新人教版八年级上数学综合测试题1(第11章至第12章)(1)
- 格式:doc
- 大小:502.00 KB
- 文档页数:4
八年级上册数学人教版第一月考(第十一、十二章)一、选择题(本大题共12 个小题,每小题3分,共36分)1. 用三角板作△ABC 的边BC 上的高,下列三角板的摆放位置正确的是( )A. B.C. D.2. 下列四个选项中,不是全等图形的是( )A. B. C. D.3. 如图,小明做了一个长方形框架,发现很容易变形,请你帮他选择一个最好的加固方案( )A. B. C. D. 4. 如图,在ABC 中,点O 是其重心,连接AO CO ,并延长,分别交BC AB ,于D ,E 两点,则下列说法一定正确的是( )A. BAD CAD ∠=∠B. AE CD =C. OA OC =D. BD CD =5. 已知数轴上点A ,B ,C ,D 对应的数字分别为1−,1,x ,7,点C 在线段BD 上且不与端点重合,若线段AB BC CD ,,能围成三角形,则x 可能是( )A. 2B. 3C. 4D. 56. 下列可使两个直角三角形全等的条件是( )A. 一条边对应相等B. 两条直角边对应相等 C 一个锐角对应相等 D. 两个锐角对应相等7. 小明同学只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB ,另一把直尺压住射线OA 并且与第一把直尺交于点P ,小明说:“射线OP 就是BOA ∠的角平分线.”他这样做的依据是( )A. 在角的内部,到角的两边距离相等的点在角的平分线上B. 角平分线上的点到这个角两边的距离相等C. 三角形的三条高交于一点D. 三角形三边的垂直平分线交于一点8. 如图,若两个三角形全等,图中字母表示三角形边长,则1∠的度数为( )A. 40°B. 50°C. 60°D. 70°9. 在下列条件中:①∠A +∠B =∠C ,②∠A :∠B :∠C =1:2:3,③∠A =2∠B =3∠C ,④12A B C ∠=∠=∠中,能确定△ABC 是直角三角形的条件有().A. 1个B. 2个C. 3个D. 4个10. 如图是嘉淇测量水池AAAA 宽度的方案,下列说法不正确的是( )①先确定直线AAAA ,过点B 作BF AB ⊥;②在BF 上取C ,D 两点,使得△;③过点D 作DE BF ⊥;④作射线口,交DDDD 于点M ;⑤测量☆的长度,即AAAA 的长A △代表BC CD =B. □代表ACC. ☆代表DMD. 该方案的依据是SAS11. 若一个正n 边形的内角和为720,则它的每个外角度数是( )A. 36°B. 45°C. 72°D. 60°12. 如图,在△ABC 中,∠ABC =50°,∠ACB =100°,点M 是射线AB 上一个动点,过点M 作MN //BC 交射线AC 于点N ,连结BN .若△BMN 中有两个角相等,则∠MNB 的度数不可能是( )A. 25°B. 30°C. 50°D. 65°二、填空题(本大题共4个小题,每小题3 分,共12分)13. 将一副直角三角尺如图放置,则1∠大小为______度..的的14. 如图,若P 是BAC ∠的平分线AD 上一点,PE ⊥AC 于点E ,且PE =3,AE =4,点F 在边AB 上运动,当运动到某一位置时,FAP 的面积恰好是EAP 面积的12,则此时AF 的长是_______________.15. 如图,在△ACD 中,∠CAD =90°,AC =6,AD =8,AB ∥CD ,E 是CD 上一点,BE 交AD 于点F ,当AB +CE =CD 时,则图中阴影部分的面积为 _____.16. 如图,第1个图中有1个三角形,第2个图中共有5个三角形,第3个图中共有9个三角形,….依此类推,第2025个图中共有三角形________个.三、解答题(本大题共8个小题,共72分)17. 已知:如图,点B 、F 、C 、E 在同一直线上,AC 、DF 相交于点G ,AB ⊥BE ,垂足为B ,DE ⊥BE ,垂足为E ,且AB=DE ,BF=CE .求证:△ABC ≌△DEF .18. 如图所示方格纸中,每个小正方形的边长均为1,点A ,点B ,点C 在小正方形的顶点上.(1)画出ABC 中边BC 上的高AD :(2)画出ABC 中边AC 上的中线BE ;(3)求ABE 的面积.19. 如图,BD 是ABC ∠的平分线,AB BC =,点P 在BD 上,PM AD ⊥,PN CD ⊥,M ,N 分别是垂足,求证:PM PN =.20. 在一个正多边形中,一个内角是与它相邻一个外角的3倍.(1)求这个多边形的边数;(2)求这个多边形的每一个外角的度数.21. 如图,点D 、E 、F 、G 在△ABC 的边上,且BF DE ∥,∠1+∠2=180°.(1)求证:GF BC ∥;(2)若BF 平分∠ABC ,∠2=138°,求∠AGF 的度数.22. 按要求完成下列各小题.的(1)在ABC 中,=8AB ,=2BC ,AC 的长为偶数,求ABC 的周长;(2)已知ABC 的三边长分别为3,5,a ,化简1822a a a +−−−−.23. 看图回答问题(1)如图1,在凹四边形ABCD 中:①当520403A B C ∠=∠=°∠=°°,,时,BDC ∠=______: ②当A B n C x m ∠=∠=°∠°°=,,时,BDC ∠=______。
人教版八年级数学上册 第十一章综合测试卷01一、选择题(每小题4分,共28分)1.(河北中考)已知三角无三边长分别为2,x ,13,若x 为正整数,则这样的三角形个数为( ) A.2B.3C.5D.132.(湖北襄阳中考)如图,CD AB ∥,1120∠=︒,280∠=︒则E ∠的度数是( )A.40︒B.60︒C.80︒D.120︒3.三角形的一个外角等于和它相邻的内角的4倍,等于和它不相邻的一个内角的2倍,则这个三角形各角的度数是( ) A.45︒,45︒,90︒B.30︒,60︒,90︒C.25︒,25︒,130︒D.36︒,72︒,72︒4.已知一个多边形的内角和是外角和的4倍,则这个多边形是( ) A.八边形B.十二边形C.十边形D.九边形5.若在ABC △中,()23A C B ∠+∠=∠,则B ∠的外角度数( ) A.36︒B.72︒C.108︒D.144︒6.锐角三角形中,最大角α的取值范围是 ( ) A.090α︒︒<< B.60180α︒︒<< C.6090α︒︒<<D.6090α︒≤︒<7.(内蒙古乌兰察布中考)如图,已知长方形ABCD ,一条直线将该长方形ABCD 分割成两个多边形,若这两个多边形的内角和分别为M 和N ,则M N +不可能是( )A.360︒B.540︒C.720︒D.630︒二、填空题(每小题5分,共25分)8.一个承重架的结构如图所示,如果1155∠=︒,那么2∠=_______.9.(江苏无锡中考)正五边形的每一个内角都等于_______.10.将一块正五边形纸片(图①)做成一个底面仍为正五边形且高相等的无盖纸盒(侧面均垂直于底面,见图②),需在每一个顶点处剪去一个四边形,例如图①中的四边形ABCD ,则BAD ∠的大小是______度.①②11.在ABC △中,80B ∠=︒,40C ∠=︒,AD ,AE 分别是ABC △的高线和角平分线,则DAE ∠的度数为______.12.如图,DE BC ∥,60ADE ∠=︒,50C ∠=︒,则A ∠=______.三、解答题(共47分)13.(11分)每个外角都相等的多边形,如果它的一个内角等于一个外角的9倍,求这个多边形的边数.14.(12分)已知AD 是ABC △的高,70BAD ∠=︒,20CAD ∠=︒,求BAC ∠的度数.15.(12分)(1)如图1,已知三角形ABC ,求证:180A B C ∠+∠+∠=︒ (2)问题:如图2,过BC 上任一点F ,作FH AC ∥,FG AB ∥. 这种添加辅助线的方法能证明180A B C ∠+∠+∠=︒吗?请你试一试。
