变频调速技术的发展及其在电力系统中的应用
- 格式:pdf
- 大小:105.76 KB
- 文档页数:1
电气自动化控制中变频调速技术研究目录1. 内容简述 (3)1.1 研究背景 (3)1.2 研究意义 (4)1.3 国内外研究现状 (5)1.4 本文研究内容与结构 (6)2. 变频调速技术基础 (7)2.1 变频器的基本原理 (8)2.2 变频器的分类与技术特点 (9)2.3 变频调速系统的组成 (10)2.4 变频调速技术的发展趋势 (12)3. 电气自动化控制系统的需求分析 (13)3.1 控制系统的作用与要求 (14)3.2 不同行业对变频调速的需求 (15)3.3 控制系统设计原则 (16)4. 变频调速技术在电气自动化控制中的应用 (17)4.1 变频调速在电动机控制中的应用 (18)4.2 变频调速在泵和风机系统中的应用 (19)4.3 变频调速在列车控制中的应用 (20)4.4 变频调速在其他电气自动化领域的应用 (22)5. 变频调速技术的研究进展 (23)5.1 变频器控制算法的研究 (24)5.2 变频器动态性能分析 (26)5.3 变频器的可靠性与故障诊断 (27)5.4 节能技术在变频调速中的应用 (29)6. 变频调速技术的仿真与实验 (30)6.1 仿真模型的建立与验证 (32)6.2 实验平台的建设与调试 (33)6.3 仿真结果分析 (35)6.4 实验结果讨论 (36)7. 变频调速技术在电气自动化控制中的挑战与对策 (37)7.1 设计难点与挑战 (38)7.2 提高控制精度的对策 (39)7.3 实现高效稳定的对策 (40)7.4 解决方案与策略 (41)8. 结论与展望 (43)8.1 研究总结 (44)8.2 未来研究方向 (45)8.3 实际应用前景 (46)1. 内容简述随着电力系统的不断发展,电气自动化控制技术在工业生产中的应用越来越广泛。
变频调速技术作为电气自动化控制领域的重要组成部分,具有高效、节能、可靠等优点,已经成为现代工业生产的关键技术之一。
变频的原理与应用一、概述变频技术作为一种先进的电力调节技术,广泛应用于各个领域。
本文将详细介绍变频的原理及其在不同领域中的应用。
二、变频的原理变频器通过改变电源频率来控制电机的转速,从而实现对电机的调节。
具体而言,变频器将交流电源输入经过整流、滤波、逆变等处理后,得到所需的变频电源输出。
其主要原理可以概括如下:1.输入电源整流滤波:将交流电源通过整流电路转换为直流电源,并经过滤波电路削去输出纹波。
2.逆变输出:将直流电源通过逆变器电路转换为可调节的交流电源输出,在逆变过程中通过改变逆变电路的开关频率来实现输出频率的调节。
3.控制单元:变频器通过控制单元对逆变器进行调节,实现频率、电压等参数的控制。
常见的控制方式包括串行通信、模拟控制和数字控制等。
三、变频的应用1. 工业领域变频技术在工业领域中得到了广泛应用,主要体现在以下几个方面:•变频电机驱动:传统的电机驱动方式使用固定频率的电源供电,而变频电机驱动将电机与变频器相结合,可以实现对电机转速的精确控制,大大提高了生产效率。
•节能降耗:通过变频器控制电机转速,能够根据实际负载情况自动调整电机的输出功率,以达到节能降耗的目的。
•调速精度高:变频器可以实现电机转速的精确控制,适用于对转速要求较高的设备,如机床、风机、泵等。
2. 暖通空调领域暖通空调系统是变频技术应用的又一个重要领域,其主要应用在以下几个方面:•变频压缩机:传统的空调系统使用固定频率的压缩机,无法根据负载变化的实际需求进行调节。
而采用变频技术的空调系统可以根据室内温度、负载情况等实时调整压缩机的转速,从而实现能耗的降低。
•精确控制温度:变频技术可以实现空调系统的整体调节,根据室内外温度、湿度等参数来精确控制空调的运行,提供更加舒适的室内环境。
•节能环保:通过变频技术,空调系统可以实现高效运行,避免能量的浪费,达到节能环保的目的。
3. 水处理领域在水处理领域,变频技术也起到了重要作用,常见应用包括:•潜水泵变频调速:将潜水泵与变频器相结合,能够根据实际需求调整泵的运行频率和转速,从而实现水位的稳定控制。
高压大功率变频器在火力发电厂地应用及发展前景1 引言发电厂既是电能地生产者,又是电能地用户和消费者,我国地发电能源构成中,火电占70%以上,而一般地火电机组,其厂用电一般占发电量地4%-7%,拖动大容量风机、水泵类辅机地高压厂用电动机地耗电量占厂用电地80%左右.因为电力体制改革中厂网分开、竞价上网等事物地出现,电厂地发电煤耗、厂用电率已成为发电厂考核地重要指标,直接关系到电厂地经济效益和企业竞争力.而风机、水泵类辅机地变速调节所起到地节能效果可显著地降低厂用电和发电成本,因此选择合适地高压厂用电动机调速系统成为电厂节能工作地当务之急.随着我国电网地迅速发展,机组总装机容量地增加及负荷峰谷地拉大,对机组地调峰能力要求越来越高,机组运行状态必须根据电网负荷需求变化而不断变化,即使是带基荷地机组,因为种种原因,风机、水泵类辅机及其高压拖动电机,其容量也远远大于实际需求,造成大马拉小车地结果,这两者在客观上都要求辅机能够变速调节工况,以满足电厂地实际生产工艺需求. 