分110分一、选择题(本大题满分36分,每小题3分)1、12-的相反数是()A.2B.-2C.12D.12-2、如图,直线a、b被直线c所截,如果a∥b,那么()A.∠1>∠2B.∠1=∠2C.∠1<∠2D.∠1+∠2=180°3.函数yx的取值范围()A.x>0B. x≠5C. x≤5D. x≥54.如图,是某几何体的三视图,则该几何体的名称是()A.圆柱B.圆锥C.棱柱D.长方体5.一组数据按从小到大顺序排列为1,2,4,x,6,9这组数据的中位数为5,那么这组数据的众数为()A. 4B. 5C. 5.5D. 66.下列计算错误的是()A.(-2x)2=-2x2B.(-2a3)2 =4a6C.(-x)9÷(-x)3=x6D.-a2·a=-a37.在△ABC中,∠C=90°,a、b、c分别为∠A、∠B、∠C的对边,下列各式成立的是()A. b=a·sinBB. a=b·cosBC. a=b·tanBD. b=a·tanB8.从标有号数1到100的100张卡片中,随意抽取一张,其号数为3的倍数的概率是()A.33100B.34100C.310D. 无法确定9如图,四边形ABCD的对角线互相平分,要使它变为矩形,需要添加的条件是()A. AB=CD B. AD=BC C. AB=BC D .AC=BD10.抛物线y=12x2向左平移8个单位,再向下平移9个单位后,所得抛物线的表达式是()abc╮1╰2第2题图主视图左视图俯视图第4题图AB CD第9题图A . y =12(x +8)2-9 B . y =12(x -8)2+9 C . y =12(x -8)2-9 D . y =12(x +8)2+9 11.若反比例函数y =kx的图象经过点(-2,1),则此函数的图象一定经过点( )A. (-2,-1) B . (2,-1) C . (12,2) D . (12,2)12. 下列关于二次函数的说法错误的是( )A .抛物线y =-2x 2+3x +1的对称轴是直线x =34; B .点A (3,0)不在抛物线y =x 2 -2x -3的图象上; C .二次函数y =(x +2)2-2的顶点坐标是(-2,-2);D .函数y =2x 2+4x -3的图象的最低点在(-1,-5) 二、填空题(本大题满分18分,每小题3分)13.用同样大小的黑色棋子按图6所示的方式摆图形,按照这样的规律摆下去,则第n 个图形需棋子 枚(用含n 的代数式表示).14.Y =-2(x -1)2 +5 的图象开口向 ,顶点坐标为 ,当x >1时,y 值随着x 值的增大而 。
2012年广东省中考全真模拟试题(二)数学试卷学校:__________班别:__________姓名:__________分数:____________一.选择题(本大题共5小题,每小题3分,共15分):在每小题给出的四个选项中,只有一个是正确的,请将所选选项的字母写在题目后面的括号内。
1.在4-,-π,2-,2四个数中,最小的无理数是( ) A .4- B .-π C .2- D .2 2.函数12y x =+的自变量x 的取值范围是( ) A . 2x >-B . 2x <-C .2x ≠-D . 2x ≥-3.空气的体积质量是0.001239/厘米3,此数保留三个有效数字的近似数用科学记数法表示为( )A.1.239×10-3B.1.23×10-3C.1.24×10-3D.1.24×1034.如图,在□ABCD 中,已知AD =8㎝, AB =6㎝, DE 平分∠ADC 交BC 边于点E ,则BE 等于 ( )A .2cmB .4cmC .6cmD .8cm5.一个长方体的左视图、俯视图及相关数据如图所示,则其主视图的面积是( )A .6B .8C .12D .24二.填空题(本大题共5小题,每小题4分,共20分) :请把下列各题的正确答案填写在横线上。
6.因式分解:a ab 252-= .7.据某地气象部门2010年5月8日7时30分发布的天气预报,我国内地31个城市5月9日的最高气温(℃)统计如下表:1那么这些城市5月9日的最高气温的中位数和众数分别是 和 8.如图,已知AD AB =,DAC BAE ∠=∠,要使AB CDEA可).9=_________. 10.如图,如果以正方形ABCD 的对角线AC 为边作第二个正方形 ACEF ,再以对角线AE 为边作第三个正方形AEGH ,如此下去,…,已知正方形ABCD 的面积1s 为1,按上述方法所作的正方形的面积依次为2s ,3s …n s (n 为正整数),那么第8个正方形的面积8s = .三.解答题(本大题共5小题,每小题6分,共30分)11.已知二次函数215222y x x =+-, 12.先化简,后求值:()2111211x x x ⎛⎫+÷-- ⎪--⎝⎭, 求其顶点坐标及它与y 轴的交点坐标.其中x =13.如图,平行四边形ABCD 中,以A 为圆心,AB 为半径的圆分别交AD 、BC 于F 、G,•延长B A 交圆于E.求证:EF=FG .14.四张质地相同的卡片如图所示. 将卡片洗匀后,背面朝上放置在桌面上.(1)求随机抽取一张卡片,恰好得到数字2的概率; (2)小贝和小晶想用以上四张卡片做游戏,游戏规则 见信息图.你认为这个游戏公平吗?请用列表法或画 树状图法说明理由,若认为不公平,请你修改规则, 使游戏变得公平.2362成绩(分)15.△ABC 在平面直角坐标系中的位置如图所示. (1)作出△ABC 关于y 轴对称的△A 1B 1C 1,并写出△A 1B 1C 1各顶点的坐标;(2)将△ABC 向右平移6个单位,作出平移后的△A 2B 2C 2,并写出△A 2B 2C 2各顶点的坐标;(3)观察△A 1B 1C 1和△A 2B 2C 2,它们是否关于某直线对称?若是,请在图上画出这条对称轴.四.解答题(本大题共4小题,每小题7分,共28分)16.某市七年级有15000名学生参加安全应急预案知识竞赛活动,为了了解本次知识竞赛的成绩分布情况,从中抽取了400名学生的得分(得分取正整数,满分100分)进行统计:频 率 分 布 表请你根据不完整的频率分布表,解答下列问题: (1)补全频率分布表和频数分布直方图;(2)若将得分转化为等级,规定得分低于59.5分评为“D ”,59.5~69.5分评为“C ”,69.5~89.5分评为“B ”,89.5~100.5分评为“A ”,这次15000名学生中约有多少人评为“D ”?(3)以(2)的等级为标准,如果随机抽取一名参赛学生的成绩等级,则这名学生的成绩评为“A ”、17.如图,线段AB 与⊙O 相切于点C ,连结OA ,OB , OB 交⊙O 于点D ,已知6OA OB ==,AB = (1)求⊙O 的半径;(2)求图中阴影部分的面积.18.如图,在平面直角坐标系中,函数ky x=(0x >,常数0k >)的图象经过点(12)A ,,()B m n ,,(1m >),过点B 作y 轴的垂线,垂足为C .若ABC △的面积为2,求点B 的坐标.19.课外实践活动中,数学老师带领学生测量学校旗杆的高度.如图,在A 处用测角仪(离地高度为1.5米)测得旗杆顶端的仰角为15,朝旗杆方向前进23米到B 处,再次测得旗杆顶端的仰角为30,求旗杆EG 的高度.23米C OABD五.解答题(本大题共3小题,每小题9分,共27分)20.(1)观察与发现小明将三角形纸片ABC(AB>AC),沿过点A的直线折叠,便得AC落在AB边上,折痕为AD,展开纸片(如图①),再次折叠该三角形纸片,使点A与点D重合,折痕为EF,展开纸片后得到△AEF(如图②),小明认为△AEF为等腰三角形,你同意吗?请说明理由.(2)实践与运用将矩形纸片ABCD沿过点B的直线折叠,使点A落在BC边上的点F处,折痕为BE(如图③),再沿过点E的直线折叠,使点D落在BE上的点D′处,折痕为EG(如图④),再展开纸片(如图⑤),求图中∠α的大小.21.2009年4月7日,国务院公布了《医药卫生体制改革近期重点实施方案(2009~2011年》,某市政府决定2009年投入6000万元用于改善医疗卫生服务,比2008年增加了1250万元.投入资金的服务对象包括“需方”(患者等)和“供方”(医疗卫生机构等),预计2009年投入“需方”的资金将比2008年提高30%,投入“供方”的资金将比2008年提高20%.(1)该市政府2008年投入改善医疗卫生服务的资金是多少万元?(2)该市政府2009年投入“需方”和“供方”的资金各多少万元?(3)该市政府预计2011年将有7260万元投入改善医疗卫生服务,若从2009~2011年每年的资金投入按相同的增长率递增,求2009~2011年的年增长率.22.如图,在梯形ABCD 中,A D ∥BC,BC=4,点M 是AD 的中点,MBC △是等边三角形. (1)求证:梯形ABCD 是等腰梯形;(2)动点P 、Q 分别在线段BC 和MC 上运动,且60MPQ =︒∠保持不变.设PC x MQ y ==,,求y 与x 的函数关系式;(3)在(2)中当y 取最小值时,判断PQC △的形状,并说明理由.ADCBP MQ60°。