八年级数学上册《第十一、十二章》综合训练一、单选题(3分每题)1.一个三角形三条边长度的比为2:3:4,且其中一条边长是12cm,这个三角形周长不可能是:()A.54cm B.36cm C.27cm D.24cm2.已知一个多边形的内角和为1080°,则这个多边形为()A.七边形B.八边形C.九边形D.十边形3.如图,已知四边形ABCD中,AB∥DC,连接BD,BE平分∠ABD,BE⊥AD,∠EBC 和∠DCB的角平分线相交于点F,若∠ADC=110°,则∠F的度数为().A.115°B.110°C.105°D.100°4.如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是()A.BC=DC,∠A=∠D B.BC=EC,AC=DC C.BC=EC,∠B=∠E D.∠B=∠E,∠A=∠D5.如图,△ABC的三边AB,BC,CA长分别是20,30,40,其三条角平分线将△ABC 分为三个三角形,则S△ABO:S△BCO:S△CAO等于()A.1:1:1 B.1:2:3 C.2:3:4 D.3:4:56.如图所示,在中,P为上一点,,垂足为R,,垂足为S,,.下面三个结论:①;②;③.正确的是()A.①和②B.②和③C.①和③D.全对二、填空题7.在△ABC中,CM是AB边上的中线,已知BC﹣AC=8cm,且△MBC的周长为30cm,则△AMC的周长为_____cm.8.如图①,点E、F分别为长方形纸带ABCD的边AD、BC上的点,∠DEF=19°,将纸带沿EF折叠成图②(G为ED和EF的交点,再沿BF折叠成图③(H为EF和DG的交点),则图③中∠DHF=__.9.如图,点D在BC上,DE⊥AB于点E,DF⊥BC交AC于点F,BD=CF,BE=CD.若∠AFD=145°,则∠EDF=________10.如图,中,,,平分.交于D,于E,且,的周长为________.11.如图,要测量河岸相对的A,B两点之间的距离,先在的延长线上取一点D,使,再过点D作垂线,使A,C,E在一条直线上,则的依据是________.三、解答题12.如图,在△ABC中,BD⊥AC于D.若∠A:∠ABC:∠ACB=3:4:5,E为线段BD上任一点.(1)试求∠ABD的度数;(2)求证:∠BEC>∠A.13.(1)如图①所示,∠1+∠2与∠B+∠C有什么关系?为什么?(2)如图②若把△ABC纸片沿DE点折叠当点A落在四边形BCED内部时,则∠A与∠α+∠β之间有一种数量关系始终保持不变,请写出这个规律并说明理由.14.如图①,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分别是∠BAC、∠BCA 的平分线,AD、CE相交于点F.(1)请你判断并写出FE与FD之间的数量关系(不需证明);(2)如图②,如果∠ACB不是直角,其他条件不变,那么在(1)中所得的结论是否仍然成立?若成立,请证明;若不成立,请说明理由.15.如图,已知△ABC中,AB=AC=10厘米,∠ABC=∠ACB,BC=8厘米,点D为AB的中点,如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q 在线段CA上由C点向A点运动,设点P运动的时间为t.(1)用含有t的代数式表示线段PC的长度;(2)若点Q的运动速度与点P的运动速度相等,经过1秒后△BPD与△CQP是否全等,请说明理由;(3)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?16.如图,已知中,是边上的高,是的角平分线,若,,求的度数.17.(1)如图1,在四边形ABCD中,AB=CB,AD=CD.求证:∠C=∠A.(2)如图2,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD.求证:AB=DE.18.已知△ABC与△中,AC=,BC=,∠BAC=∠,(1)试证明△ABC≌△.(2)上题中,若将条件改为AC=,BC=,∠BAC=∠,结论是否成立?为什么?19.观察、猜想、探究:在中,.如图,当,AD为的角平分线时,求证:;如图,当,AD为的角平分线时,线段AB、AC、CD又有怎样的数量关系?不需要证明,请直接写出你的猜想;如图,当AD为的外角平分线时,线段AB、AC、CD又有怎样的数量关系?请写出你的猜想,并对你的猜想给予证明.20.探究问题1 已知:如图1,三角形ABC中,点D是AB边的中点,AE⊥BC,BF⊥AC,垂足分别为点E,F,AE,BF交于点M,连接DE,DF.若DE=kDF,则k的值为.拓展问题2 已知:如图2,三角形ABC中,CB=CA,点D是AB边的中点,点M在三角形ABC的内部,且∠MAC=∠MBC,过点M分别作ME⊥BC,MF⊥AC,垂足分别为点E,F,连接DE,DF.求证:DE=DF.推广问题3 如图3,若将上面问题2中的条件“CB=CA”变为“CB≠CA”,其他条件不变,试探究DE与DF之间的数量关系,并证明你的结论.答案1.D【解析】由三角形三条边长度的比为,可得三边分别占三角形周长的若是最短边,则三角形周长若是较长边,则三角形周长若是最长边,则三角形周长所以三角形周长不可能是.2.B【解析】根据多边形的内角和公式,可知(n-2)·180°=1080°,解得n=8,因此这个多边形是八边形.3.D【解析】∵BE⊥AD,∴∠BED=90°,又∵∠ADC=110°,∴四边形BCDE中,∠BCD+∠CBE=360°-90°-110°=160°,又∵∠EBC和∠DCB的角平分线相交于点F,∴∠BCF+∠CBF=12×160°=80°,∴△BCF中,∠F=180°-80°=100°,4.A【解析】A、已知AB=DE,再加上条件BC=DC,∠A=∠D不能证明△ABC≌△DEC,故此选项符合题意;B、已知AB=DE,再加上条件BC=EC,AC=DC可利用SSS证明△ABC≌△DEC,故此选项不合题意;C、已知AB=DE,再加上条件BC=EC,∠B=∠E可利用SAS证明△ABC≌△DEC,故此选项不合题意;D、已知AB=DE,再加上条件∠B=∠E,∠A=∠D可利用ASA证明△ABC≌△DEC,故此选项不合题意;5.C【解析】本题主要考查三角形的角平分线。