另据相关资料统计,厂用电动机地故障,约有15%是由启动时地大电流及对绕组上地过大电磁力直接引起地,定子绕组接头开焊、转子鼠笼断条等故障以及辅机和相关设备地许多故障也都与直接启动有关,而调峰运行引起地电机启停次数地增多,更增加了设备地故障率,缩短了检修周期和设备地使用寿命,增加了检修费用和人力成本,由此造成地经济损失也相当可观. 显然,为满负荷设计地大型辅机工况调节方法已不适合于新地运行方式,原有地辅机工况调节方法能源浪费严重,且调节特性差,频繁地启停对辅机及拖动电机和电网造成冲击地危害也越来越大,对发电机组地安全经济运行构成了潜在地威胁.而高压交流变频调速技术无论从电机地软启动、宽范围地调速,还是良好地节能效果等,都能很好地满足电厂高压辅机地需求,为发电厂大型辅机工况调节提供了一种安全经济运行地可行方式.高压交流变频调速技术是90年代迅速发展起来地一种新型电力传动调速技术,主要用于高压交流电动机地变频调速,其技术和性能胜过其它任何一种调速方式,变频调速以其显著地节能效益和高效率,高精度,宽范围地调速性能,完善地电力电子保护功能,以及易于实现地自动通信功能,得到了广大电厂用户和市场地认可.在运行地安全可靠、安装使用、维修维护等方面,也可给使用者带来了极大地便利,使之成为电厂采用电机调速节能方式地首选.2 电厂高压大功率变频器地应用选择电厂选择高压变频器应从可靠性、经济性和适用性和环保要求等几个方面来考虑.2.1 可靠性对高压变频调速系统地可靠性可谓众说纷纭,各厂家在主电路地拓扑结构和功率器件地选择上各有千秋,但总地说来,可从以下几个方面入手:(1) 元器件地可靠性.元器件地可靠性是低压强于高压,成熟产品强于不成熟产品.对于相同器件来讲,目前地元器件基本上是全球采购,在品牌上、等级上即可分出高下.(2) 主电路构成地可靠性.基于大功率电动机降低输电损耗地要求,电厂大功率电机绝大多数为高压类型,我国设计规范中也有200kw以上电动机宜采用高压类型地规定,电压等级多为6kv,个别热电厂为10kv. 变频器实现高压有几种方式,对于高-高方式来讲,功率单元串联地可靠性优于器件地直接串联.对于高-低或高-低-高方式来说,只是高压大功率变频器发展进程中地权宜之计,因为其效率低下,污染严重,技术上地失败,早应退出历史舞台,但有些专家认为应开发1.7kv,2.3kv,3.3kv,4.16kv等级地电机,或者改变现有电机地绕组接线方式,并在变频器前加一台网侧变压器,以适应变频器,无异于削足适履.(3) 运行中地可靠性.发电厂为保障发电机组地安全运行,对变频装置有特殊地可靠性要求:少部分功率单元损坏时可以降低出力继续运行;整机故障时可安全地切换到工频运行;瞬时失电或倒闸时变频器不停机;控制单元带有ups电源,380v散热风机电源由变频器自身提供以保证整体安全性等,能否满足上述条件是电厂应用高压变频器在可靠性方面最应当注重地.2.2 经济性经济性可以从产品地价格,备品备件及维修服务费用和所带来地经济效益几个方面来讲,目前国产高压大功率变频器经多年地研发和推广,在保证可靠性地前提下,产品化、市场化程度已大大提高,其价格有着明显地优势,备品备件供应充足,价格合理,因为是自主研发和生产,售后服务质量好,效率高,能够最大限度地满足电厂对设备技术服务地要求,减少维护费用,保护用户投资.同时,高压大功率变频器技术上地特点,以及可靠性方面,也可反映出经济性地优劣,比如需加装谐波抑制装置或功率因数补偿装置地设备,其效率必然下降,其可靠性也会下降,运行时间缩短;采用特殊电机地变频器,其电机没有互换性,增加了维修时间;没有部分故障旁路功能、整机故障时不能安全地切换等都可导致高压变频器整体装置地mtbf大大下降,其最终结果都会导致机组整体效率地降低, 节能效果地下降, 其经济性也就不言而喻了.2.3 适用性从总体上来说,高压变频调速系统,一方面要能适应电网地波动包括母线地欠压和短时失压,另一方面在机组频繁地起、停和高、低负荷出力地过程中,实现软启动,软制动及智能调速. 而国内电厂在外部环境和高压大功率变频器使用要求方面又有其特殊性,在以往地高压变频器地应用中,因为国外产品垄断市场,使用厂家几乎都是被动地接受国外地定型产品,包括前面所讲地高-低-高、高-低等方式,同时在不明就里地情况下,在定货以后,还要另加消谐器,补偿装置等,另外因为各代理商地技术水平参差不齐,使得现场应用方面不尽如人意,同时备件地长周期供货,售后服务地高昂费用等,都使国内地用户吃尽苦头,而如今国内生产商地崛起,改变了这种局面.以北京利德华福技术有限公司为例,其所研发和生产地harsvert-a系列单元串联多电平pwm 电压源型高压变频器,可定制化生产,在适用性方面,能够更好地满足国内电厂用户地使用要求.(1) 在外部环境地适应性方面(a) 直接高进高出, 无须谐波抑制或功率因数补偿装置;(b) 变频器可以承受30%地电源电压下降而继续运行;(c) 6kv主电源欠压时可不停机,自动降额,电压正常后再恢复到原来速度;(d) 6kv主电源完全失电时,变频器可以在3s内不停机(相当于150个在工频时地电力周期),能够全面满足变频器动力母线切换时不停机地需要.而同类设备地该指标只有100ms(相当于5个在工频时地电力周期).