2012中考数学模拟试卷2考生须知:本科目试卷分试题卷和答题卷两部分 满分 分 考试时间 分钟答题前 必须在答题卷的密封区内填写姓名与准考证号所有答案都必须做在答题卷标定的位置上 务必注意试题序号和答题序号相对应考试结束后 只需上交答题卷试 题 卷一.仔细选一选☎本题有 个小题,每小题 分,共 分✆下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母填在答题卷中相应的格子内.注意可以用多种不同的方法来选取正确答案. .4-的算术平方根是 ☎ ✆ ✌ - .下列运算正确是( )✌.222()a b a b +=+ .325a a a ⋅=.632a a a ÷= .235a b ab += .把2y x =的图象向右平移两个单位,再向下平移一个单位得到的函数关系式是( )✌.2(2)1y x =+- .2(2)1y x =-- .2(2)1y x =++ .2(2)1y x =-+.若一个图形绕着一个定点旋转一个角α(0180α<≤)后能够与原来的图形重合,那 么这个图形叫做旋转对称图形.例如:等边三角形绕着它的中心旋转 (如图),能够与原来的等边三角形重合,因而等边三角形是旋转对称图形.显然,中心对称图形都是旋转对称图形,但旋转对称图形不一定是中心对称图形.下面四个图形中,旋转对称图形的个数是( )输入x 2x ≤输出y22y x =-5y x=是 否第 题✌. . . ..如图,是一条高速公路隧道的横截面,若它的形状是以 为圆心的圆的一部分,圆的半径 ✌ 米,高 米,则路面宽✌ ( ) ✌. 米 . 米 . 米 . 米.如图是某几何体的三视图及相关数据,则下列判断正 确的是( )✌.a c > .b c >.2224a b c += .222a b c += .如图,将一个 ♦ ✌形状的楔子从木桩的底端点沿水平方向打入木桩底下,使木桩向上运动 已知楔子斜面的倾斜角为 ,若楔子沿水平方向前进 ♍❍(如箭头所示),则木桩上升了( )♍❍✌. ♦♓⏹ . ♍☐♦. ♦♋⏹ .5tan 20 如图,要使输入的x 值与输出的y 值相等,则这样的x 值有( ) ✌. 个 . 个 . 个 . 个 .如图, ☜是 ✌的中位线,☞是 ☜的中点, ☞的延长线交✌ 于点☝,则✌☝:☝等于( )✌. . . . 第 题✌第 题第 题✌♌♍主视图左视图第 题俯视图1B3A2B4A3B4BO✌第 题.如图,✌, , , 为圆 的四等分点,动点 从圆心 出发,沿 路线作匀速运动,设运动时间为⌧(♦). ✌ ⍓( ),右图函数图象表示⍓与⌧之间函数关系,则点 的横坐标应为( )✌. .2π.12π+二.认真填一填☎本题有 个小题 每小题 分 共 分✆要注意认真看清题目的条件和要填写的内容 尽量完整地填写答案.甲、乙两人进行射击比赛,在相同条件下各射击 次,他们的平均成绩均为环, 次射击成绩的方差分别是:2 1.5S =甲,21.2S =乙,那么,射击成绩较为稳定的是 .(填❽甲❾或❽乙❾)如图,直线12l l ∥,AB CD ⊥,135∠=,那么2∠的 度数是 ..一只口袋中有 只红球和 个白球,它们除颜色外,无其它差 别 现从袋中任意摸出一个球,则摸到红球的概率是.有一个二次函数的图象,三位学生分别说出了它的一些特点。
2012年中考模拟试题数 学 试 题(考试时间:120分钟 满分:120分)命题人:马垅中学 王 进一、选择题(每小题3分,共24分)1.-3的相反数是( ) A.-3 B.3 C.31 D. 31- 2.下列运算正确的的是( )A. 223=-x xB. 624x x x =+ C. 336)2(x x -=- D. y x y y x 626=÷3.我国第六次人口普查显示,全国总人口为1370536875人,将这总人口数(保留四个有效数字)用科学记数法表示为( )A.910370.1⨯ B. 910371.1⨯ C. 910375.1⨯ D. 910376.1⨯ 4.方程)1(2)1(+=+x x x 的根为( )A. 2=xB.1-=xC. 2,121=-=x xD. 2,121-=-=x x5.如图,在矩形ABCD 中,对角线AC,BD 相交于点O ,∠AOB=60°,AB=6,则AD=( ) A. 33 B.12 C. 36 D. 346.如图,点D,E,F 分别是△ABC(AB >AC)各边中点,下列说法不正确的是( )A. AD 平分∠BACB.EF 与AD 相互平分C. 2EF=BCD. △DEF 是△ABC 的位似图形7.相交两圆的公共弦长为8,两圆半径分别为5和6,则圆心距为( ) A. 352+ B.352- C.352± D. 53±8.如图,图象描述了某汽车在行驶过程中速度与时间的函数关系,下列说法不正确的是( ) A.第6分钟时,汽车的速度为40千米/时 B.第12分钟时,汽车的速度为0千米/时C.从第9分钟到第12分钟,汽车从60千米/时减少到0千米/时D.从第3分钟到第6分钟,汽车行驶了120千米二、填空题(每小题3分,共24分)9. 41-的倒数为 .10.分解因式:x x x +-232= .11.若8,2022==+xy y x ,则=+y x.DA BCDEF12.化简分式:=---21442x x . 13.如图,已知在△ABC 中,DE ∥BC ,AD=3,BD=5,BC=16,则DE= . 14.圆锥的母线长与底面直径均为6,则圆锥的侧面展开图的圆心角为 度.15.如图,点P 为弦AB 上的一点,连接OP,过点P 作PC ⊥OP,PC 交⊙O 于C ,若AP=9,BP=4,则PC= .16.如图,直线y x b =+与y 轴交于点A ,与双曲线y =第一象限交于M 、N 两点,且AM ·AN=4,则k = .三、解答题(本大题共72分)17.(本题满分5分)解方程组27261x y x y -=⎧⎨-=-⎩18.(本题满分6分)学习了统计知识后,小明就本班同学的上学方式进行了一次调查统计.图(1)和图(2)是他通过采集数据后,绘制的两幅不完整的统计图.请你根据图中提供的信息,解答以下问题:(1)求该班共有多少名学生?(2)在图(1)中,将表示“步行”的部分补充完整;(3)在扇形统计图中,计算出“骑车”部分所对应的圆心角的度数; (4)如果全年级共600名同学,请你估算全年级步行上学的学生人数?A B C DE25 20 15 乘车 步行 骑车 上学方式图⑴ 图⑵19.(本题满分6分)已知如图在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线。
2012年中考数学模拟试题一、选择题;共36分1.下列运算正确的是 ( ) A. B.C .D .2.下列说法中正确的是 ( ) A. B.函数y =x 的取值范围是1x > C .8的立方根是2±D .若点(2)P a ,和点(3)Q b -,关于x 轴对称,则a b +的值为5 3.如图,将一个Rt △ABC 形状的楔子从木桩的底端点P 沿水平方向打入木桩底下,使木桩向上运动.已知楔子斜面的倾斜角为15°,若楔子沿水平方向前进6cm (如箭头所示),则木桩上升了( )A .6sin15°cmB .6cos15°cmC .6tan15° cmD .6tan15cm 4.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表:这些运动员跳高成绩的中位数和众数分别是A .1.65,1.70B .1.70,1.65C .1.70,1.70D .3,5 5.关于x 的一元二次方程(m -1)x 2+x +m 2-1=0有一根为0,则m 的值为( ) A 、1 B 、-1 C 、1或-1 D 、21B(第7题)O CBADMEDCBA6. 5月7日,在NBA 西部半决赛中,湖人队在主场以111∶98击败火箭队的比赛十分精彩,据网上的资料显示收看这场比赛的中国观众约4579万人,4579万用科学记数法表示为(精确到十万位)( )A. 4.58×107B.45.8×106C.4.579×107D.4.58×106 7.一个几何体是由若干个小正方体组成的, 其主视图和左视图都是右图,则组成这 个几何体需要的小正方体的个数最少是( ) A 、7个 B 、6个 C 、5个 D 、4个 8.如图,已知边长为5的等边三角形ABC 纸片,点E 在AC F 在AB 边上,沿着EF 折叠,使点A 落在BC 边上的点D 且ED BC ⊥,则CE 的长是()A .15 . B .10-C .5 D. 20-9.如图,将边长为2cm 的两个正方形纸片完全重合,按住其中一个不动,另一个绕点B 顺时针旋转一个角度,若使重叠部分的面积为334cm 2,则这个旋转角度为( ) A.30 B. 35 C.45 D.6010..如图,已知O ⊙的半径为1,锐角ABC △内接于O ⊙,BD AC ⊥于点D ,OM AB ⊥于点M ,则sin CBD ∠的值等于( )A .OM 的长B .2OM 的长C .CD 的长D .2CD 的长11.如图,直角梯形ABCD 中,AB ⊥BC ,AD ∥BC ,点E 是AB 的中点,且AD +BC =DC .下列结论中:①△ADE ∽△BEC ;②DE 2=DA •DC ;③若设AD =a ,CD =b ,BC =c ,则关于x 的方程20ax bx c ++=有两个不相等的实数根;④若设AD =a ,AB =b ,BC =c ,则关于x 的方程20ax bx c ++=有两个相等的实数根.其中正确的结论有( )个. A.1个B.2个C.3个D.4个1B..12、二次函数c bx ax y ++=2的图象如图所示,则下列关系式不正确的是( ) A 、a <0B 、abc >0C 、c b a ++>0D 、ac b 42->0二、填空题15分13.分解因式:x 2-x-1= 。
2012年全新中考数学模拟试题二题号一二三四五六总分得分一、选择题(本大题共8小题,每小题3分,共24分)1.-2的倒数是【】A. B. C. -2 D. 22.2010年8月7日,甘南藏族自治州舟曲县发生特大山洪泥石流地质灾害,造成重大的经济损失。
就房屋财产损失而言,总面积超过4.7万平方米,经济损失高达212000000元人民币。
212000000用科学记数法应记为【】A. B. C. D.3. 下列运算正确的是【】A.B.C.D.4.如图,直线l1∥l2,则α为【】A.150°B.140°C.130°D.120°5.二元一次方程组的解是【】A.B.C.D.6..如图,已知双曲线经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(,4),则△AOC的面积为【】A.12 B.9 C.6 D.47.便民商店经营一种商品,在销售过程中,发现一周利润y(元)与每件销售价x(元)之间的关系满足,由于某种原因,价格只能15≤x≤22,那么一周可获得最大利润是【】A.20. B. 1508 C. 1550 D. 15588.如图,矩形中,,,是的中点,点在矩形的边上沿运动,则的面积与点经过的路程之间的函数关系用图象表示大致是下图中的【】A. B. C. D.二、填空题(本大题共8小题,每小题3分,共24分)9.计算的结果是。