人教版八年级数学上册第11章测试题(三角形)(时间:120分分值:120分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给的4个选项中,只有一项是符合题目要求的,请将正确答案前的英文字母填在题后括号内)1.(3分)三角形三条边大小之间存在一定的关系,以下列各组线段为边,能组成三角形的是()A.2 cm,3 cm,5 cm B.5 cm,6 cm,10 cmC.1 cm,1 cm,3 cm D.3 cm,4 cm,9 cm2.(3分)以长为13cm、10cm、5cm、7cm的四条线段中的三条线段为边,可以画出三角形的个数是()A.1个B.2个C.3个D.4个3.(3分)下列说法错误的是()A.锐角三角形的三条高线、三条中线、三条角平分线分别交于一点B.钝角三角形有两条高线在三角形外部C.直角三角形只有一条高线D.任意三角形都有三条高线、三条中线、三条角平分线4.(3分)给出下列命题:①三条线段组成的图形叫三角形;②三角形相邻两边组成的角叫三角形的内角;③三角形的角平分线是射线;④三角形的高所在的直线交于一点,这一点不在三角形内就在三角形外;⑤任何一个三角形都有三条高、三条中线、三条角平分线;⑥三角形的三条角平分线交于一点,且这点在三角形内.正确的命题有()A.1个B.2个C.3个D.4个5.(3分)如图,在△ABC中,D,E分别为BC上两点,且BD=DE=EC,则图中面积相等的三角形有()对.A.4 B.5 C.6 D.76.(3分)如图,一面小红旗,其中∠A=60°,∠B=30°,则∠BCA=90°.求解的直接依据是()A.三角形内角和定理B.三角形外角和定理C.多边形内角和公式D.多边形外角和公式7.(3分)如图,在直角三角形ABC中,AC≠AB,AD是斜边上的高,DE⊥AC,DF⊥AB,垂足分别为E、F,则图中与∠C(∠C除外)相等的角的个数是()A.3个B.4个C.5个D.6个8.(3分)如图,在△ABC中,∠C=90°,点D,E分别在边AC,AB上.若∠B=∠ADE,则下列结论正确的是()A.∠A和∠B互为补角B.∠B和∠ADE互为补角C.∠A和∠ADE互为余角D.∠AED和∠DEB互为余角9.(3分)已知△ABC中,AB=6,BC=4,那么边AC的长可能是下列哪个值。
2022-2023学年人教版八年级数学上册阶段性(11.1-12.3)综合训练题(附答案)一、选择题。
(共36分)1.如果CD平分含30°三角板的∠ACB,则∠1等于()A.110°B.105°C.100°D.95°2.已知△ABC中,AB=6,BC=4,那么边AC的长可能是下列哪个值()A.11B.5C.2D.13.如图,将两根钢条AA′、BB′的中点O连在一起,使AA′、BB′能绕着点O自由转动,就做成了一个测量工具,由三角形全等可知A′B′的长等于内槽宽AB,那么判定△OAB≌△OA′B′的理由是()A.SAS B.ASA C.SSS D.AAS4.如图,直线l1、l2、l3分别表示三条相互交叉的公路,现要建立一个货物中转站,要求它到三条公路的距离相等,则可选择的地址有()A.一处B.二处C.三处D.四处5.已知△ABC的六个元素如图,则甲、乙、丙三个三角形中和△ABC全等的图形是()A.甲、乙B.乙、丙C.只有乙D.只有丙6.如果多边形的内角和是外角和的k倍,那么这个多边形的边数是()A.k B.2k+1C.2k+2D.2k﹣27.如图,点P是∠AOC的角平分线上一点,PD⊥OA,垂足为点D,且PD=3,点M是射线OC上一动点,则PM的最小值为()A.2B.3C.4D.58.边长相等的下列两种正多边形的组合,不能作平面镶嵌的是()A.正方形与正三角形B.正八边形与正方形C.正五边形与正三角形D.正六边形与正三角形9.如图,将正五边形ABCDE的点C固定,按顺时针方向旋转一定角度,使新五边形的顶点D′落在直线BC上,则旋转的角度是()A.108°B.72°C.54°D.36°10.如图,已知∠ABC=∠DCB.添加一个条件后,可得△ABC≌△DCB,则在下列条件中,不能添加的是()A.AC=DB B.AB=DC C.∠A=∠D D.∠ABD=∠DCA 11.在△ABC中,∠A=60°,∠B=50°,AB=8,下列条件能得到△ABC≌△DEF的是()A.∠D=60°,∠E=50°,DF=8B.∠D=60°,∠F=50°,DE=8C.∠E=50°,∠F=70°,DE=8D.∠D=60°,∠F=70°,EF=812.如图,Rt△ABC中,∠ABC=90°,BD⊥AC于点D,DE⊥BC于点E,则下列说法中正确的是()A.DE是△ACE的高B.BD是△ADE的高C.AB是△BCD的高D.DE是△BCD的高二、填空题(共28分)13.如图所示,其中三角形的个数是.14.如图,AD是△ABC的中线,CE是△ACD的中线,DF是△CDE的中线,若S△DEF=2,则S△ABC等于.15.将一张长方形纸片按如图所示的方式折叠,BC,BD为折痕,则∠CBD的度数为.16.如图,△DAC和△EBC均是等边三角形,AE、BD分别与CD、CE交于点M、N,有如下结论:①△ACE≌△DCB;②CM=CN;③AC=DN.其中,正确结论的个数是.17.如图,小华从点A出发向前走10m,向右转15°,然后继续向前走10m,再向右转15°,他以同样的方法继续走下去,当他第一次回到点A时共走了m.18.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=.19.我们知道:“两边及其中一边的对角分别相等的两个三角形不一定全等”.但是,小亮发现:当这两个三角形都是锐角三角形时,它们会全等,除小亮的发现之外,当这两个三角形都是时,它们也会全等;当这两个三角形其中一个三角形是锐角三角形,另一个是时,它们一定不全等.三、解答题(共56分)20.尺规作图(不写作法,保留作图痕迹)已知∠AOB,(1)作∠AOB的平分线;(2)作一个角等于∠AOB.21.在一个各内角都相等的多边形中,每一个内角都比相邻的外角的3倍还大20°.(1)求这个多边形的边数.(2)求这个多边形的内角和及对角线的条数.22.(1)在△ABC中,BC边上的高是;(2)在△AEC中,AE边上的高是;(3)若AB=CD=2cm,AE=3cm,求△AEC的面积及CE的长.23.如图,在△ABC中,∠A=30°,一块直角三角尺XYZ放置在△ABC上,恰好三角尺XYZ的两条直角边XY,XZ分别经过点B,C.(1)∠ABC+∠ACB=,∠XBC+∠XCB=,∠ABX+∠ACX=.(2)若改变直角三角尺XYZ的位置,但三角尺XYZ的两条直角边XY,XZ仍然分别经过点B,C,则∠ABX+∠ACX的大小是否变化?请说明理由.24.如图②,是小朋友荡秋千的侧面示意图,静止时秋千位于铅垂线BD上,转轴B到地面的距离BD=2.5m.乐乐在荡秋千过程中,当秋千摆动到最高点A时,测得点A到BD的距离AC=1.5m,点A到地面的距离AE=1.5m,当他从A处摆动到A'处时,若A'B⊥AB,求A'到BD的距离.25.两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,B,C,E在同一条直线上,连接DC.(1)请找出图2中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母);(2)证明:DC⊥BE.26.综合与实践智慧小组将两个三角形纸片(△OAB和△OCD)按如图1摆放,其中∠AOB=∠COD,∠OAB=∠OBA,OA=OB,OC=OD.连接AC,BD,交点为M.(1)请直接写出AC与BD存在的数量关系:.(2)将△OAB保持固定不动,△OCD绕点O转动到图2位置,猜想此时(1)中结论还成立吗?请说明理由;(3)智慧小组测量发现图1中∠AMB=∠AOB,由此组长大胆猜想:图2中∠AMB的大小也等于∠AOB.如果你是智慧小组的一员,你赞成组长的猜想吗?请说明理由.参考答案一、选择题。