(2) 在操作和维护地方便性方面(a) 在变频器中预装具有自主版权地全中文操作和监控软件,本机及远程启停操作、功能设定、参数设定、故障查询、运行记录查询等均采用全中文地windows操作界面,改变了以往全英文或代码操作显示地方式,符合国内用户使用习惯,使操作方便、简洁;(b)配备12.1"彩色液晶触摸显示屏,可实现完整地通用变频器参数设定功能,可打印输出运行报表;调整触摸式面板,可随时显示电压及电流波形、频率和电机转速,可非常直观地显示电机在任何时间地实时状态;(c) 具有很强地诊断、指示能力:可检测变频器各部分地运行状态,完整地故障监测电路、精确地故障定位,在中文人机界面上精确定位显示故障位置、类别,使故障点一目了然,故障模块更换方便,降低了mttr,适应于一般操作工人和维护人员地技能水平;(d) 具有就地和异地操作功能, 可灵活选择现场控制/远程控制;可配备远程监控功能,在异地通过电话网络对变频器实施监控,一方面便于用户在远方随时了解设备运行实际情况; 另一方面,也利于设备地远程诊断和维护,故障问题可以及时得到解决.(3) 在机组控制地配合性方面(a) 可以和电厂地dcs系统实现真正地无缝接口;(b) 接受和输出0~10v/4~20ma工业标准信号;(c) 实现数据交换和连锁控制等.如果发生模拟信号掉线或短路时,变频器可以提供报警信号,同时保持原有输出频率不变;(d) 变频器直接内置有plc,易于改变控制逻辑关系,适应多变地现场需要;也具有国际通用地外部接口,可独立完成闭环和开环控制.(4) 满足用户地特殊要求方面(即定制化生产)(a) 变频器控制电源可接收交流220v和直流220v输入,并配备有ups,在控制电源发生故障时可以继续运行,同时提供报警;(b) 低压动力电源也可由变频器自身地变压器二次侧提供,提高了整机可靠性;(c) 可定制生产手动或自动旁路柜, 整机故障时可安全地切换到工频运行, 大大提高了机组运行地安全性和可靠性.2.4 环保要求高压大功率变频器在电厂应用中,最大地环保问题是谐波污染,而谐波治理最美好地愿望是不产生谐波,其次才是减少谐波,而采用多重化、多电平,pwm技术等措施,在电路拓扑结构上加以改进使电力电子装置本身不产生谐波和无功,是一种最积极地节能降耗地办法,单元串联多电平pwm电压源型高压变频器就是遵循此设计理念,国内利德华福变频器通过了国家权威机构谐波检测,当多台此种变频器时同时运行时,也可满足国际标准和国家标准.而另外一些变频器,对谐波问题是先污染后治理,节能产品反而以耗能为代价来满足环保,只会得不偿失.3 电厂高压大功率变频器地应用实例2001年11月, 四川华蓥山发电厂4#炉地引送风机所采用地4台800kw/6kv利德华福高压大功率变频器,通过了由四川省电力试验研究院地竣工验收试验.改造内容为:在#4炉甲、乙双侧送风, 甲、乙双侧引风机地4台电机高压回路各安装一套变频调速装置.利用原有地电机进行变频调速, 风机及拖动电机设备及基础保持原结构不变.保留原有引送风机风道挡板及执行器, 装设变频器旁路刀闸, 当变频器故障时能使用工频电源启动电机, 控制风道挡板调节风量.四套变频器按无人值班设计安装,除“本控”(变频器就地控制)外,在机房集控室地dcs界面上对变频器进行全面操作和监视.从结果来看,采用变频调速起到了如下效果.3.1 满足调速工艺要求,实现了发电机组控制系统自动化变频器高精度宽范围地无级调速功能,不仅全面满足了电厂峰荷动态调节地需要,而且和电厂地dcs系统实现无缝接口,实现了电机软启动、软制动和智能调速,可以根据锅炉燃烧需要调节控制电机工作电源频率,改变控制电机转速达到调节控制炉膛引送风量,实现风量地闭环调节.提高了生产效率和机组自动化水平,大大改善了电厂地工作和生产环境.3.2 节能因为原发电机组经常处于调峰运行状态,同时在设备容量设计上,单侧风机具备让发电机带75%负荷运行地能力,所以在机组运行时,引送风机挡板开度一般最多达到50%左右,挡板截流造成了大量地能量损失.通过变频改造节电效果显著,节电率如附表所示.3.3 延长设备使用寿命,节省检修费用和时间#4机组采用变频调速改造后, 因为对电机实现真正地软启动,对电机、风机、挡板、高压开关等设备以及电网地启动冲击大大减少, 低转速运行使得风机振动和轴承磨损大为减少,延长了设备使用寿命, 节省了检修费用和时间.至2002年7月, 华蓥山发电厂4#炉风机系统地4台harsvert-a变频器已安全运行5000多小时, 设备运行状态良好, 设备性能稳定、可靠、安全, 并且在2-3年即可收回全部投资, 实践证明高压大功率变频技术在电厂中大有用武之地.4 高压大功率变频器在电厂应用地发展前景在电厂采用高压交流变频调速技术,对风机、泵类等大功率辅机进行变速调节,可使各工艺参数调整在最佳状态,改善了工艺操作,提高了机组效率,可以节电、节水、节煤,降低生产成本,为电厂带来极大地经济效益,同时可同机组自控系统相配合,能提高自动回路投入率,组成完整地机组优化控制系统,达到省人、省力、省设备,提高机组整体自动化水平和电厂整体管理水平地目地.附表变频改造前后地节电对比表机组负载为50%~100%额定负荷时,对应节电率为62.2%~42.7%,平均节电率为51.25%.高压大功率变频器在电厂应用地发展前景取决于两个方面, 一方面是高压变频技术本身地发展, 而另一方面,是如何更好地同电厂生产工艺及自动化水平地提高相配合.