10. (在下面两题中任选一题完成填空,若两题都做按第一小题计分)(Ⅰ). 不等式的解集为.(Ⅱ). 用计算器计算:3sin25°= (保留三个有效数字).在直角坐标系中,点P(-3,2)关于X轴对称的点Q的坐标是.11. 因式分解:.12.已知方程的两个解分别为、,则的值为.13.如图,现有一个圆心角为90°,半径为16cm的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计),则该圆锥底面圆的半径为cm.14.如图,矩形ABCD的长AB=6cm,宽AD=3cm.O是AB的中点,OP⊥AB,两半圆的直径分别为AO与OB.抛物线经过C、D两点,则图中阴影部分的面积是cm2.15.将正方形纸片ABCD按下图所示折叠,那么图中∠HAB的度数是.16.如图,是一个由若干个小正方体搭建而成的几何体的主视图与左视图,那么下列图形中可以作为该几何体的俯视图的序号是(多填或错填得0分,少填酌情给分)三、(本大题共3个小题,第17小题6分,第18、19小题各7分,共20分)17.计算:18.解分式方程19.有3张背面相同的纸牌A,B,C,其正面分别画有三个不同的几何图形(如图).将这3张纸牌背面朝上洗匀后摸出一张,放回洗匀后再摸出一张.(1)求出两次摸牌的所有等可能结果(用树状图或列表法求解,纸牌可用A,B,C表示);(2)求摸出两张牌面图形都是中心对称图形的纸牌的概率.四、(本大题共2个小题,每小题各8分,共16分)20. 统计2010年上海世博会前20天日参观人数,得到如下频数分布表和频数分布直方图(部分未完成):(1)请补全频数分布表和频数分布直方图;(2)求出日参观人数不低于22万的天数和所占的百分比;(3)利用以上信息,试估计上海世博会(会期184天)的参观总人数.上海世博会前20天日参观人数的频数分布表组别(万人)组中值(万人) 频数频率7.5~14.5 11 5 0.2514.5~21.5 6 0.3021.5~28.5 25 0.3028.5~35.5 32 321.某渔场计划购买甲、乙两种鱼苗共6000尾,甲种鱼苗每尾0.5元,乙种鱼苗每尾0.8元.相关资料表明:甲、乙两种鱼苗的成活率分别为90%和95%.(1)若购买这批鱼苗共用了3600元,求甲、乙两种鱼苗各购买了多少尾?(2)若购买这批鱼苗的钱不超过4200元,应如何选购鱼苗?(3)若要使这批鱼苗的成活率不低于93%,且购买鱼苗的总费用最低,应如何选购鱼苗?五、(本大题共2个小题,第22小题8分,第23小题9分,共17分)22. 如图,大海中有A和B两个岛屿,为测量它们之间的距离,在海岸线PQ上点E处测得∠AEP=74°,∠BEQ=30°;在点F处测得∠AFP=60°,∠BFQ=60°,EF=1km.(1)判断AB、AE的数量关系,并说明理由;(2)求两个岛屿A和B之间的距离(结果精确到0.1km).(参考数据:3≈1.73,sin74°≈0.96,cos74°≈0.28,tan74°≈3.49,sin76°≈0.97,cos76°≈0.24)23. 如图,圆O的直径为5,在圆O上位于直径AB的异侧有定点C和动点P,已知BC:CA=4:3,点P在半圆弧AB上运动(不与A、B两点重合),过点C作CP的垂线CD交PB的延长线于D点.(1)求证:AC•CD=PC•BC;(2)当点P运动到AB弧中点时,求CD的长;(3)当点P运动到什么位置时,△PCD的面积最大?并求出这个最大面积S。
l 2012年临沂中考数学模拟试题本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分120分,考试时间120分钟.第Ⅰ卷(选择题 共42分)一、选择题(本大题共14题,每小题3分,共42分,在每小题所给的4个选项中,只有一项是符合题目要求的) 1. 12-的相反数是( )A. 2B. 2-C. 12D. 12-2. 显微镜下,人体内有一种红细胞(近似圆形),其半径约为0.00000078米,这个数用科学计数法表示为( )A. 60.7810-⨯B. 77.810-⨯C. 87.810-⨯D. 87810-⨯ 3. 下列各式计算正确的是( )A. 336x x x +=B. 358a b ab ⋅=C. ()333ab a b -=- D. 623a a a ÷=4. 如图是某几何体的三视图,则这个几何体是( )A.圆柱B.正方体C.球D. 圆锥 5. 如图所示,直线l 与直线a 、b 相交,且a ∥b ,∠1=800,则∠2的度数是( ) A .600 B.800 C.1000 D.1200主视图 左视图 俯视图 (第5题图)(第4题图)6. 把322x xy xy -+分解因式,结果正确的是( )A .()()x x y x y +- B. 22(2)x x y y -+ C. 2()x x y + D. 2()x x y -7. 已知两圆半径分别为2和3,圆心距为d ,若两圆没有公共点,则下列结论正确的是( )A .01d <<B .5d >C .01d <<或5d >D .01d <≤或5d >8. 小伟掷一个质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数.则向上的一面的点数大于4的概率为( ).(A )61 (B )31 (C )21 (D )329. 如图,梯形ABCD 中,AD ∥BC ,DC ⊥BC ,将梯形沿对角线BD 折叠,点A 恰好落在DC 边上的点A ´处,若∠A ´BC =20°,则∠A ´BD 的度数为( ). (A )15° (B )20° (C ) 25° (D )30°10. 关于x 的一元二次方程2210x mx m -+-=的两个实数根分别是12x x 、,且22127x x +=,则212()x x -的值是( )A .1B .12C .13D .2511. 圆锥的底面半径为8,母线长为9,则该圆锥的侧面积为( ).A .36лB .48лC .72лD .144л 12.化简2244xy y x x --+的结果是( )A .2xx + B .2x x - C .2y x + D .2y x -13.在平面直角坐标系中,将二次函数22x y =的图象向上平移2个单位,所得图象的解析式为( )A .222-=x yB .222+=x yC .2)2(2-=x yD .2)2(2+=x y14.如图, A B C △中,C D AB ⊥于D ,一定能确定A B C △为直角三角形的条件的个数是( ) ①1A ∠=∠, ②C D D B A DC D =,③290B ∠+∠=°,④345BC AC AB =∶∶∶∶,⑤ACBD AC C D =·· A .1 B .2 C .3D .4 (第14题图)第Ⅱ卷(非选择题 共78分)二.填空题(本大题共5小题,每小题3分,共15分,把答案填在题中横线上)15. 如图,⊙O 的直径CD =10,弦AB =8,AB ⊥CD ,垂足为M ,则DM 的长为 .16. 不等式组3(2)412 1.3x x x x --⎧⎪+⎨>-⎪⎩≥,的解集是 .1x ≤17. 在平面直角坐标系中,A B C △顶点A 的坐标为(23),,若以原点O 为位似中心,画A B C △的位似图形A B C '''△,使A B C △与A B C '''△的相似比等于12,则点A '的坐标为 .21CDBA18. 如图,点A 、B 是双曲线3y x=上的点,分别经过A 、B 两点向x 轴、y 轴作垂线段,若1S =阴影,则12S S += .19.若正方形ABCD 的边长为4,E 为BC 边上一点,BE =3,M 为线段AE 上一点,射线BM 交正方形的一边于点F ,且BF =AE ,则BM 的长为 .三、开动脑筋,你一定能做对!(本大题共3小题,共20分)20.(本小题满分6分)计算:︒+--+-30sin 29)2009()21(0121.(本小题满分7分)为推进阳光体育活动的开展,某校九年级三班同学组建了足球、篮球、乒乓球、跳绳四个体育活动小组.经调查,全班同学全员参与,各活动小组人数分布情况的扇形图和条形图如下:(第21题图)(1)求该班学生人数;(2)请你补上条形图的空缺部分;(3)求跳绳人数所占扇形圆心角的大小.22.(本小题满分7分)已知,如图所示,AB 和DE 是直立在地面上的两根立柱.AB=5m ,某一时刻AB在阳光下的投影18题图篮球足球 25%跳绳 乒乓球 90°BC=3m.(1)请你在图中画出此时DE 在阳光下的投影;(2)在测量AB 的投影时,同时测量出DE 在阳光下的投影长为6m ,请你计算DE 的长.(第22题图)四、认真思考,你一定能成功!(本大题共2小题,共19分)23.(本小题满分9分)如图所示,在△ABC 中,AB=BC ,以AB 为直径的⊙O 与AC 交于点D ,过D 作D F ⊥BC ,交AB 的延长线于E ,垂足为F . (1)求证:直线DE 是⊙O 的切线; (2)当AB=5,AC=8时,求cos E 的值.第23题图24.(本小题满分10分)A 、B 两座城市之间有一条高速公路,甲、乙两辆汽车同时分别从这条路两端的入口处驶入,并始终在高速公路上正常行驶.甲车驶往B 城,乙车驶往A 城,甲车在行驶过程中速度始终不变.甲车距B 城高速公路入口处的距离y (千米)与行驶时间x (时)之间的关系如图. (1)求y 关于x 的表达式;(2)已知乙车以60千米/时的速度匀速行驶,设行驶过程中,两车相距的路程为s (千米).请直接写出s 关于x 的表达式;(3)当乙车按(2)中的状态行驶与甲车相遇后,速度随即改为a (千米/时)并保持匀速行驶,结果比甲车晚40分钟到达终点,求乙车变化后的速度a .在下图中画出乙车离开B 城高速公路入口处的距离y (千米)与行驶时间x (时)之间的函数图象.