2022-2023学年人教版八年级数学上册第一学段(11.1-12.3)综合测试题(附答案)一、单选题(共36分)1.要组成一个三角形,三条线段的长度可取()A.1,2,3B.2,3,5C.3,4,5D.3,5,102.如图,作△ABC一边BC上的高,下列画法正确的是()A.B.C.D.3.下列图形中有稳定性的是()A.平行四边形B.正方形C.长方形D.直角三角形4.已知在△ABC中,点D、E、F分别为BC、AD、CE的中点,且S△ABC=6cm2,则S△BEF 的值为()A.2cm2B.1.5 cm2C.0.5 cm2D.0.25 cm25.如图,聪聪书上的三角形被墨迹污染了一部分,他根据所学知识很快就画了一个与书本上完全一样的三角形,那么聪聪画图的依据是()A.SSS B.SAS C.ASA D.AAS6.具备下列条件的△ABC,不是直角三角形的是()A.∠A+∠B=∠C B.∠A=∠B=∠CC.∠A=2∠B=3∠C D.∠A:∠B:∠C=1:3:47.下列说法错误的是()A.五边形有5条边,5个内角,5个顶点B.四边形有2条对角线C.连接对角线,可以把多边形分成三角形D.六边形的六个角都相等8.如图,点B,E,C,F在同一直线上,△ABC≌△DEF,BC=8,BF=11.5,则EC的长为()A.5B.4.5C.4D.3.59.如图所示,△ABC≌△ADE,∠B=30°,∠C=95°,∠EAD的度数是()A.44°B.55°C.66°D.77°10.一个正多边形每个内角与它相邻外角的度数比为3:1,则这个正多边形是()A.正方形B.正六边形C.正八边形D.正十边形11.如图,A,B,C,D,E,F是平面上的6个点,则∠A+∠B+∠C+∠D+∠E+∠F的度数是()A.180°B.360°C.540°D.720°12.图中线段AM,CM平分∠BAD和∠BCD,若∠B=34°,∠D=42°,则∠M=()A.34°B.38°C.40°D.42°二、填空题(共12分)13.等腰三角形的两边分别为5和2,则其周长为.14.选择边长相等的正多边形铺地面,下列组合能既不留缝隙也不重叠地铺满地面的是.①正三角形和正四边形;②正六边形和正三角形;③正方形和正八边形;④正三角形和正八边形.15.如图,在△ACD与△BCE中,AD与BE相交于点P,若AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,则∠APB的度数为.16.如图,在△ABC中,∠A=90°,AB=AC,BD平分∠ABC,CE⊥BD于E,若BD=8,则CE为.三、解答题(共72分)17.一个多边形的内角和比它的外角和多900°,求这个多边形的边数.18.已知:如图,在△ABC中,∠C>∠B,AD⊥BC于D,AE平分∠BAC.若∠B=50°,∠C=70°,求∠EAD的度数.19.如图,AD=BE,BC=EF,BC∥EF,判断AC与DF的关系,并说明理由.20.如图,在四边形ABCD中,AB=CD,AD=BC,直线MN交BD于点O,求证:∠1=∠2.21.如图,四边形ABCD中,BC=CD=2AB,AB∥CD,∠B=90°,E是BC的中点,AC 与DE相交于点F.(1)求证:△ABC≌△ECD;(2)判断线段AC与DE的位置关系,并说明理由.22.如图,在五边形ABCDE中,AE∥BC,EF平分∠AED,CF平分∠BCD,若∠EDC=90°,求∠EFC的度数.23.如图,∠CBF、∠ACG是△ABC的外角,∠ACG的平分线所在的直线分别与∠ABC、∠CBF的平分线BD、BE交于点D、E.(1)若∠A=70°,求∠D的度数:(2)若∠A=α,求∠E;(3)连接AD,若∠ACB=β,则∠ADB=.24.如图1,已知A(0,a)(b,0)且a,b满足(a﹣2)2+|4﹣b|=0.(1)求A、B两点的坐标;(2)如图2,连接AB,若D(0,﹣6),DE⊥AB于点E,OB=OC,M是线段DE上的一点,且DM=AB,连接AM,试判断线段AC与AM之间的位置和数量关系,并证明你的结论;(3)如图3,在(2)的条件下,若N是线段DM上的一个动点,P是MA延长线上的一点,且DN=AP,连接PN交y轴于点Q,过点N作NH⊥y轴于点H,当N点在线段DM上运动时线段QH是否为定值?若是,请求出这个值;若不是,请说明理由.参考答案一、单选题(共36分)1.解:A、1+2=3,不能组成三角形,故此选项错误;B、2+3=5,不能组成三角形,故此选项错误;C、3+4>5,能组成三角形,故此选项正确;D、3+5<10,不能组成三角形,故此选项错误;故选:C.2.解:选项C中,线段AD的BC边上的高.故选:C.3.解:根据三角形具有稳定性,可得四个选项中只有直角三角形具有稳定性.故选:D.4.解:∵由于D、E、F分别为BC、AD、CE的中点,∴△ABE、△DBE、△DCE、△AEC的面积相等,S△BEC=S△ABC=3(cm2).S△BEF=S△BEC=×3=1.5(cm2).故选:B.5.解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故选:C.6.解:A、由∠A+∠B=∠C,可以推出∠C=90°,本选项不符合题意.B、由∠A=∠B=∠C,可以推出∠C=90°,本选项不符合题意.C、由∠A=2∠B=3∠C,推出∠A=()°,△ABC是钝角三角形,本选项符合题意.D、由∠A:∠B:∠C=1:3:4,可以推出∠C=90°,本选项不符合题意,故选:C.7.解:A、五边形有5条边,5个内角,5个顶点,故不符合题意;B、四边形有2条对角线,故不符合题意;C、连接对角线,可以把多边形分成三角形,故不符合题意;D、正六边形每个内角等于120°,故符合题意;故选:D.8.解:∵BC=8,BF=11.5,∴CF=BF﹣BC=3.5,∵△ABC≌△DEF,BC=8,∴EF=BC=8,∴EC=EF﹣CF=8﹣3.5=4.5,故选:B.9.解:∵△ABC≌△ADE,∠B=30°,∠C=93°,∴∠D=∠B=30°,∠E=95°,∴∠EAD=180°﹣30°﹣95°=55°.故选:B.10.解:∵一个正多边形每个内角与它相邻外角的度数比为3:1,∴设这个外角是x°,则内角是3x°,根据题意得:x+3x=180,解得:x=45,360°÷45°=8(边),故选:C.11.解:如图所示,连接AD,设DE,AF交于点O,则∠AOD=∠EOF,∴∠E+∠F=∠OAD+∠ODA,又∵四边形ABCD中,∠DAB+∠B+∠C+∠ADC=360°,∴∠OAB+∠B+∠C+∠CDE+∠ODA+∠OAD=360°,即∠OAB+∠B+∠C+∠CDE+∠E+∠F=360°,故选:B.12.