高压变频技术本身地发展:在短期内,着重解决高压变频器地大容量化和体积小型化;功率变换器地模块化,高耐压和大容量化;功率单元硬件地通用化.随着电力电子技术地迅速发展,高压变频调速技术将逐步能够做到按电路最优原则方便地选择元件,从而可以将精力更好地放在提高产品性能以及优化控制方式上.电厂应用水平方面:生产厂商在短期内,要完善变频装置地故障自检功能;快速修复故障功能;自动一带多切换等功能;解决工频切换时档板、阀门地快速响应问题;同自控系统地数字化衔接等问题.同时在防尘、散热、抗干扰性和进一步提高可靠性方面积极地探索更好地方式. 高压变频器在电厂地应用还远远没有展开, 要充分认识采用变频调速技术地必要性与重要性还需各界人士共同努力, 变频装置涉及工艺、热控和电气等各个专业, 只有通力合作,才能更好地应用.在国内应用高压变频器地过程中,也曾出现过失误地例子, 比如在给水泵、循环泵等设备地并联使用时, 变速泵不出水、工频泵过负荷;风机设备变速后风压太低, 无法运行; 变频装置无法同自控系统相衔接等情况.这就需要电厂相关技术人员不盲目崇外, 能从电厂生产地特殊性上入手、从专业技术入手, 从应用实践入手, 选择合适地产品, 使高压变频器能发挥其应有地效果.5 结束语高压大功率变频器为发电厂大型辅机工况调节提供了一种经济运行地可行方式, 其优良地性能和巨大地节能效益, 使得其在电厂具有广阔地应用前景.但电厂选择高压变频器应考虑可靠性、经济性和适用性和环保要求等因素, 因为目前国内高压变频器在性能、价格和售后服务方面有着明显地优势, 又有电厂应用业绩, 选择国产品牌不失为明智之举.尤其是改造项目,采用国产高压大功率变频进行辅机调速改造, 是发电厂降低成本, 增强竞争力地重要途径.参考文献[1] 卓乐友. 推荐变频调速技术在电厂中应用[a]. 电厂高压电动机应用变频调速技术交流和研讨会资料汇编.[2] 白恺. 火力发电厂大型电动机应用变频调速技术地可行性[a]. 电厂高压电动机应用变频调速技术交流和研讨会资料汇编.[3] 覃正清. 华蓥山电厂4号炉风机变频改造案例[a]. 电厂高压电动机应用变频调速技术交流和研讨会资料汇编.作者简介顾爱利 1998年毕业于郑州市职工大学,现服务于郑州市热力总公司,一直从事电厂筹建工作,任电气专工.。
电力电子技术在电气工程中的应用电力电子技术是现代电气工程领域非常重要的一个分支,它通过电子器件和电路将电能转换、控制和调节为各种形式的电能输出,被广泛应用于电力系统的稳定性、效率和可靠性提升。
本文将就电力电子技术在电气工程中的应用进行介绍。
1. 变频调速技术变频调速技术是电力电子技术在电气工程中最为常见的应用之一。
通过变频器将交流电源转换为可变频率、可控制的交流电源,可以实现电机的无级调速。
这种技术广泛应用于电梯、水泵、风机等需要调速的设备中,可以提高设备的效率和节能。
2. 柔性直流输电技术柔性直流输电技术是一种新兴的输电方式,采用高压直流输电,通过可控硅元件和光伏阵列等装置,可以实现电能的稳定输送。
这种技术在大规模风力、光伏发电等可再生能源的接入中具有重要意义,可以提高电力系统的灵活性和可靠性。
3. 电力质量改善技术电力质量问题是电气工程中一直存在的难题,电力电子技术可以通过有源滤波器、静止无功发生器等设备,改善电力系统中的谐波、电压波动等问题,保障用电设备的正常运行和安全性。
4. 电力电子变换器技术电力电子变换器技术是电气工程中的核心技术之一,它通过可控硅、IGBT等功率器件,实现电能的直流与交流之间的转换。
电力电子变换器广泛应用于直流输电、换流站等领域,对电网的稳定性和可靠性起到了关键作用。
5. 电力电子补偿技术电力电子补偿技术是为了改善电力系统中的功率因数问题而开发的技术,通过静止无功发生器、电容器组等装置,可以对系统中的无功功率进行补偿,提高系统的功率因数,减少电能的损耗。
以上便是电力电子技术在电气工程中的主要应用领域,它在电力系统的稳定性、效率和可靠性方面发挥着重要作用。
二、电力电子技术的发展趋势随着科学技术的不断发展,电力电子技术也在不断创新和进步,未来的发展趋势主要有以下几个方面:1. 高效绿色技术随着节能环保理念的普及,电力电子技术将朝着高效、环保的方向发展,研究和应用更加高效的功率器件和电力电子转换技术,以减少能源消耗和环境污染。
变频技术在供热系统中的应用摘要:变频技术具有强大的节能作用,在供热系统中被广泛使用。
变频技术可以改变水泵转速,进而调节循环水量,大幅度节约电力能源。
同时,变频技术具有功率因数高、调速精度准确等特点,可以延长设备的使用寿命,减少循环水泵等机械设备的磨损,对提高企业经济效益有着积极作用。
关键词:变频技术;供热系统;应用1.变频技术应用原理1.1优化运行方式,降低能源消耗供热系统的运行方式多种多样,最为典型的有流量的质调节、量调节、质—量调节,和分阶段改变流量的调节方式。
以往,我国的供热系统采用的都是分阶段改变流量的质调节方式,这种方式的运行模式就是根据室外温度的变化进行气候补偿,将其进行层次的划分,室外温度高,流量调低;室外温度低,流量调高。
但是需要注意的是,无论流量怎么调节,网络循环水量是不变的,运用这种方式,耗电量比较大。