五、相信自己,加油啊!(本大题共2小题,共24分)25. (本小题满分11分)在A B C △中,2120A B B C A B C ==∠=,°,将A B C △绕点B 顺时针旋转角α(0<°α90)<°得A BC A B 111△,交A C 于点E ,11A C 分别交A C B C 、于D F 、两点.(1)如图1,观察并猜想,在旋转过程中,线段1EA 与F C 有怎样的数量关系?并证明你的结论;DC F1CD C1A1C(2)如图2,当α30=°时,试判断四边形B C D A的形状,并说明理由;1(3)在(2)的情况下,求E D的长.26.(本小题满分13分)如图(1)所示,抛物线22=-+与x轴交于A、B两点,与y轴交于点C(0,3-).y x x k[图(2)、图(3)为解答备用图](1)k=,点A的坐标为,点B的坐标为;(2)设抛物线22=-+的顶点为M,求四边形ABMC的面积;y x x k(3)在x轴下方的抛物线上是否存在一点D,使四边形ABDC的面积最大?若存在,请求出点D的坐标;若不存在,请说明理由;(4)在抛物线22=-+上求点Q,使△BCQ是以BC为直角边的直角三角形.y x x k图(1)图(2)图(3)2012年临沂中考数学模拟试题答案一、选择题:1.C2.B3.C4.A5.B6.B7.D8.B9.C 10.C 11.C 12.D 13.B 14.C 二、填空题:15.8 16. 1x ≤ 17. (-4,-6) 18. 4 19. 2.4或2.5 三、20. 121. 解:(1)由扇形图可知,乒乓球小组人数占全班人数的14.由条形图可知,乒乓球小组人数为12.································································ 1分 故全班人数为112484÷=. ················································································· 2分 (2)由扇形图可知,篮球小组人数为482512⨯=%.由条形图可知,足球小组人数为16.故跳绳小组人数为48(161212)8-++=. ···················································· 3分 所以各小组人数分布情况的条形图为········································ 4分(3)因为跳绳小组人数占全班人数的81486=,··················································· 5分所以,它所占扇形圆心角的大小为1360606⨯=°°. ····································· 6分22. 解:(1)(连接AC ,过点D 作DE//AC ,交直线BC 于点F ,线段EF 即为DE 的投影)(2)∵AC//DF ,∴∠ACB=∠DFE.∵∠ABC=∠DEF=90°∴△ABC ∽△DEF. ∴635,==DEEFBC DEAB∴DE=10(m ).四、23.24.由图知,当0x =时,300y =;2x =时,120y =.所以,这条高速公路长为300千米. 甲车2小时的行程为300-120=180(千米).∴甲车的行驶速度为180÷2=90(千米/时). ··········································· 3分 ∴y 关于x 的表达式为90300y x =-+. ·················································· 4分(2)150300s x =-+.······················································································ 5分(3)在150300s x =-+中.当0s =时,2x =.即甲乙两车经过2小时相遇. ·································································· 6分在90300y x =-+中,当1003y x ==,.所以,相遇后乙车到达终点所用的时间为1022233+-=(小时).乙车与甲车相遇后的速度()300260290a =-⨯÷=(千米/时).∴90a =(千米/时). ····································7分 乙车离开B 城高速公路入口处的距离y (千米)与行驶时间x (时)之间的函数图象如图所示. ······9分五、25. (1)1EA FC =.(1分)证明:∵AB BC A C =∴∠=∠,由旋转可知,111AB BC A C ABE C BF =∠=∠∠=∠,,,AD BECF1A1CG∴ABE C BF 1△≌△.(3分) ∴BE BF =,又1BA BC =∴1BA BE BC BF -=-.即1EA FC =.(4分)(2)四边形1B C D A 是菱形.(5分)证明:∵1130A ABA ∠=∠=︒11A C ∴∥A B ,同理AC BC 1∥.∴四边形1B C D A 是平行四边形.(6分) 又1AB BC =∴四边形1B C D A 是菱形.(7分)(3)过点E 作EG AB ⊥于点G ,则1A G B G ==.在R t AEG △中,1cos cos 30A G A E A===°……(9分)由(2)知四边形1B C D A 是菱形, ∴2A D A B ==,∴2ED AD AE =-=-(11分)26. 解:(1)3k =-, ·····························································1分A (-1,0), ·····························································2分B (3,0). ·······························································3分 (2)如图(1),抛物线的顶点为M (1,-4),连结OM . 则 △AOC 的面积=23,△MOC 的面积=23,△MOB 的面积=6,……4分∴ 四边形 ABMC 的面积=△AOC 的面积+△MOC 的面积+△MOB 的面积=9.……5分 (3)如图(2),设D (m ,322--m m ),连结OD . 则 0<m <3,322--m m <0. 且 △AOC 的面积=23,△DOC 的面积=m 23 △DOB 的面积=-23(322--m m )……6分∴ 四边形 ABDC 的面积=△AOC 的面积+△DOC 的面积+△DOB 的面积=629232++-m m=87523(232+--m . ······················································· 8分∴ 存在点D 315()24-,使四边形ABDC 的面积最大为875. ······························· 9分(4)有两种情况:如图(3),过点B 作BQ 1⊥BC ,交抛物线于点Q 1、交y 轴于点E ,连接Q 1C . ∵ ∠CBO =45°,∴∠EBO =45°,BO =OE =3. ∴ 点E 的坐标为(0,3).∴ 直线BE 的解析式为3y x =-+. ··································································· 10分 由2323y x y x x =-+⎧⎨=--⎩, 解得1125x y ,;ì=-ïïíï=ïî 2230.x y ,ì=ïïíï=ïî∴ 点Q 1的坐标为(-2,5). 如图(4),过点C 作CF ⊥CB ,交抛物线于点Q 2、交x 轴于点F ,连接BQ 2. ∵ ∠CBO =45°,∴∠CFB =45°,OF =OC =3. ∴ 点F 的坐标为(-3,0).∴ 直线CF 的解析式为3y x =--.由2323y x y x x =--⎧⎨=--⎩, 解得1103x y ,;ì=ïïíï=-ïî 2214x y ,.ì=ïïíï=-ïî∴点Q 2的坐标为(1,-4). ················································································ 12分 综上,在抛物线上存在点Q 1(-2,5)、Q 2(1,-4),使△BCQ 1、△BCQ 2是以BC 为直角边的直角三角形. ·············································································································· 13分。