解:∵∠B+∠BAM=∠M+∠BCM,∴∠BAM﹣∠BCM=∠M﹣∠B,同理,∠MAD﹣∠MCD=∠D﹣∠M,∵AM、CM分别平分∠BAD和∠BCD,∴∠BAM=∠MAD,∠BCM=∠MCD,∴∠M﹣∠B=∠D﹣∠M,∴∠M=(∠B+∠D)=(34°+42°)=38°.故选:B.二、填空题(共12分)13.解:若腰长为2,底边长为5,则2+2<5,不能组成三角形,舍去;若腰长为5,底边长为2,能组成三角形,则它的周长为:5+5+2=12.故其周长为12.故答案为:12.14.解:①正三角形的每个内角是60°,正方形的每个内角是90°,∵3×60°+2×90°=360°,能铺满;②正三角形的每个内角是60°,正六边形每个内角120度,1×120+4×60=360度,所以能铺满;③正方形每个内角90度,正八边形每个内角135度,135×2+90=360度,能铺满;④正三角形的每个内角是60°,正八边形每个内角135度,135×2+60≠360度,所以不能铺满.故答案为:①②③.15.解:在△ACD和△BCE中,,∴△ACD≌△BCE(SSS),∴∠A=∠B,∠ACD=∠BCE,∵∠ACE=55°,∠BCD=155°,∴∠ACD+∠BCE=∠BCD+∠ACE=155°+55°=210°,∴∠BCE=∠ACD=105°,∴∠ACB=∠BCE﹣∠ACE=105°﹣55°=50°,∵∠A=∠B,∠1=∠2,∴∠APB=∠ACB=50°,故答案为50°.16.解:延长BA,CE交于点F,∵∠ABD+∠ADB=90°,∠CDE+∠ACF=90°,∴∠ABD=∠ACF,∵AB=AC,∵CE⊥BD,∴∠BEC=90°,∵∠BAC=90°,∴∠BAC=∠BEC,在△ABD和△ACF中,,∴△ABD≌△ACF(ASA),∴BD=CF,∵BD平分∠ABC,∴∠ABE=∠CBE,∵CE⊥BD,∴∠BEF=∠BEC=90°在△BEF和△BEC中,,∴△BEF≌△BEC(ASA),∴EF=EC,∴EC=CF,∴CE=BD,∵BD=8,∴CE=4故答案为:4.三、解答题(共72分)17.解:设边数为n,根据题意,得(n﹣2)×180°=360°+900°,所以(n﹣2)×180°=1260°,所以n﹣2=7,所以n=9.答:这个多边形的边数是9.18.解:∵∠B=50°,∠C=70°,∴∠BAC=180°﹣∠B﹣∠C=60°.∵AE平分∠BAC,∴,∵AD⊥BC,∴∠ADC=90°,∴∠CAD=90°﹣∠C=20°,∴∠EAD=∠CAE﹣∠CAD=30°﹣20°=10°.19.解:AC与DF的关系是平行且相等.理由如下:∵BC∥EF,∴∠ABC=∠E.∵AD=BE,∴AB=DE.在△ABC与△DEF中,,∴△ABC≌△DEF(SAS),∴AC=DF,∠A=∠EDF,∴AC∥DF.故AC∥DF且AC=DF.20.证明:∵AB=CD,AD=BC,∴四边形ABCD是平行四边形,∴AD∥BC,∴∠1=∠2.21.(1)证明:∵AB∥CD,∠B=90°,∴∠ECD=180°﹣∠B=90°,∴∠ECD=∠B,∵BC=2AB,E是BC的中点,∴AB=EC,在△ABC和△ECD中,,∴△ABC≌△ECD(SAS);(2)解:AC⊥DE,理由如下:由(1)可知,△ABC≌△ECD,∴∠ACB=∠EDC,∵∠ACB+∠ACD=90°,∴∠EDC+∠ACD=90°,∴∠DFC=90°,即AC⊥DE.22.解:∵EF平分∠AED,CF平分∠BCD,∴,.∵AE∥BC,∴∠A+∠B=180°.∵五边形的内角和为(5﹣2)×180°=540°,∠D=90°,∴∠AED+∠BCD=540°﹣(∠A+∠B+∠D)=540°﹣(180°+90°)=270°,即,∵四边形EFCD内角和为360°,∴∠EFC=360°﹣(∠D+∠DEF+∠DCF)=360°﹣(90°+135°)=135°.23.解:(1)∵CD平分∠ACG,BD平分∠ABC,∴∠DCG=∠ACG,∠DBC=∠ABC,∵∠ACG=∠A+∠ABC,∴2∠DCG=∠ACF=∠A+∠ABC=∠A+2∠DBC,∵∠DCG=∠D+∠DBC,∴2∠DCG=2∠D+2∠DBC,∴∠A+2∠DBC=2∠D+2∠DBC,∴∠D=∠A=35°;(2)∵BD平分∠ABC,BE平分∠CBF,∴∠DBC=ABC,∠CBE=CBF,∴∠DBC+∠CBE=(∠ABC+∠CBF)=90°,∴∠DBE=90°,∵∠D=A,∵∠A=α,∴∠D=,∵∠DBE=90°,∴∠E=90°﹣;(3)如图,∵BD平分∠ABC,CD平分∠ACG,∴AD平分∠MAC,∠ABD=∠ABC,∴∠DAM=∠MAC,∵∠DAM=∠ABD+∠ADB,∠MAC=∠ABC+∠ACB,∠ACB=β,∴∠ADB=∠ACB=β.故答案为β.24.解:(1)∵(a﹣2)2+|4﹣b|=0,∴a﹣2=0,4﹣b=0,∴a=2,b=4,∴A(0,2),B(4,0);(2)结论:AC=AM,AC⊥AM.理由如下:∵A(0,2),B(4,0)D(0,﹣6),∴OA=2,OD=6,OB=4,∵AD=OA+OD=8,BC=2OB=8,∴AD=BC,在△CAB与△AMD中,,∴△CAB≌△AMD(SAS),∴AC=AM,∠ACO=∠MAD,∵∠ACO+∠CAO=90°,∴∠MAD+∠CAO=∠MAC=90°,∴AC=AM,AC⊥AM;(3)是定值,定值为4.理由如下:由(2)知,AM=AC=AB=DM,∴∠ADM=∠DAM,∵∠DAM=∠P AG,∴∠P AG=∠ADM过P作PG⊥y轴于G,在△P AG与△NDH中,,∴△P AG≌△NDH(AAS),∴PG=HN,AG=HD,∴AD=GH=8,在△PQG与△NQH中,,∴△PQG≌△NHQ(AAS),∴QH=QG=GH=4,。
2024-2025学年八年级数学上学期第一次月考卷01(考试时间:120分钟试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:人教版八年级上册第十一章~第十二章。
5.难度系数:0.85。
一、选择题(本题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.下列长度的三条线段能组成三角形的是()A.6,2,3B.3,3,3C.4,3,8D.4,3,72.如图,生活中都把自行车的几根梁做成三角形的支架,这是利用三角形的()A.全等形B.稳定性C.灵活性D.对称性3.如图,CM是△ABC的中线,AB=10cm,则BM的长为()A.7cm B.6cm C.5cm D.4cm4.画△AAAAAA的AAAA边上的高AAAA,下列画法中正确的是()A.B.C.D.5.一个多边形的内角和等于540°,则它的边数为()A.4 B.5 C.6 D.86.请仔细观察用直尺和圆规作一个角∠AA′OO′AA′等于已知角∠AAOOAA的示意图,请你根据所学的图形的全等这一章的知识,说明画出∠AA′OO′AA′=∠AAOOAA的依据是()A.SAS B.ASA C.AAS D.SSS7.如图,△ABE≌△ACF,若AB=5,AE=2,则EC的长度是()A.2 B.3 C.4 D.58.