采用变频技术进行调节,主要运用质—量流量调节的原理进行,可以有效的降低能源消耗,水流量随着室外温度的高低而进行自动调节,可以达到非常满意的节能效果。
1.2应用变频技术,降低运行成本供热系统中有一定的节能标准和要求,常规供热系统中的耗电量比较大,采用变频技术进行质—量调节的方式,可以将能耗进行有效的控制,将能耗限制在合理范围,大大降低运行成本,即符合相应的节能标准,又提高了供热的经济效益。
2变频技术的特点变频技术在供热系统的应用具有良好的节能效果,与其独特的特点有关,主要包括以下几个方面。
首先,是变频技术调速效率较高,可以在额定的范围内进行高速运转,运行效率高,磨损程度低。
其次,是调速的运行范围较广,在合理运行范围内运转,既可以小于30%,也可达到90%。
可以满足长期低速运行的需求。
同时,在开始启动时电流较小,在高速运行时,仍然可减少电源频率波动的影响。
在调速改变过程中可以不用换电动机,简捷方便。
当出现问题时主电路可以直接进行供电,不需要设备关闭,可以在不影响设备的运转情况下切换电路。
变频器在船用电力系统中的应用船用电力系统是船舶的重要组成部分,它负责为舰船提供电力供应,以支持船舶各种设备和系统的正常运行。
而变频器作为一种电力调节装置,可以在船用电力系统中发挥重要的作用。
本文将探讨变频器在船用电力系统中的应用。
一、船用电力系统概述船用电力系统是由电源、配电系统和电气设备组成的整体结构。
它的主要功能是向船舶提供电能,为各种设备和系统提供电力支持。
船用电力系统一般由主发电机组、配电盘、变频器、电动机等组成。
主发电机组负责产生电能,配电盘将电能分配给各个设备和系统,而变频器作为电力调节装置,可以使得电能的输出频率和电压得到有效的调节和控制。
二、变频器在船用电力系统中的作用1. 频率转换船舶的电力需求可能会随着不同设备和系统的运行情况而发生变化,而变频器可以帮助实现频率的转换。
比如,船舶的主发电机产生的电能通常是高频率的,而某些设备可能需要低频率的电能才能正常运行。
此时,变频器可以将高频率的电能转换成低频率的电能,以满足不同设备和系统的需求。
2. 电压调节船用电力系统中的电动机通常需要不同的电压来实现不同的运行要求。
变频器可以通过调整输出电压的大小,使得电动机能够在不同的工作状态下正常运行。
此外,变频器还可以根据需求实现电压的稳定性,以减少电动机的损耗和故障。
3. 能量回收船舶在运行过程中会产生大量的惯性能量和制动能量,而变频器可以将这些能量回收并转换为电能。
这样不仅可以提高能源利用率,降低燃料消耗,还可以减少船舶对环境的影响。
三、变频器应用案例1. 主发电机组调速船舶的主发电机组通常由柴油发电机或气轮机组成,而这些发电机的转速与需求的电能输出频率不一定匹配。
因此,变频器可以通过调节主发电机组的转速,以实现电能输出频率的调节。
2. 辅助电源调节船舶的辅助电源包括油电机组、柴油发电机组等,其输出频率和电压也需要在不同工况下进行调节。
变频器可以根据实际需求对辅助电源进行电能输出频率和电压的调节,以保证船舶各个设备和系统的正常运行。
变频调速及其控制技术的现状与发展趋势摘要:变频调速技术以其卓越的调速性能、显著的节电效果在各个领域得到广泛的应用,为节能降耗、改善控制性能、提高产品的产量和质量提供了重要手段。
本文首先回顾了变频调速技术的发展历史和现状,然后总结了变频调速中的关键控制技术,并介绍了智能控制理论在变频调速系统中的应用情况,最后指出了变频调速技术的发展趋势。
关键字:变频调速技术矢量控制异步电动机PWM技术智能控制1变频调速技术的发展历史及现状变频调速技术涉及到电力、电子、电工、信息与控制等多个学科领域。
随着电力电子技术、计算机技术和自动控制技术的发展,以变频调速为代表的近代交流调速技术有了飞速的发展。
交流变频调速传动克服了直流电机的缺点,发挥了交流电机本身固有的优点(结构简单、坚固耐用、经济可靠、动态响应好等),并且很好地解决了交流电机调速性能先天不足的问题。
交流变频调速技术以其卓越的调速性能、显著的节电效果以及在*****领域的广泛适用性,而被公认为是一种最有前途的交流调速方式,代表了电气传动发展的主流方向。
交流调速技术为节能降耗、改善控制性能、提高产品的产量和质量提供了至关重要的手段。
变频调速理论已形成较为完整的科学体系,成为一门相对独立的学科。
变频装置有交-直-交系统和交-交系统两大类。
交-直-交系统又分为电压型和电流型,其中,电压型变频器在工业中应用最为广泛。
本文所涉及的就是此类变频调速理论和技术。
20世纪是电力电子变频技术由诞生到发展的一个全盛时代。
最初的交流变频调速理论诞生于20世纪20年代,直到60年代,由于电力电子器件的发展,才促进了变频调速技术向实用方向发展。
70年代席卷工业发达国家的石油危机,促使他们投入大量的人力、物力、财力、去研究高效率的变频器,使变频调速技术有了很大的发展并得到推广应用。
80年代,变频调速已产品化,性能也不断提高,发挥了交流调速的优越性,广泛地应用于工业各部门,并且部分取代了直流调速。
电气自动化控制中变频调速技术的应用摘要:社会经济的快速发展,工业化进程的不断推进,电气自动化技术也在逐步发展和完善,成为工业生产中不可或缺的重要环节。
这一技术的应用范围广泛,涵盖了制造业、能源、交通、医疗、农业等领域,其效果十分卓著,可以提高生产效率、降低生产成本、改善产品质量等方面的表现。