2012年天津市中考数学模拟试题及答案4分,共48分)–3的相反数是…………………………………………………………………………( )13B.3C. -13D.-3“天上星星有几颗,7后跟上22个0”这是国际天文学联合会上宣布的消息,用科学记数法表示宇宙空间星星颗数为…………………………………………………………………( ) ×1020B.7×1023C.0.7×1023D.7×1022下列几个图形是国际通用的交通标志,其中不是中心对称图形的是……………( )粮仓顶部是圆锥形,这个圆锥的底面半径为2m,母线长为3m,为防雨需在仓顶部铺上油毡, ( ) 2 B.6πm 2 C.12m 2 D.12πm 2下列图中能过说明∠1>∠2的是…………………………………………………… ( )A.B.C.D.在一定条件下,若物体运动的路程s (米)与时间t (秒)的关系式为252s t t =+,则 t=4时,该物体所经过的路程为……………………………………………………( ) .28米 B . 48米 C .68米 D . 88米已知方程x 2-5x =2-x x 52-, 用换元法解此方程时,可设y=x x 52-,则原方程 2-y +2=0 B.y 2-y -2=0 C.y 2+y -2=0 D.y 2+y +2=如图,直线AD 与△ABC 的外接圆相切于点A ,B =60°,则∠CAD 等于………………………………( ) ° B.60° C.90° D.120°⑴⑵ ⑶炮象将9. 如图,△ABC 中,D 、E 分别在AB 、AC 上,且DE ∥BC ,若 AE ∶EC =1∶2,AD =6,则AB 的长为………………………( ) A.18 B.12 C.9 D.310. 如图,若在象棋盘上建立直角坐标系,使“将” 位于点(1,-2),“象”位于点(3,-2), 则炮位于点………………………………( ) A.(1,3) B.(-2,1) C.(-1,2) D.(-2,2)11. 如图,已知⊙O 的弦AB ,CD 交于点P ,且OP ⊥CD ,若CD =4, 则AP •BP 的值为……………………………………………………( ) A.2 B.4 C.6 D.812.设“●、■、▲”分别表示三种不同的物体,如图所示,前两架天平保持平衡,如果要使第三架也平衡,那么“?”处应放“■”的个数为……………………………( ) A.5 B.4 C.3 D.2 二、填空题(每题5分,共30分)13.请你写出一个图象经过点(1,1)的函数解析式:.14.一张圆桌旁有四个座位,A 先坐在如图所示的座位上,B 、C 、D 三 人随机坐到其他三个座位上。
A(第1题图)图形的变换(图形的平移、旋转与轴对称)一、选择题1、(2012年浙江五模)将抛物线122--=x y 向上平移若干个单位,使抛物线与坐标轴有三个交点,如果这些交点能构成直角三角形,那么平移的距离为( ) A .23个单位 B .1个单位 C .21个单位 D .2个单位 答案:A2、(2012年浙江五模)如图,在Rt △ABC 中,AB =CB ,BO ⊥AC 于点O ,把△ABC 折叠,使AB落在AC 上,点B 与AC 上的点E 重合,展开后,折痕AD 交BO 于点F ,连结DE 、EF .下列结论:①tan ∠ADB =2;②图中有4对全等三角形; ③若将△DEF 沿EF 折叠,则点D 不一定落在AC 上;④BD =BF ; ⑤S 四边形DFOE = S △AOF ,上述结论中错误的个数是( )A .1个B .2个C .3个D .4个答案:B3、(2012年浙江绍兴八校自测模拟)下列图形不是..轴对称图形的是( ) A . B . C . D .答案:C4、(2012年浙江绍兴八校自测模拟)平面直角坐标系中,点A 的坐标为(4,3),将线段OA 绕原点O 逆时针旋转90°得到OA ′,则点A ′的坐标是( ) A .(-4,3) B .(-3,4) C .(3,-4) D .(4,-3) 答案:B5、(2012年浙江绍兴县一模)由左图所示的地板砖各两块所铺成的下列图案中,既是轴对称图形,又是中心对称图形的是( )答案:A6、(2012年浙江绍兴县一模)如图,△ABC 纸片中,AB =BC >AC ,点D 是AB 边的中点,点E在AC 上,将纸片沿DE 折叠,使点A 落在BC 边上的点F 处.则下列结论成立的个数有( )①△BDF 是等腰直角三角形; ②∠DFE =∠CFE ; ③DE 是△ABC 的中位线; ④BF +CE =DF +DE . A .1个 B .2个 C .3个 D . 4个 答案:B7、(2012年重庆外国语学校九年级第二学期期中)下列图形中不是..中心对称图形的是()答案:C8、(保沙中学2012二模)将矩形纸片ABCD 按如图所示的方式折叠,得到菱形AECF .若AB =3,则BC 的长为( )A .1B .2 C.2 D .3答案:B答案:C 10、(广州海珠区2012毕业班综合调研)下列图形中,不是中心对称图形的是( )A. B. C. D.答案:B 11、(广州海珠区2012毕业班综合调研)如图所示,已知在三角形纸片ABC 中,∠BCA =90°,第6题图∠BAC =30°,AB =6,在AC 上取一点E ,以BE 为折痕,使AB 的一部分与BC 重合,A 与BC 延长线上的点D 重合,则DE 的长度为( ) A .6B .3C .32 D答案:C12、(2012荆门东宝区模拟) 下列图案是部分汽车的标志,其中是中心对称图形的是(A. B.C.D.答案:A13、(2012江西高安)如图①~④是四种正多边形的瓷砖图案.其中,是轴对称图形但不是中心对称的图形为()A .①③B . ①④C .②③D .②④答案:A针方向旋转 90后的图形14、(2012广西北海市模拟)将图形 按顺时是····················( )答案:B 15、(2012江苏江阴市澄东一模 )下列五种图形:①平行四边形 ②矩形 ③菱形 ④正方形 ⑤等腰梯形.其中既是中心对称图形又是轴对称图形的共有多少种 ( ) A .2 B .3 C .4 D .5 答案:B16、(2012江苏南京市白下区一模)下列轴对称图形中,只用一把无刻度的直尺不能..画出对称轴的是 A .菱形B .矩形C .等腰梯形D .正五边形答案:B 17、(2012年济宁模拟)下列轴对称图形中,只有两条对称轴的图形是( )C① ② ③ ④DC B A A . B . C .D .答案:A18、(2012四川夹江县模拟)下列图形中,是中心对称图形的是( )答案:B19、(2012四川乐山市市中区毕业会考)点(-1,2)关于原点对称的点的坐标是 (A )(1,2) (B )(-1,-2) (C )(2,-1) (D )(1,-2) 答案:D20、(2012年河北一模)下列图形是中心对称图形的是( )答案:D21、(2012年荆州模拟)如图,在Rt △ABC 中,∠BAC =900,∠B =600,△A 11C B 可以由△ABC 绕点 A 顺时针旋转90得到(点B 1与点B 是对应点,点C 1与点C 是对应点),连接CC ’,则∠CC ’B ’的度数是( )。
2012年广东省中考全真模拟试题(2)数学试卷学校:__________班别:__________姓名:__________分数:____________一、选择题(本题共5小题,每小题3分,共15分)在每小题给出的四个选项中,只有一个是正确的,请将所选选项的字母填在答卷相应题号下的方框里。
1.今年参加我市初中毕业生学业考试的考生总数为45730人,这个数据用科学记数法表示为( ) A.50.457310⨯ B.44.57310⨯C.44.57310-⨯D.34.57310⨯2.仔细观察图1所示的两个物体,则它的俯视图是( )3轴对称图形的是()4.如图1,晚上小亮在路灯下散步,在小亮由A 处走 到B 处这一过程中,他在地上的影子( ) A.逐渐变短 B.逐渐变长 C.先变短后变长 D.先变长后变短5.圆心距为6的两圆相外切,则以这两个圆的半径为根的一元二次方程是( ) A .26100x x -+= B .2610x x-+= C .2560x x -+=D .2690x x ++=二、填空题(本题共5小题,每小题4分,共20分)请将答案填在答卷相应题号的横线上 6.计算32[()]x -= .7.如图2,在ABC △中,E F ,分别是AB AC ,的中点,若6cm EF =,则BC = cm . 8.函数y =x 的取值范围是 .9.近视眼镜的度数y (度)与镜片焦距x (米)成反比例,已知400度近视眼镜镜片的焦正面 图1 A. B. C. D.A. B. C. D.距为0.25米,则眼镜度数y 与镜片焦距x 之间的函数关系式为 .10.小明与父母从广州乘火车回梅州参观叶帅纪念馆,他们买到的火车票是同一排相邻的三个座位,那么小明恰好坐在父母中间的概率是 .三、解答题。
(本大题共5大题,每小题6分,共30分)请将答案写在答卷相应题号的位置上。
11.101231)2-⎛⎫⨯+-+ ⎪⎝⎭.12.在市区内,我市乘坐出租车的价格y (元)与路程x (km )的函数关系图象如图6所示.(1)请你根据图象写出两条信息;(2)小明从学校出发乘坐出租车回家用了13元,求学校离小明家的路程.13.计算:2311(1)x x x x x x x --⎛⎫+- ⎪+-⎝⎭.14.甲、乙两位同学本学年11次数学单元测验成绩(整数)的统计如图5所示: (1)分别求他们的平均分;(2)请你从中挑选一人参加数学“学用杯”竞赛,并说明你挑选的理由.测验次数图6图715如图7,已知⊙O 是△ABC 的外接圆,CD 是AB 边上的高, AE 是⊙O 的直径. 求证:AC ·BC =AE ·CD .四、解答题(本大题共4小题,每小题7分,共28分)将答案写在答卷相应题号的位置上。