如图,若要用“HL”证明Rt△AAAAAA≌Rt△AAAAAA,则还需补充条件()A.∠AAAAAA=∠AAAAAA B.∠AA=∠AA C.AAAA=AAAA D.AAAA=AAAA9.如图,在Rt△AAAAAA中,∠AA=90°,∠AAAAAA的平分线AAAA交AAAA于点D,AAAA=3,则点D到AAAA的距离是()A.6 B.2 C.3 D.410.如图,已知△AAAAAA为直角三角形,∠AA=90°,若沿图中虚线剪去∠AA,则∠1+∠2的度数为()A.210°B.250°C.270°D.300°11.某同学把一块三角形的玻璃打碎了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的方法是()A.带①去B.带②去C.带③去D.带①②③去12.如图1,∠AADDDD=20°,将长方形纸片AAAAAAAA沿直线DDDD折叠成图2,再沿折痕为AADD折叠成图3,则∠AADDDD的度数为()A.100°B.120°C.140°D.160°二、填空题(本题共6小题,每小题2分,共12分.)13.在Rt△ABC中,∠C=90°,∠A=40°,则∠B= .14.如图,AAAA是△AAAAAA的高,∠AAAAAA=90°.若∠AA=35°,则∠AAAAAA的度数是.15.如图所示的两个三角形全等,则∠1的度数是.16.如果一个正多边形的一个外角是60°,那么这个正多边形的边数是.17.如图,BP 是△ABC 中∠ABC 的平分线,CP 是∠ACB 的外角的平分线,如果∠ABP=15°,∠ACP=50°,则∠P= °.18.如图,在射线OOAA,OOAA上分别截取OOAA1=OOAA1,连接AA1AA1,在AA1AA1、AA1AA上分别截取AA1AA2=AA1AA2,连接AA2AA2,…按此规律作下去,若∠AA1AA1OO=αα,则∠AA2023AA2023OO=.三、解答题(本题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤.)19.(6分)计算:|−2|−6×�−12�+(−4)2+8.20.(6分)解不等式组�2xx+1>xx−123xx−1≤5,并写出它的所有正整数解.21.(8分)如图,AC和BD相交于点0,OA=OC,OB=OD,求证:DC//AB.22.(8分)如图△AAAAAA中,∠AA=40°,∠AAAAAA=∠AA.(1)作∠AAAAAA的平分线,交AAAA于点AA(用直尺和圆规按照要求作图,不写作法,保留作图痕迹);(2)在(1)的条件下,求∠AAAAAA的大小.23.(10分)某校学生处为了了解全校1200名学生每天在上学路上所用的时间,随机调查了30名学生,下面是某一天这30名学生上学所用时间(单位:分钟):20,20,30,15,20,25,5,15,20,10,15,35,45,10,20,25,30,20,15,20,20,10,20,5,15,20,20,20,5,15.通过整理和分析数据,得到如下不完全的统计图.根据所给信息,解答下列问题:(1)补全条形统计图;(2)这30名学生上学所用时间的中位数为______ 分钟,众数为______ 分钟;(3)若随机问这30名同学中其中一名学生的时间,最有可能得到的回答是______ 分钟;(4)20分钟及以下的人数.24.(10分)中央大街工艺品店销售冰墩墩徽章和冰墩墩摆件,若购买4个冰墩墩徽章和2个冰墩墩摆件需要130元,购买3个冰墩墩徽章和5个冰墩墩摆件需要220元.(1)求每个冰墩墩徽章和每个冰墩墩摆件各需要多少钱?(2)若某旅游团计划买冰墩墩徽章和冰墩墩摆件共50个,所用钱数不超过1150元,则该旅游团至少买多少个冰墩墩徽章?25.(12分)如图,已知△AAAAAA中,AAAA=AAAA=20cm,AAAA=16cm,点AA为AAAA的中点.(1)如果点P在线段AAAA上以6cm/s的速度由A点向B点运动,同时,点Q在线段AAAA上由点B向C点运动.①若点Q的运动速度与点P的运动速度相等,经过1s后,△AAAAAA与△AABBAA是否全等?说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△AAAAAA与△AABBAA全等?(2)若点Q以②中的运动速度从点B出发,点P以原来的运动速度从点A同时出发,都逆时针沿△AAAAAA三边运动,求经过多长时间点P与点Q第一次在△AAAAAA的哪条边上相遇?26.(12分)如图,在△AAAAAA中,∠AAAAAA=90°,AAAA=AAAA,点D为AAAA的中点.点E是直线AAAA上的一动点,连接AADD,作AADD⊥AADD交直线AAAA于点F.(1)如图1,若点E与点A重合时,请你直接写出线段AADD与AADD的数量关系;(2)如图2,若点E在线段AAAA上(不与A、B重合)时,请判断线段AADD与AADD的数量关系并说明理由;(3)若点E在AAAA的延长线上时,线段AADD与AADD的数量关系是否仍然满足上面(2)中的结论?请利用图3画图并说明理由.2024-2025学年八年级数学上学期第一次月考卷01(考试时间:120分钟试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
人教版八年级上册数学第十一章、十二章综合测试卷考试时间:100分钟满分120分一、选择题(每题3分,共36分)1.已知AB=1.5,AC=4.5,若BC的长为整数,则BC的长为()A.3 B.6 C.3或6 D.4或52.在下列各图的△ABC中,正确画出AC边上的高的图形是()3.如图,CE是△ABC的外角∠ACD的平分线,若∠B=35°,∠ACE=60°,则∠A=()A.35° B.95° C.85° D.75°4.如图,在△ABC中,∠ABC=60°,∠ACB=80°,BP平分∠ABC,CP平分∠ACB,则∠BPC的大小是()A.100° B.110° C.115° D.120°5.如图,工人师傅砌门时,常用木条EF固定长方形门框ABCD,使其不变形,这样做的根据是()A.两点之间,线段最短 B.直角三角形的两个锐角互余C.三角形三个内角和等于180° D.三角形具有稳定性6.若从一个多边形的一个顶点出发,最多可以引10条对角线,则它是( )A.十三边形B.十二边形C.十一边形D.十边形7.若一个多边形的各内角都相等,则一个内角与一个外角的度数之比不可能是( )A.2:1B.1:1C.5:2D.5:48.下列命题中,真命题的个数是()①全等三角形的周长相等②全等三角形的对应角相等③全等三角形的面积相等④面积相等的两个三角形全等A.4 B.3 C.2 D.19.如图,△ABC≌△AEF,若∠ABC和∠AEF是对应角,则∠EAC等于()A.∠ACB B.∠CAF C.∠BAF D.∠BAC10.如图,BE⊥AC于点D,且AD=CD,BD=ED,则∠ABC=54°,则∠E=( ) A.25° B.27° C.30° D.45°11.如图,在△ABC中,∠ABC=45°,AC=5,F是高AD和BE的交点,则BF的长是()A、7B、6C、5D、412.如图,中,,,AD是的平分线,于E,,,则AC的长为( )A. 2mB.C. aD.二、填空题(每题3分,共18分)1已知三角形的两边长分别为3和6,那么第三边长a的取值范围是2,如图,已知在△ABC中,∠B与∠C的平分线交于点P.当∠A=70°时,则∠BPC的度数为3.三角形的两边长分别为8和6,第三边长是一元一次不等式的正整数解,则三角形的第三边长是 __________。