可以预见,随着我国经济的进一步发展和技术的不断革新,电气自动化技术将继续发挥着重要作用,为实现高质量、可持续发展提供强有力的支撑。
关键词:电气自动化控制;变频调速技术;应用引言国民经济发展中,工业占据着举足轻重的地位,起到了重要的支撑作用。
现代工业发展对电气自动化控制有着较高的要求,电气自动化控制水平直接影响着整体工作效率和资源节约效果。
将变频调速技术应用于工业电气自动化控制中,能够为现代工业电气自动化控制工作提供极大的便利和帮助,推动工业领域高质量发展。
首先概述了变频调速技术,其次分析了变频调速技术的应用价值,最后探讨了变频调速技术在工业电气自动化控制中的具体应用。
1研究背景变频器调速技术的应用特征主要表现在以下方面,通用性特征,变频器调速技术与其他传统的自动化控制技术相比,前者在机械设备方面应用的通用性更加广泛,即便是普通的变频器调速技术,在其应用过程中也能适应工业电气自动化领域。
适用性特征,如今变频器调速技术在我国工业电气自动化领域中的应用逐渐深入,随着应用范围越来越广泛,变频器调速技术的应用经验也越来越丰富,可见变频器调速技术的理论依据已经实现了基本的完善,可见变频器调速技术的适用性特征优势极为显著,因此在此基础上应当加大应用力度,扩大应用领域,实现对变频器调速技术的进一步设计。
优化性特征,就我国目前应用变频器调速技术的情况来,发现变频器调速技术的应用并没有达到成熟的范畴,反而其实际应用还处于正在发展、探索的阶段,还保留有一定的优化空间,这说明变频器调速技术还存在有更多的发挥机会,在便利性、安全性以及稳定性方面还能够实现更大的优化,能实现更好的创新,这说明在不远的未来,工业领域应当更加重视对变频器调速技术的创新,才能够实现其更好的发展。
电力电子技术在工业自动化中的应用工业自动化是指利用自动控制设备和工艺装置,实现对工业生产过程的自动化控制和操作。
而电力电子技术则是一种应用电力电子器件和电力电子控制技术的领域。
本文将探讨电力电子技术在工业自动化中的应用。
一、电力电子技术概述电力电子技术是指以固态电子器件为基础,通过变换、调节和控制电能的形式、大小和方向的技术。
其核心器件包括二极管、晶闸管、场效应管、三端可控硅等。
通过这些器件,电力电子技术可以实现对电能的变换、调节和控制,在工业自动化中具有广泛的应用。
二、1. 变频调速技术变频调速技术是电力电子技术在工业自动化中最常见的应用之一。
传统的机械传动方式存在效率低、调速范围窄等问题,而通过变频器控制电动机的转速,则可以灵活地实现对工程机械、电机设备等的调速控制。
这不仅提高了工业生产的效率,还可以节约能源。
2. 电力电子制动技术电力电子制动技术通过控制器对电机进行制动操作,实现对机械设备的快速减速和停止。
与传统的机械制动方式相比,电力电子制动具有制动力矩可调、制动过程平稳等优点。
在工业自动化生产线中,电力电子制动技术可以在不损坏设备的情况下,实现对设备的快速停止,提高了生产效率和安全性。
3. 电力电子逆变技术电力电子逆变技术是将直流电能转换为交流电能的技术。
在工业自动化系统中,电力电子逆变器广泛应用于电网与设备之间的能量转换。
通过电力电子逆变器,可以实现对设备输入电压、频率的调节和控制,满足不同设备对电能的要求。
4. 电力电子供应技术工业自动化中的设备通常对电能供应的质量和稳定性有较高的要求。
电力电子供应技术可以通过滤波、稳压和变压等手段,提供稳定的电能给各类设备。
同时,电力电子技术还可以通过电网谐波抑制、功率因数校正等方式,改善电网供电质量。
5. 高效节能电力电子技术在工业自动化生产中,能源消耗是一个重要的成本和环境压力。
电力电子技术可以借助电力电子器件和控制技术,实现对能源的高效利用和节约。
变频器的毕业论文本文主要探讨变频器在电力系统中的应用和发展。
首先,我们介绍了变频器的概念和发展历程。
接着,我们阐述了变频器在电力系统中的应用,包括电动机驱动、节能与效益、发电调节与控制。
最后,我们分析了变频器的发展趋势和未来的发展前景。
1. 变频器的概念和发展历程变频器是一种能够控制电机转速的电子设备。
它能够通过改变电源频率来控制电机的转速,从而实现对电动机的调速控制。
变频器的出现解决了传统电机调速控制难以实现的问题,使得电机的效率、控制精度和稳定性等性能指标得到了提升。
变频器的发展历程可以分为以下几个阶段。
20世纪80年代初,欧美国家开始研制变频器,并逐渐推广应用。
90年代初,国内开始涌现出一批变频器生产厂家,开始从事变频器的设计与生产。
21世纪初,随着数字化技术和微电子技术的不断发展,变频器的性能指标得到了进一步提升,应用范围也得到了拓展。
2. 变频器在电力系统中的应用2.1 电动机驱动变频器在电机驱动中的应用是其主要领域之一。
变频器能够通过改变电源频率来控制电机的转速,从而实现对电机的调速控制。
电机的速度可以随时调整,适应不同的工况要求,从而实现了电机驱动的灵活性和效率性。
2.2 节能与效益变频器的应用还可以实现节能和效益的目的。
传统的电机启动和停止时都需要较大的电流,容易造成电网的电压波动和系统的负荷过重。
而变频器可以实现电机的平稳启动和停止,从而使得能源的利用率得到了提高。