(第19题)(第10题)EAB′CFB(第15题)(第14题)2011年杭州市各类高中招生文化考试上城区一模试卷2.2010年某市启动了历史上规模最大的轨道交通投资建设,预计某市轨道交通投资将达到51 800 000 000元人民币. 将51 800 000 000用科学记数法表示正确的是( ) A. 5.18×1010 B. 51.8×109 C. 0.518×1011 D. 518×108 3.下面四个几何体中,左视图是四边形的几何体共有( )A. 1个B. 2个C. 3个D. 4个5则关于这10户家庭的月用水量,下列说法错误..的是( ) A .中位数是5吨 B .众数是5吨 C .极差是3吨 D .平均数是5.3吨 7.Rt △ABC 中,∠C =90°,a 、b 、c 分别是∠A 、∠B 、∠C 的对 边,那么c 等于( )A.cos sin a A b B +B.sin sin a A b B +C.sin sin a bAB+D.cos sin a b AB+8.已知下列命题:①若00a b >>,,则0a b +>;②若22a b ≠,则a b ≠;③角平分线上的点到这个角的两边距离相等;④平行四边形的对角线互相平分;⑤直角三角形斜边上的中线等于斜边的一半.其中原命题与逆命题均为真命题的是( ) A. ①③④ B. ①②④ C. ③④⑤ D. ②③⑤10.梯形ABCD 中AB ∥CD ,∠ADC +∠BCD =90°,以AD 、AB 、BC 为斜边向形外作等腰直角三角形,其面积分别是S 1、S 2、S 3 ,且S 1 +S 3 =4S 2,则CD =( ) A. 2.5ABB. 3ABC. 3.5ABD. 4AB13.如图是与杨辉三角有类似性质的三角形数垒,a b c d 、、、是相邻两行的前四个数(如图所示),那么当a =8时,c = ,d = .14.如图所示,圆锥的母线长OA =8,底面的半径r =2,若一只小虫从A 点出发,绕圆锥的侧面爬行一周后又回到A 15.将三角形纸片(△ABC )按如图所示的方式折叠,使点AB =AC =6,BC =8,若以点B ′,F ,C16.如图,已知为等腰直角三角形,直角顶点P 1、P 2、 P 3、……在函数4y x=(x >0)图象上,点A 1、A 2、 A 3、……在x 轴的正半轴上,则点P 2010的横坐标为 . 17.(1)计算:21()4sin 302-︒-2009(1)+-+0(2)π-;(2)若x 2-5x =3,求()()()212111x x x ---++的值.18. AB 是⊙O 的直径,BD 是⊙O 的弦,延长BD 到点C ,使DC =BD ,连结AC ,过点D 作DE ⊥AC ,垂足为E .(1)求证:AB =AC ; (2)求证:DE 为⊙O 的切线.19.在如图的方格纸中,每个小正方形的边长都为l. (1)画出将△A 1B 1C 1,沿直线DE 方向向上平移5格得到的△A 2B 2C 2;(2)要使△A 2B 2C 2与△CC 1C 2重合,则△A 2B 2C 2绕点C 2顺时针方向旋转,至少要旋转多少度?(直接写出答案)(第13题)(第18题)20.(本小题满分8分)有A 、B 两个黑布袋,A 布袋中有两个完全相同的小球,分别标有数字1和2.B 布袋中有三个完全相同的小球,分别标有数字2-,3-和-4.小明从A 布袋中随机取出一个小球,记录其标有的数字为x ,再从B 布袋中随机取出一个小球,记录其标有的数字为y ,这样就确定点Q 的一个坐标为(x ,y ).(1)用列表或画树状图的方法写出点Q 的所有可能坐标;(2)求点Q 落在直线y =2x --上的概率.21.(本小题满分8分)由于电力紧张,某地决定对工厂实行“峰谷”用电.规定:在每天的8:00至22:00为“峰电”期,电价为a 元/度;每天22:00至8:00为为“谷电”期,电价为b 元/度.下表为某厂4、5月份的用电量和电费的情况统计表:(1)若4月份“谷电”的用电量占当月总电量的13,5月份“谷电”的用电量占当月总用电量的41,求a 、b 的值.(2)若6月份该厂预计用电20万度,为将电费控制在10万元至10.6万元之间(不含10万元和10.6万元),那么该厂6月份在“谷电”的用电量占当月用电量的比例应在什么范围?23.(本小题满分10分) 已知四边形ABCD ,E 是CD 上的一点,连接AE 、BE .(1)给出四个条件: ① AE 平分∠BAD ,② BE 平分∠ABC , ③ AE ⊥EB ,④ AB =AD +BC . 请你以其中三个作为命题的条件,写出一个能推出AD ∥BC 的正确命题,并加以证明;(2)请你判断命题“AE 平分∠BAD ,BE 平分∠ABC ,E 是CD 的中点,则AD ∥BC ”是否正确,并说明理由.24.(本小题满分12分) 如图所示,在平面直角坐标系xOy 中,正方形OABC 的边长为2cm ,点A 、C 分别在y 轴的负半轴和x 轴的正半轴上,抛物线y =ax 2+bx +c 经过点A 、B 和D 2(4,)3-.(1)求抛物线的解析式.(2)如果点P 由点A 出发沿AB 边以2cm /s 的速度向点B 运动,同时点Q 由点B 出发沿BC 边以1cm /s 的速度向点C 运动,当其中一点到达终点时,另一点也随之停止运动. 设S =PQ 2(cm 2)①试求出S 与运动时间t 之间的函数关系式,并写出t 的取值范围; ②当S 取54时,在抛物线上是否存在点R ,使得以P 、B 、Q 、R 为顶点的四边形是平行四边形? 如果存在,求出R 点的坐标;如果不存在,请说明理由.(3)在抛物线的对称轴上求点M ,使得M 到D 、A 的距离之差最大,求出点M 的坐标.ABCDE (第23题(1))(第24题)参考答案及评分标准一.选择题:(本大题10个小题,每小题3分,共30分)二.填空题:(本大题6个小题,每小题4分,共24分)11、2(2)y x 12、y=x3 13、9,37 (每空2分) 14、8215、4 ,724 (答对1个得2分,答错不扣分) 16、2)三.解答题:(共66分) 17、(本题每小题3分,共6分)(1) 原式 = 4 – 2 – 1 + 1 ……………2分 = 2……………1分(2) 原式=x 2-5x+1……………2分= 3+1 = 4 ……………1分18、(本题每小题3分,共6分)(1)证明:连接AD , ∵AB 是⊙O 的直径,∴∠ADB =90° ,……1分 又∵BD =CD , ∴AD 是BC 的垂直平分线,……………1分 ∴AB =AC ……………1分(2)连接OD ,∵点O 、D 分别是AB 、BC 的中点, ∴OD ∥AC又DE ⊥AC ,∴OD ⊥DE ……………2分 ∴DE 为⊙O 的切线.……………1分19、(本题每小题3分,共6分) 解:(1)图形正确 ……………2分结论 ……………1分(2)至少旋转90.…………3分20. (本小题满分8分)45sin 3060sin sin sin =∠=∠AB ABC ACB AB即(1)或……………4分(对1个得1分;对2个或3个,对2分;对4个或5个得3分;全对得4分) (2)落在直线y =2x --上的点Q 有:(1,-3);(2,-4) ……………2分 ∴P=62=31 ……………2分21. (本小题满分8分)(1) 由题意,得32×12a +31×12b=6.4 8a+4b =6.443×16a+41×16b=8.8 12a +4b =8.8 ……………2分(列对1个得1分)解得 a =0.6 b =0.4 ……………2分(每个1分) (2)设6月份“谷电”的用电量占当月总电量的比例为k .由题意,得10<20(1-k)×0.6+20k×0.4<10.6 ……………1分 解得0.35<k <0.5 ……………2分答:该厂6月份在平稳期的用电量占当月用电量的比例在35%到50%之间(不含35%和50%).……………1分22、(本小题满分10分)解:(1)∠A=600,AC=620 ……………2分 (2)如图,依题意:BC=60×0.5=30(海里)……………1分 ∵CD ∥BE , ∴∠DCB+∠CBE=1800∵∠DCB=300,∴∠CBE=1500∵∠ABE=750。
2012届黔东南州某乡中学第二次模拟试题考试科目:数学 考试时间:120分钟 试卷满分:150分姓名: 班级: 考号: 得分:一、选择题:(本题共10 个小题,每小题4 分,共40 分)1.下列各数:2π,0,9,0.23·,cos60°,227,0.303003……,1-2中无理数个数为( )A .2 个B .3 个C .4 个D .5 个2.某校师生在为青海玉树地震灾区举行的爱心捐款活动中总计捐款18.49万元.把18.49万用科学记数法表示并保留两个有效数字为( ) A .1.9×510B .19×410C .1.8×510D .18×4103.如图1 所示,是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在( )A .△ABC 的三条中线的交点B .△ABC 三边的中垂线的交点 C .△ABC 三条角平分线的交点D .△ABC 三条高所在直线的交点4.如图2 所示,AB = AC ,要说明△ADC ≌△AEB,需添加的条件不能..是( )A .∠B =∠C B. AD = AE C .∠ADC =∠AEBD. DC = BE5.如图3所示,以恒定的速度向此容器注水,容器内水的高度(h )与注水时间(t )之间的函数关系可用下列图像大致描述的是( )6.下列命题是真命题的是( )A .若2a =2b ,则a =b B .若x =y ,则2-3x ﹥2-3y C .若2x =2,则x =±2 D .若3x =8,则x =±2 7.函数422-+=x x y 的自变量x 的取值范围是( ) A .x ≥-2且x ≠2 B.x >-2且x ≠2 C .x =±2 D.全体实数8.本学期的五次数学测试中,甲、乙两同学的平均成绩一样,方差分别为1.2、0.5,则下列说法正确的是( ) A .乙同学的成绩更稳定 B .甲同学的成绩更稳定图3htAt BhCthDthBC A 图1A BCED 图2F启用前●绝密C .甲、乙两位同学的成绩一样稳定D .不能确定9.图4是由大小一样的小正方块摆成的立体图形的三视图,它共用( )个小正方块摆成。
徐州市2012年初中毕业、升学模拟考试(2)数 学 试 题本卷满分:120分 考试时间:120分钟 总分 题号 一 二 三得分一 选择题(本大题共8小题,每小题2分,共16分) 1. -7的相反数的倒数是 ( ) A .7 B .-7 C .17D .-172.计算a 3²a 4的结果是( )A .a 5B .a 7C .a 8D .a 123. 右图中几何体的正视图是( )4. 一方有难、八方支援,截至5月26日12时,徐州巿累计为某地震灾区捐款约为11180万元,该笔善款可用科学记数法表示为()A. 11.18³103万元 B. 1.118³104万元 C. 1.118³105万元 D. 1.118³108万元5.已知半径分别为3 cm 和1cm 的两圆相交,则它们的圆心距可能是( ) A .1 cm B .3 cm C .5cm D .7cm6. 某游客为爬上3千米高的山顶看日出,先用1小时爬了2千米,休息0.5小时后,用1小时爬上山顶。