人教版八年级数学上册第十一章综合检测卷一、选择题(每题3分,共30分)1.【教材P8习题T1变式】如图,图中三角形的个数共有()A.3个B.4个C.5个D.6个(第1题)(第3题)(第5题)2.【教材P4练习T2变式】下列长度的三条线段,能组成三角形的是() A.2 cm,3 cm,4 cm B.2 cm,3 cm,5 cmC.2 cm,5 cm,10 cm D.8 cm,4 cm,4 cm3.【教材P8习题T3变式】已知,图中的虚线部分是小玉作的辅助线,则下列结论正确的是()A.CD是边AB上的高B.CD是边AC上的高C.BD是边CB上的高D.BD是边AC上的高4.在△ABC中,能说明△ABC是直角三角形的是()A.∠A∶∠B∶∠C=1∶2∶2 B.∠A∶∠B∶∠C=3∶4∶5C.∠A∶∠B∶∠C=1∶2∶3 D.∠A∶∠B∶∠C=2∶3∶4 5.【教材P16习题T5变式】如图,直线AB∥CD,∠B=50°,∠D=20°,则∠E =()A.20°B.30°C.50°D.70°6.【2021·毕节】将一副三角板按如图所示的位置摆放在直尺上,则∠1的度数为()A.70°B.75°C.80°D.85°(第6题)(第7题)(第9题)(第10题)7.如图,在△ABC中,∠C=90°,D,E是AC上两点,且AE=DE,BD平分∠EBC.下列说法不正确...的是()A.BE是△ABD的中线B.BD是△BCE的角平分线C.∠1=∠2=∠3 D.BC是△ABE的高8.【教材P24练习T3变式】一个多边形的内角和比其外角和大180°,则这个多边形的边数是()A.4 B.5 C.6 D.79.如图,在△ABC中,∠C=75°,若沿图中虚线截去∠C,则∠1+∠2=() A.260°B.280°C.255°D.245°10.【2021·扬州】如图,点A,B,C,D,E在同一平面内,连接AB,BC,CD,DE,EA,若∠BCD=100°,则∠A+∠B+∠D+∠E=()A.220°B.240°C.260°D.280°二、填空题(每题3分,共24分)11.人站在晃动的公交车上,若分开两腿站立,还需伸出一只手抓住栏杆才能站稳,这是利用了________________________.12.六边形的外角和的度数是________.13.已知三角形三边长分别为1,x,5,则整数x=________.14.若一个多边形截去一个角后,变成六边形,则原来多边形的边数可能是________.15.如图,△ABC中,∠1=∠2,∠BAC=65°,则∠APB=________.(第15题)(第17题) (第18题)16.【教材P28复习题T4变式】一个多边形从一个顶点出发可以画9条对角线,则这个多边形的内角和为________.17.如图,在△ABC中,AD是BC边上的中线,BE是△ABD中AD边上的中线,若△ABC的面积是24,则△ABE的面积是________.18.【教材P17习题T9拓展】已知△ABC,有下列说法:(1)如图①,若P 是∠ABC 和∠ACB 的平分线的交点,则∠P =90°+12∠A ; (2)如图②,若P 是∠ABC 和外角∠ACE 的平分线的交点,则∠P =90°-∠A ; (3)如图③,若P 是外角∠CBF 和∠BCE 的平分线的交点,则∠P =90°-12∠A . 其中正确的有______个.三、解答题(23题12分,24题14分,其余每题10分,共66分) 19.【2021·海淀区校级期中】求出下列图形中x 的值.20.【教材P 12例2变式】如图,一艘轮船在A 处看见巡逻艇C 在其北偏东62°的方向上,此时一艘客船在B 处看见巡逻艇C 在其北偏东13°的方向上.试求此时在巡逻艇上看这两艘船的视角∠ACB 的度数.21.如图,已知AD 是△ABC 的角平分线,CE 是△ABC 的高,AD ,CE 相交于点P ,∠BAC =66°,∠BCE =40°.求∠ADC 和∠APC 的度数.22.【教材P25习题T10变式】如图,六边形ABCDEF的内角都相等,CF∥AB.(1)求∠FCD的度数;(2)求证:AF∥CD.23.【2021·黄冈期中】已知,在△ABC中.(1)若∠B=∠A+15°,∠C=∠B+15°,求△ABC的各内角度数;(2)若三边长分别为a,b,c.试化简|a+b-c|-|b-c-a|.24.如图,在△ABC中,∠A=30°,一块直角三角尺XYZ放置在△ABC上,恰好三角尺XYZ的两条直角边XY,XZ分别经过点B,C.(1)∠ABC+∠ACB=________,∠XBC+∠XCB=________,∠ABX+∠ACX=________.(2)若改变直角三角尺XYZ的位置,但三角尺XYZ的两条直角边XY,XZ仍然分别经过点B,C,且直角顶点X始终在△ABC的内部,则∠ABX+∠ACX的大小是否变化?请说明理由.答案一、1.C 2.A 3.A 4.C 5.B 6.B7.C8.B9.C10.D 点方法:求复杂几何图形中相关角的度数和,可运用转化思想,将这几个角转化到一个多边形内,然后利用多边形内角和公式求解.二、11.三角形具有稳定性12.360°13.514.5,6,715.115°16.1 800°17.618.2三、19.解:(1)x=180-90-50=40;(2)x+x+40=180,解得x=70;(3)x+70=x+x+10,解得x=60.20.解:由题意可得AD∥BF,∴∠BEA=∠DAC=62°.∵∠BEA是△CBE的一个外角,∴∠BEA=∠ACB+∠CBE.∴∠ACB=∠BEA-∠CBE=62°-13°=49°.答:此时在巡逻艇上看这两艘船的视角∠ACB的度数为49°.21.解:∵CE是△ABC的高,∴∠AEC=90°.∴∠ACE=180°-∠BAC-∠AEC=24°.∵∠BCE=40°,∴∠ACB=40°+24°=64°.∵AD是△ABC的角平分线,∴∠DAC=12∠BAC=33°.∴∠ADC=180°-∠DAC-∠ACB=83°.∴∠APC=∠ADC+∠BCE=83°+40°=123°.22.(1)解:∵六边形ABCDEF的内角都相等,内角和为(6-2)×180°=720°,∴∠B=∠A=∠BCD=720°÷6=120°.∵CF∥AB,∴∠B+∠BCF=180°.∴∠BCF=60°.∴∠FCD=∠BCD-∠BCF=60°.(2)证明:∵CF ∥AB ,∴∠A +∠AFC =180°. ∴∠AFC =180°-120°=60°. ∴∠AFC =∠FCD .∴AF ∥CD .23. 点方法:化简涉及三角形三边的绝对值时,要先运用三角形的三边关系判断绝对值符号内的式子的正负,然后利用| a | =⎩⎨⎧a (a ≥0),-a (a <0)去掉绝对值符号,再合并化简.解:(1)设∠A =x ,则∠B =x +15°,∠C =x +30°. ∴x +x +15°+x +30°=180°, ∴x =45°.∴∠A =45°,∠B =60°,∠C =75°. (2)∵△ABC 的三边长分别为a ,b ,c , ∴a +b -c >0,b -c -a <0. ∴|a +b -c |-|b -c -a | =(a +b -c )-(-b +c +a ) =a +b -c +b -c -a =2b -2c .24.解:(1)150°;90°;60°(2)∠ABX +∠ACX 的大小不变.理由:在△ABC 中,∠A +∠ABC +∠ACB =180°,∠A =30°, ∴∠ABC +∠ACB =180°-30°=150°. ∵∠YXZ =90°,∴∠XBC +∠XCB =90°.∴∠ABX +∠ACX =(∠ABC -∠XBC )+(∠ACB -∠XCB )=(∠ABC +∠ACB )-(∠XBC +∠XCB )=150°-90°=60°. ∴∠ABX +∠ACX 的大小不变.。