2.3 发电调节与控制在发电领域中,变频器也起到了重要的作用。
发电控制系统中需要实现对风力发电机、水轮发电机等各类发电设备的调节和控制。
而变频器能够实现对发电机转速的精确控制,从而保证发电机的工作效率和发电量的稳定性。
3. 变频器的发展趋势和未来发展前景随着数字化技术和微电子技术的不断发展,变频器的性能指标和应用领域得到了进一步提升,其发展前景也越来越广阔。
未来,变频器的趋势和发展方向主要包括以下几个方面:3.1 集成化与智能化未来的变频器需要更加智能化和集成化。
变频调速技术的发展和应用近10年来,随着电力电子技术、计算机技术、自动控制技术的讯速发展,电气传动技术面临着一场历史革命,即交流调速取代直流调速和计算机数字控制技术取代模拟控制技术已成为发展趋势。
电机交流变频调速技术是当今节电、改善工艺流程以提高产品质量和改善不断恶化环境、推动技术进步的一种主要手段。
变频调速以其优异的调速和起制动性能,高效率、高功率因数和节电效果,广泛的适用范围及其它许多优点而被国内外公认为最有发展前途的调速方式。
我国变频调速技术的发展概况电气传动控制系统通常由电动机、控制装置和信息装置3部分组成。
电气传动关系到合理地使用电动机以节约电能和控制机械的运转状态(位置、速度、加速度等)实现电能-机械能的转换,达到优质、高产、低耗的目的。
电气传动分成不调速和调速两大类,调速又分交流调速和直流调速两种方式。
不调速电动机直接由电网供电,但随着电力电子技术的发展这类原本不调速的机械,越来越多的改用调速传动以节约电能(节约15-20%或更多),改善产品质量,提高产量。
在我国60%的发电量是通过电动机消耗掉的,因此它是一个重要行业,一直得到国家重视,目前已有一定规模。
近年来交流调速中最活跃、发展最快的就是变频调速技术。
变频调速是交流调速的基础和主干内容,上个世纪变压器的出现使改变电压变得很容易,从而造就了一个庞大的电力行业。
长期以来,交流电的频率一直是固定的,变频调速技术的出现使频率变为可以充分利用的资源。
我国电气传动产业建于1954年,当时第一批该专业的学生从各大专院校毕业,同时在机械工业部属下建立了我国第一个电气传动成套公司,这就是后来的天津电气传动设计研究所的前身。
我国电气传动与变频调速技术的发展简史见附表。
现在我国已有200家左右的公司、工厂和研究所从事变频调速技术的工作。
我国是一个发展中国家,许多产品的科研开发能力仍落后于发达国家。
至今自行开发生产的变频调速产品大体只相当于国际80年代水平。
电力电子技术在电力变压器中的创新电力电子技术的发展在电力行业中扮演着至关重要的角色。
特别是在电力变压器领域,电力电子技术的应用不仅提高了电力变压器的工作效率和可靠性,还在能源转换和电力优化方面带来了重大的创新。
本文将重点介绍电力电子技术在电力变压器中的创新应用。
一、电力电子技术对电力变压器效率的提升电力变压器作为电力系统中不可或缺的设备,其主要功能是实现电压的变换和传输。
传统的电力变压器在能量转换过程中存在较大的能量损耗和热耗散问题,降低了其工作效率。
然而,通过引入电力电子技术,可以显著提高电力变压器的效率。
1.1 无功补偿技术无功补偿技术是电力电子技术在电力变压器中的一种重要应用。
传统的电力变压器在运行中存在较大的无功功率消耗,降低了电力系统的功率因数和效率。
而通过引入无功补偿器,如静止无功补偿装置(SVC)和静止无功发生器(SVG),可以有效地消除电力变压器中的无功功率,并提高整个电力系统的功率因数和效率。
1.2 变频调速技术变频调速技术是另一种重要的电力电子应用,可在电力变压器中实现高效率的能量转换。
通过将变压器与变频器相结合,可以实现变频调速控制,使电力变压器能够根据负载需求实时调整工作状态和输出功率。
这种技术不仅提高了电力变压器的效率,还能够实现能源的精确控制和优化利用。
二、电力电子技术对电力变压器可靠性的提升电力变压器的可靠性对于电力系统的安全和稳定运行至关重要。
电力电子技术的应用在提高电力变压器的可靠性方面也发挥着重要作用。
2.1 故障诊断与保护技术电力变压器的故障诊断与保护是电力电子技术的一个重要应用领域。
通过引入故障诊断装置和智能保护系统,可以实时监测电力变压器的工作状态和性能参数,并在故障发生时及时采取措施,避免故障扩大和影响到整个电力系统的稳定运行。
2.2 绝缘状态监测技术绝缘状态监测技术是电力电子技术在电力变压器中的另一个重要应用。
通过在电力变压器内部引入绝缘状态监测器,可以实时检测绝缘状态的变化和缺陷,并及时采取维修措施,避免电力变压器的故障和事故发生,提高其可靠性和安全性。
电力电子在工业自动化中的应用工业自动化是指利用先进的电子技术和控制系统,实现工业生产过程中的自动化管理和控制。
而电力电子作为一门交叉学科,运用电力电子技术在工业自动化中发挥着重要的作用。
本文将对电力电子在工业自动化中的应用进行探讨。
一、电力电子技术在工业自动化中的重要性工业自动化生产线包含了众多的电动机、变频器、传感器等设备,这些设备在工作时需要进行交换式运算、调节电流和电压以及变频等操作。
而电力电子技术正是用于实现这些操作的一种方案。
通过调节电流、电压和频率,电力电子技术可以有效地控制工业自动化设备的动力输出,从而实现生产线的高效运行。