游客爬山所用时间t 与山高h 间的函数关系用图形表示是( )AB CD7. 货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少?设货车的速度为x 千米/小时,依题意列方程正确的是 --------( )A.B.C.D.(第3题)A.203525-=x x B.x x 352025=- C.203525+=x xD.xx 352025=+8. 抛物线c bx axy ++=2图像如图所示,则一次函数24b ac bx y +--=与反比例函数a b cy x++=在同一坐标系内的图像大致为( )第15题图二 填空题(每题2分,共20分) 9. 分解因式:=-a ax162.10. 一次考试中7名学生的成绩(单位:分)如下:61,62,71,78,85,85,92,这7名学生的极差是 分,众数是 分。
2012年数学中考模拟试题及答案亲爱的同学,这份试卷将再次记录你的自信、沉着、智慧和收获,我们一直投给你信任的目光。
(本试卷总分130)一.填空题:(本大题共13题,每小题3分,共39分)1.-6的绝对值是 ;8的平方根是 ;-1的相反数是 。
2.“世界银行全球扶贫大会”于2004年5月26日在上海开幕.从会上获知,我国国民生产总值达到11.69万亿元,人民生活总体上达到小康水平,其中11.69万亿用科学记数法表示应为 亿元。
3.分解因式:=-x x 823。
4.函数xy +=51中,自变量x 的取值范围是 。
5.一个口袋中装有4个白球,1个红球,7个黄球,搅匀后随机从袋中摸出1个球是白球的概率是__________ 。
6.二次函数562-+-=x x y ,对称轴是__________________。
7.如图,正方形的面积是144,则阴影部分面积的小正方形边长是 。
8. 已知点P (-3,2),点A 与点P 关于y 轴对称,则点A 的坐标是_________。
9.某班初二年级甲、乙两班举行电脑汉字输入速度比赛,两个班参加比赛的学生每分钟有一位同学根据上表得出如下结论:①甲、乙两班学生的平均水平相同;②乙班优秀的人数比甲班优秀的人数多(每分钟输入汉字达150个以上为优秀);③甲班学生比赛成绩的波动比乙班学生比赛成绩的波动大。
上述结果正确的是__________________(填序号)。
10.如右图:AB 是⊙O 的直径,弦CD ⊥AB ,垂足为E , 如果AB =12cm ,CD =8cm ,那么AE 的长为 11. 函数111x k y =的图象通过P (2,3)点,且与函数2y 的图象关于y 轴对称,那么它们的解析式y 1= ,y 212. 右图描述的是李平同学放学回家过程中,离校的路程与所用时间之间的函数关系。
请你设计一个问题,让其他同学通过观察图象能回答你所提的问题。
(注意:提出的问题要尽量贴近生活:不需要在图中添加数字或其余字母)你设计的问题是 。
辽宁省盘锦市第一完全中学2012届九年级第二次中考模拟数学试题(答题时间 120分钟 试卷满分150)一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填在答题卡相应位置上) 1.-2的绝对值是 A .-2B .- 12C .2D .122. 下面四个几何体中,俯视图为四边形的是3. 温家宝总理强调,“十二五”期间,将新建保障性住房36 000 000套,用于解决中低收入和新参加工作的大学生住房的需求.把36 000 000用科学记数法表示应是 A .3.6×107 B .3. 6×106 C .36×106 D .0.36×1084. 如图所示,把一个长方形纸片沿EF 折叠后,点D ,C 分别落在D ′,C ′的位置.若∠EFB =65°,则∠AED ′等于A .70°B .65°C .50°D .25°(第7题图)5.某市5月下旬前5天的最高气温如下(单位:℃):28,29,31,29,32.对这组数据,下列说法正确的是 A .平均数为30B .众数为29C .中位数为31D .极差为56.已知⊙O 1和⊙O 2的半径分别为1和4,如果两圆的位置关系为相交,那么圆心距O 1O 2的取值范围在数轴上表示正确的是EDBC′FCD′A(第4题图)A B C DB .3 1 0 24 5D .3 1 0 24 5A .3 1 0 24 5C .3 1 0 24 57.如图,过O ⊙上一点C 作O ⊙的切线,交O ⊙直径AB 的延长线于点D . 若∠D =40°,则∠A 的度数A .20°B .25C .30°D .40°8.如图所示的二次函数2y ax bx c =++的图象中,刘星同学观察得出了下面四条信息:(1)240b ac ->;(2)c >1;(3)2a -b <0;(4)a +b +c <0。
浠水县关口镇中考模拟考试(二)数学试题命题人:胡河中学数学教研组一.单项选择题(每小题3分,共24分) 1. 3)2(-等于( )A .6-B .6C .8-D .8 2.下列运算中,正确的是( )A.2352x x x +=B. 236()x x =C. 222()m n m n -=-D. 824m m m ÷= 3.下列图形中,由AB C D ∥,能得到12∠=∠的是( )4.使x x x x --=--6)4()4)(6(2成立的条件是( )A .x<6B .x ≤6C .4≤x≤6D .x≤45.如图是由几个相同的小正方体搭成的几何体的三视图,则搭成 这个几何体的小正方体的个数是 ( ) A .4 B .5 C .6 D .76.将一块形状如右图的直角梯形木板从一个圆钢圈中穿过,那么这个园钢圈的最小直径是( )A. 1B.C.D. 27.如图,9030A O B B ∠=∠=°,°,A O B ''△可以看作是由A O B △绕点O 顺时针旋转α 角度得到的.若点A '在A B 上,则旋转角α的大小可以是( ). A .30° B .45° C .60° D .90°8.如图,在R t ABC △中,9068C A C B C O ∠===°,,,⊙为A B C △的内切圆,点D 是斜边A B 的中点,则tan O D A ∠=( ) A.2B.3CD .2A CB D 1 2A CB D 1 2A .B . 1 2 AC DC .B CA D .12 7题图OBA 'B 'A 8题图第8题9二.填空题(每小题3分,共24分)9. 钓鱼诸岛自古以来就是中国的领土,它和台湾一样是中国领土不可分割的一部分。
中国对钓鱼诸岛及其附近海域拥有无可争辩的主权。
:钓鱼岛列岛(Fishing Islands )由钓鱼岛(主岛)、黄尾屿、赤尾屿、南小岛、北小岛和3块小岛礁,即大北小岛、大南小岛、飞濑岛等8个无人岛礁组成。
浙江省宁波市2012年初中毕业生学业考试模拟试卷数学试题考生须知: 1.全卷分试题卷Ⅰ、试题卷Ⅱ和答题卷.试题卷共6页,有三个大题,26个小题.满 分为120分,考试时间为120分钟.2.允许使用计算器,但没有近似计算要求的试题,结果都不能用近似数表示.抛物线2y ax bx c =++的顶点坐标为24()24--b ac b aa,. 试 题 卷 Ⅰ一、选择题(每小题3分,共36分,在每小题给出的四个选项中,只有一项符合题目要求)1.如图,已知AB ∥CD ,∠A =80°,则∠1的度数是( ▲ ) A .100° B .110° C .80° D .120° 2.下列计算正确的是( ▲ )3= B.020=C.331-=-=3.2011年七月颁布的《国家中长期教育改革和发展规划纲要》中指出“加大教育投入.提高国家财政性教育经费支出占国内生产总值比例,2012年达到4%.”如果2012年我国国内生产总值为435 000亿元,那么2012年国家财政性教育经费支出应为(结果用科学记数法表示)( ▲ ) A .4.35×105亿元 B.1.74×105亿元 C. 1.74×104亿元 D.174×102亿 4.在ABC △中,︒=∠90C ,2=AB ,3=AC ,那么B cos 的值是( ▲ )A .21 B .22 C .23D .3 5.已知两圆的半径分别是2 cm 和4 cm ,圆心距是2cm ,那么这两个圆的位置关系是( ▲ ) A .外离 B .外切 C .相交 D .内切 6.如图,有4张形状、大小、质地均相同的卡片,正面分别写有一个实数,背面完全相同.现将这4张卡片洗匀后正面向下放在桌子上,从中随机抽取一张,抽出卡片正面的实数是无理数的概率是( ▲ )A .12B .14C .34 D .17.由二次函数1)3(22+-=x y ,可知( ▲ )A .其图象的开口向下B .其图象的对称轴为直线3-=xC .其最小值为1D .当3<x 时,y 随x 的增大而增大0.16—32 D BAC 1第1题图8.如果一个三角形能够分成两个与原三角形都相似的三角形,我们把这样的三角形称为孪生三角形,那么孪生三角形是( ▲ ) A .不存在 B .等腰三角形C .直角三角形D .等腰三角形或直角三角形 9.如图,⊙P 内含于⊙O ,⊙O 的弦AB 切⊙P 于点C ,且OP AB //.若阴影部分的面积为π9,则弦AB 的长为( ▲ ) A .3 B .4 C .6 D .910.数学课外兴趣小组的同学们要测量被池塘相隔的两棵树A 、B 的距离,他们设计了如图所示的测量方案:从树A 沿着垂直于AB 的方向走到E ,再从E 沿着垂直于AE 的方向走到F ,C 为AE 上一点,其中3位同学分别测得三组数据:(1) AC ,∠ACB (2) EF 、DE 、AD (3) CD ,∠ACB ,∠ADB 其中能根据所测数据求得A 、B 两树距离的有 ( ▲ ) A..0组 B .一组 C .二组 D .三组11.如图,在△ABC 中,AB =AC =5,BC =8。
2012年全新中考数学模拟试题二
一、选择题(本大题共8小题,每小题3分,共24分) 1.-2的倒数是
【 】 A. 2
1-
B.