ABC DEABCDEFO 八年级(上)数学综合测试卷一问卷一、选择题(每小题3分,共30分)。
一、下列图案是轴对称图形有( )A 、1个B 、2个C 、3个D 、4个二、点(3,-2)关于x 轴的对称点是 ( ) (A)(-3,-2) (B)(3,2) (C)(-3,2) (D)(3,-2) 3、如图,把一个正方形三次对折后沿虚线剪下,则所得图形大致是( )4、和三角形三个极点的距离相等的点是( )A .三条角平分线的交点B .三边中线的交点C .三边上高所在直线的交点D .三边的垂直平分线的交点五、在△ABC 中,∠A 和∠B A.∠A=50°,∠B=70° B.∠A=70C.∠A=30°,∠B=90°D.∠A=80六、如图,AB ∥CD ,AD ∥BC ,OE=OF ,则图中全等三角形的组数是( )A. 3B. 4C. 5D. 67、如图所示,在△ABC 中,AB=AC ,BD 是角平分线,若∠BDC=69°,则∠A 等于( )°°°°八、如图在△ABD 和△ACE 都是等边三角形,则ΔADC ≌ΔABE 的依照是( )A. SSSB. SASC. ASAD. AAS九、如图,△ABC 中,∠C=90°,AM 平分∠CAB ,CM=20cm ,那么M 到AB 的距离是( )A 、10cmB 、15cmC 、20cmD 、25cm10、下列判定直角三角形全等的方式,不正确的是( )A 、两条直角边对应相等。
B 、斜边和一锐角对应相等。
C 、斜边和一条直角边对应相等。
D 、两锐角相等。
二、填空题(每小题3分,共18分)。
1一、已知,如图:∠ABC =∠DEF ,AB=DE ,要说明ΔABC ≌ΔDEF 还要添加的条件为______________。
(填一种即可)图2AB FDE C(第11题图) (第12题图) (第20题图)1二、如图 , AC ⊥BC 于C , DE ⊥AC 于E , AD ⊥AB 于A , BC=AE .若AB=5 , 则AD=___________。
A
E
八年级(上)数学综合测试卷一
问卷
一、选择题(每小题3分,共30分)。
1、下列图案是轴对称图形有( ) A 、1个 B 、2个 C 、3个 D 、4个
2、点(3,-2)关于x 轴的对称点是 ( ) (A)(-3,-2) (B)(3,2) (C)(-3,2) (D)(3,-2)
3、如图,把一个正方形三次对折后沿虚线剪下,则所
得图形大致是( )
4、和三角形三个顶点的距离相等的点是( )
A .三条角平分线的交点
B .三边中线的交点
C .三边上高所在直线的交点
D .三边的垂直平分线的交点
5、在△ABC 中,∠A 和∠B A.∠A=50°,∠B=70° B.∠A=70C.∠A=30°,∠B=90°
D.∠A=80
6、如图,AB ∥CD ,AD ∥BC ,OE=OF ,A. 3 B. 4 C. 5 D. 6
7、如图所示,在△ABC 中,AB=AC ,BD 等于( )
A.32°
B.36°
C.48°
8、如图在△ABD 和△ACE 都是等边三角形,则Δ
9、如图,△ABC 中,∠C=90°,AM 平分∠CAB ,CM=20cm ,那么M 到AB 的距离是( )
A 、10cm
B 、15cm
C 、20cm
D 、25cm
10、下列判定直角三角形全等的方法,不正确的是( )
A 、两条直角边对应相等。
B 、斜边和一锐角对应相等。
C 、斜边和一条直角边对应相等。
D 、两锐角相等。
二、填空题(每小题3分,共18分)。
11、已知,如图:∠ABC =∠DEF ,AB=DE ,要说明ΔABC ≌ΔDEF 还要添加的条件为______________。
(填一种即可)
图2
B F
E C
(第11题图) (第12题图)
20题图)
12、如图 , AC ⊥BC 于C , DE ⊥AC 于E , AD ⊥AB 于A , BC=AE .若AB=5 , 则AD=___________。
13、等腰三角形的一个角是120°,则另外两个角分别为_____________________________. 14、小明沿倾斜角为30°的山坡从山脚步行到山顶,共走了200m ,则山的高度是 。
15、已知点M (x,-3)与点N (2,y )关于x 轴对称,则x+y= 。
16、如图,四边形ABCD 沿直线L 对折后互相重合,如果AD ∥BC,有下列结论:①AB ∥CD ②AB=CD ③AB ⊥BC ④AO=OC 其中正确的结论是_____ 。
(把你认为正确的结论的序号都填上)
三、解答题(共102分)。
17、如图,写出A 、B 、C 关于x 轴对称的点坐标,并作出与△ABC 关于x 轴对称的图形。
(10分)
A
B
C
D
l
O
18、如图,A 、D 、F 、B 在同一直线上,AD=BF,AE=BC, 且 AE ∥BC 。
求证:(1)EF=CD ;(2) EF ∥CD.(10分)
19、(实际应用题)如图所示,两根旗杆间相距12m ,某人从B 点沿BA 走向A ,一定时间后他到达点M ,此时他仰望旗杆的顶点C 和D ,两次视线的夹角为90°,且CM=DM ,已知旗杆AC 的高为3m ,该人的运动速度为1m/s ,求这个人运动了多长时间?(10分)
20、已知:如图,AB =AE ,BC =ED ,AF 是CD 的垂直平分线, 求证:∠B =∠E .(10分)
21、如图,给出五个等量关系:①AD BC = ②AC BD = ③CE DE = ④D C ∠=∠ ⑤DAB CBA ∠=∠.请你以其中两个为条件,另三个中的一个为结论,推出一个正确的结论(只需写出一种情况),并加以证明。
(10分) 已知:
求证:
证明:
22、如图所示,在△ABC 中,D 在BC 上,若AD=BD ,AB=AC=CD ,求∠BAC 的度数.(12分)
B C
F
D A
E
B
23、已知BD、CE是△ABC的高,点P在BD的延长线上,BP=AC,点Q在CE上,CQ=AB。
判断线段AP和AQ的关系,并证明.
24、如图所示,在△ABC中,∠ABC=2∠C,AD为BC边上的高,延长AB到E点,使BE=BD,过点D,E引直线交AC于点F,则有AF=FC,为什么?
25、如图所示,在△ABC中,AB=AC,在AB上取一点E,在AC延长线上取一点F,使BE=CF,EF交BC于G.求证EG=FG.。