二、电力电子在工业自动化中的具体应用1. 变频调速技术变频调速技术是电力电子在工业自动化中最为常见且重要的应用之一。
在工业生产中,许多机械设备需要根据实际情况调节运行速度,以适应不同的生产需求。
而变频器正是一种基于电力电子技术的设备,可以实现对电机转速的精确控制。
通过调节变频器中的电流和频率,可以实现对电机输出转矩和速度的调节,从而满足不同工艺参数的要求。
2. 电力因数补偿装置在工业生产中,许多设备和电气负载需要大量的无功电能来维持正常运行。
而没有进行合理的无功补偿,会导致电网电压波动、电网损耗增加等问题。
电力因数补偿装置是一种利用电力电子技术来提高功率因数的装置,通过控制电容器的接入和断开,以及对电网的反馈控制,可以实现对系统功率因数的补偿调节。
这样不仅可以降低电网损耗,还可以提高用电设备的使用效率。
3. 电力质量调节装置电力质量是工业自动化中一个重要的指标,也直接影响到工厂生产线的稳定运行。
而电力电子技术可以通过控制电网电压、频率等参数,实现对电力质量的调节和优化。
例如,通过电力电子技术,可以实现对电网电压波动、谐波干扰等问题的消除,从而提高系统的可靠性和稳定性。
4. 高效电源变换器工业自动化中,大量的电子设备和传感器需要稳定的电源供应,而电力电子技术可以实现对电源的高效转换。
电力电子技术在变频调速系统中的新应用1. 前言变频调速系统是一种通过调节电机供电频率来控制电机转速的系统。
随着电力电子技术的不断发展,变频调速系统在工业、交通、家电等领域得到了广泛应用。
本文将探讨电力电子技术在变频调速系统中的新应用,重点关注其发展趋势和优势。
2. 电力电子技术在变频调速系统中的应用2.1 变频器的设计与优化电力电子技术在变频器的设计与优化方面具有重要意义。
变频器是变频调速系统的核心部件,其主要作用是将固定频率的交流电转换为可调频率的交流电。
电力电子器件在变频器中起到了关键作用,如整流、逆变、滤波等。
通过采用新型电力电子器件和电路拓扑结构,可以提高变频器的性能和效率,降低故障率。
2.2 电机驱动与控制电力电子技术在电机驱动与控制方面也取得了显著成果。
采用电力电子器件实现的电机驱动电路具有响应速度快、调速范围宽、运行效率高等优点。
此外,通过对电机转速、转矩和磁场的精确控制,可以实现电机的精确运行,提高系统的稳定性和可靠性。
2.3 电机保护与故障诊断电力电子技术在电机保护与故障诊断方面发挥着重要作用。
通过实时监测电机运行参数,如电流、电压、温度等,可以实现对电机的实时保护。
同时,采用电力电子技术进行故障诊断,可以快速准确地识别电机故障,为故障处理提供有力支持。
3. 电力电子技术在变频调速系统中的新应用发展趋势3.1 高性能电力电子器件的研究与应用随着变频调速系统对性能和效率的要求不断提高,高性能电力电子器件的研究与应用成为发展趋势。
如碳化硅(SiC)和氮化镓(GaN)等宽禁带半导体材料的研究,有望提高电力电子器件的性能,降低开关损耗,提高系统效率。
3.2 智能化与集成化在变频调速系统中,电力电子技术将朝着智能化和集成化方向发展。
通过对电力电子器件和系统的实时监控、故障诊断与预测,可以实现系统的智能运行。
此外,将电力电子技术与微电子技术相结合,实现系统集成,可以降低系统体积、重量和成本。
电力电子技术在电力变频调速中的应用随着现代工业的发展以及电力需求的日益增长,电力变频调速成为提高电机性能和节能的重要手段。
而在电力变频调速系统中,电力电子技术起到了至关重要的作用。
本文将介绍电力电子技术在电力变频调速中的应用,并探讨其对电机性能的提升和节能效果的影响。
一、电力电子技术概述电力电子技术是指利用半导体元件和电子器件来控制和变换电能的技术。
它通过改变电压、电流的波形、频率、相位等参数,实现对电能的精确控制。
电力电子技术广泛应用于电力变频调速系统中,可有效解决电压、电流传输、电机控制等问题,提高系统的可靠性和稳定性。
二、1. 变频器变频器是电力电子技术在电力变频调速中的核心设备。
它通过将输入电源交流电转换为可调制的直流电,再经过逆变器将直流电转换为需要的交流电源,实现对电机转速的调控。
变频器能够根据负载需求实时调整输出频率和电压,使电机能够按照不同负载条件下的工作要求灵活运行,提高电机效率,降低能耗。
2. 直流电调整装置直流电调整装置主要通过电力电子技术实现对直流电压的调整。
它可以根据电机负载的变化,自动调节直流电压以保持稳定输出。
这种调整方式能够根据电机的实时负载情况,精确控制直流电压的大小,提高电机的工作效率,延长电机的使用寿命。
3. 逆变器逆变器是电力电子技术在电力变频调速中的又一重要部件。
它将直流电转换为交流电,根据需要控制输出电压和频率。
逆变器具有频率范围广、控制性能好等特点,能够实现对电机转速的精确调节。
逆变器的使用,使得电力变频调速系统能够根据负载需求,精确调节输出频率和电压,提高电机的运行质量。
4. 智能控制系统电力电子技术的应用还推动了电力变频调速系统的智能化发展。
智能控制系统通过传感器、数字信号处理器等设备,实时监测电机的工作状态,根据预设参数对电机进行精确控制和调节。
智能控制系统的使用,使得电力变频调速系统能够更好地满足不同负载条件下的工作要求,提高电机的性能指标。