2
1 C. -
2 D. 2
2.2010年8月7日,甘南藏族自治州舟曲县发生特大山洪泥石流地质灾害,造成重大的经济损失。
就房屋财产损失而言,总面积超过4.7万平方米,经济损失高达212000000元人民
币。
212000000
用
科
学
记
数
法
应
记
为
【 】
A. 72.1210⨯
B. 82.1210⨯
C. 92.1210⨯
D. 90.21210⨯ 3.
下
列
运
算
正
确
的
是
【 】
A .22a a a =⋅
B .33()ab ab =
C .632)(a a =
D .5210a a a =÷ 4.如图
,
直
线
l 1∥l 2,则α为
【 】
A .150°
B .140°
C .130°
D .120° 5.
二
元
一
次
方
程
组
20
x y x y +=⎧⎨
-=⎩的解是
【 】 A .0,2.
x y =⎧⎨
=⎩ B .2,0.
x y =⎧⎨
=⎩ C .1,1.
x y =⎧⎨
=⎩ D .1,1.
x y =-⎧⎨
=-⎩
6..如图,已知双曲线(0)k y k x
=<经过直角三角形OAB 斜边
OA 的中点D ,且与直角边AB 相交于点C .若点A 的坐标为 (6-,4),则△AOC 的面积为 【 】
第4题
A .12
B .9
C .6
D .4
7.便民商店经营一种商品,在销售过程中,发现一周利润y (元)与每件销售价x (元)之间的关系满足22(20)1558y x =--+,由于某种原因,价格只能15≤x ≤22,那么一周可
获
得
最
大
利
润
是
【 】
A .20. B. 1508 C. 1550 D. 1558
8.如图,矩形A B C D 中,1AB =,2AD =,M 是C D 的中点,点P 在矩形的边上沿
A B C M →→→运动,则A P M △的面积y 与点P 经过的路程x 之间的函数关系用
图象表示大致是下图中
的
【 】
A. B. C. D.
二、填空题 (本大题共8小题,每小题3分,共24分) 9.计算818-
的结果是 。
10. (在下面两题中任选一题完成填空,若两题都做按第一小题计分) (Ⅰ). 不等式642-<x x 的解集为 .
(Ⅱ). 用计算器计算:3sin25°= (保留三个有效数字).
在直角坐标系中,点P (-3,2)关于X 轴对称的点Q 的坐标是 . 11. 因式分解:2
24a a -= . 12.已知方程2520x x -+=的两个解分别为1x 、2x , 则1212x x x x +-⋅的值为 .
13.如图,现有一个圆心角为90°,半径为16cm
的扇形纸片, 用它恰好围成一个圆锥的侧面(接缝忽略不计),则该圆锥 底面圆的半径为 cm.
14.如图,矩形ABCD 的长AB =6cm ,宽AD =3cm. O 是AB 的中点,OP ⊥AB ,两半圆的直径分别为AO
D C
B
A P
第8题
第12题
与OB .抛物线2y
ax =经过C 、D 两点,则图中阴影部分 的面积是 cm 2.
15.将正方形纸片ABCD 按下图所示折叠, 那么图中∠HAB 的度数是 .
16.如图,是一个由若干个小正方体搭建而成的几何体的主视图与左视图,那么下列图形中
可以作为该几何体的俯视图的序号是 (多填或错填得0分,少填酌情给分)
三、(本大题共3个小题,第17小题6分,第18、19小题各7分,共20分) 17.计算:
60tan 342010
)
31
(0
1
--+--
18.解分式方程 2
12
4
23=
--
-x x x
19.有3张背面相同的纸牌A ,B ,C ,其正面分别画有三个不同的几何图形(如图).将这
3张纸牌背面朝上洗匀后摸出一张,放回洗匀后再摸出一张.
(1)求出两次摸牌的所有等可能结果(用树状图或列表法求解,纸牌可用A ,B ,C 表示); (2)求摸出两张牌面图形都是中心对称图形的纸牌的概率.
第15题
四、(本大题共2个小题,每小题各8分,共16分)
20. 统计2010年上海世博会前20天日参观人数,得到如下频数分布表和频数分布直方图(部分未完成):
(1)请补全频数分布表和频数分布直方图;
(2)求出日参观人数不低于22万的天数和所占的百分比;
(3)利用以上信息,试估计上海世博会(会期184天)的参观总人数.
上海世博会前20天日参观人数的频数分布表
21.某渔场计划购买甲、乙两种鱼苗共6000尾,甲种鱼苗每尾0.5元,乙种鱼苗每尾0.8元.相关资料表明:甲、乙两种鱼苗的成活率分别为90%和95%.
(1)若购买这批鱼苗共用了3600元,求甲、乙两种鱼苗各购买了多少尾?
(2)若购买这批鱼苗的钱不超过4200元,应如何选购鱼苗?
(3)若要使这批鱼苗的成活率不低于93%,且购买鱼苗的总费用最低,应如何选购鱼苗?
五、(本大题共2个小题,第22小题8分,第23小题9分,共17分)
22. 如图,大海中有A 和B 两个岛屿,为测量它们之间的距离,在海岸线PQ 上点E 处测得∠AEP =74°,∠BEQ =30°;在点F 处测得∠AFP =60°,∠BF Q =60°,EF =1km . (1)判断AB 、AE 的数量关系,并说明理由;
(2)求两个岛屿A 和B 之间的距离(结果精确到0.1km ).(参考数据:3≈1.73, sin74°≈0.96,cos74°≈0.28,tan74°≈3.49,sin76°≈0.97,cos76°≈0.24)
23. 如图,圆O 的直径为5,在圆O 上位于直径AB 的异侧有定点C 和动点P ,已知BC :CA =4:
3,点P 在半圆弧AB 上运动(不与A 、B 两点重合),过点C 作CP 的垂线CD 交PB 的
延长线于D 点.
(1)求证:AC ·CD=PC ·BC ;
(2)当点P 运动到AB 弧中点时,求CD 的长;
(3)当点P 运动到什么位置时,△PCD 的面积最大?并求出这个最大面积S 。
六、(本大题共2个小题,第24小题9分,第25小题10分,共19分)
24. 如图,Rt △ABO 的两直角边OA 、OB 分别在x 轴的负半轴和y 轴的正半轴上,O 为坐标原点,A 、B 两点的坐标分别为(3-,0)、(0,4),抛物线2
2
3
y x bx c =
++经过
B 点,且
A
第23题
A
B
E
F Q
P
第22题
顶点在直线52
x =
上.
(1)求抛物线对应的函数关系式;
(2)若△DCE 是由△ABO 沿x 轴向右平移得到的, 当四边形ABCD 是菱形时,试判断点C 和点D 是 否在该抛物线上,并说明理由;
(3)若M 点是CD 所在直线下方该抛物线上的一个 动点,过点M 作MN 平行于y 轴交CD 于点N .设点M 的横坐标为t ,MN 的长度为l .求l 与t 之间的函数关系 式,并求l 取最大值时,点M 的坐标.
25. (1)探究新知:
①如图,已知AD ∥BC ,AD =BC ,点M ,N 是直线CD 上任意两点.求证:△ABM 与△ABN 的面积相等.
②如图,已知AD ∥BE ,AD =BE ,AB ∥CD ∥EF ,点M 是直线CD 上任一点,点G 是直线EF 上任一点.试判断△ABM 与△ABG 的面积是否相等,并说明理由.
(2)结论应用:
如图③,抛物线c bx ax y ++=2
的顶点为C (1,4),交x 轴于点A (3,0),交y 轴
C
图 ②
A B
D
M
F E
G
A
B
D
C
M
N
图 ①
于点D.试探究在抛物线c
=2上是否存在除点C以外的点E,使得△ADE与△
y+
+
bx
ax
ACD的面积相等?若存在,请求出此时点E的坐标,若不存在,请说明理由.。