丰富的图形世界重点知识复习
- 格式:doc
- 大小:177.50 KB
- 文档页数:7
一、知识梳理一.几种常见的几何体1.柱体①棱柱体:〔如图(1)(2)〕,图中上下两个面称棱柱的底面,周围的面称棱柱的侧面,面与面的交线是棱柱的棱.其中侧面与侧面的交线是侧棱,棱与棱的交点是顶点.点拨:正方体和长方体是特殊的棱柱,它们都是四棱柱.正方体是特殊的长方体.②圆柱:图(3)中上下两个圆面是圆柱的底面,这两个底面是半径相同的圆,周围是圆柱的侧面.点拨:棱柱和圆柱统称柱体.2.锥体①圆锥:〔如图(4)〕图中的圆面是圆锥的一个底面,中间曲面是圆锥的侧面,圆锥只有一个顶点.②棱锥:〔如图(5)〕图中下面多边形面是棱锥的一个底面,其余各三角形面是棱锥的侧面.点拨:棱锥和圆锥统称锥体.3.台体①圆台:〔如图(6)〕图中上下两个大小不同的圆面是圆台的底面,中间曲面是圆台的侧面.②棱台:〔如图(7)〕图中上下两个大小不同的多边形是棱台的底面,其余四边形是棱台的侧面.4.球体:〔如图(8)〕图中半圆绕其直径旋转而成的几何体,球体表面是曲面.二.几何体的展开图1. 圆柱、圆锥、正三棱锥、正四棱锥、正五棱锥、正三棱柱的展开图:2. 正方体的平面展开图(有11种):三.用平面截一个几何体出现的截面形状1.用一个平面去截正方体,可能出现下面几种情况:三角形正方形长方形梯形五边形六边形点拨:用平面去截几何体,所得的截面就是这个平面与几何体每个面相交的线所围成的图形.正方体只有六个面,所以截面最多有六条边,即截面边数最多的图形是六边形.2. 几种常见的几何体的截面:点拨:用平面去截圆柱体,可以与圆柱的三个面(两个底面,一个侧面)同时相交,由于圆柱侧面为曲面,相交得到是曲线,无法截出三角形.四.识别物体的三视图1.主视图、左视图、俯视图的定义从不同方向观察同一物体,从正面看图叫主视图,从左面看图叫左视图,从上面看图叫做俯视图.2.几种几何体的三视图(1)正方体:三视图都是正方形.(2)球体:三视图都是圆.(3)圆柱体:(4)圆锥体:点拨:圆锥的主视图、左视图都是三角形,而俯视图的图中有一个点表示圆锥的顶点,因为从上往下看圆锥时先看到圆锥的顶点,再看到底面的圆.3.用若干个小正方体搭成几何体的三视图如图:从正面看2列每列1层;从左面看2列每列1层;从上面看2列左列2层右列1层.则三视图是:点拨:①主视图与俯视图列数相同,俯视图中每列的方框内的最大数字即为主视图本列的层数.②左视图的列数与俯视图的行数相同,俯视图每一横行的方框内的最大数字即为左视图中的列的层数.五.生活中的平面图形1.多边形的定义三角形、四边形、五边形等都是多边形,它们都是由一些不在同一条直线上的线段依次首尾相连组成的封闭图形.边长都相等的多边形叫正多边形.2.多边形的分割设一个多边形的边数为n(n≥3) ,从这个n边形的一个顶点出发,分别连接这个顶点与其余各顶点,可以得到(n-3)条线段,这些线段又把这个n边形分割成(n-2)个三角形.3.扇形与弧的定义及区别(1)弧:圆上两点之间部分叫弧.(2)扇形:由一条弧和经过这条弧的端点的两条半径所组成的图形叫扇形.(3)扇形与弧的区别:弧是一段曲线,而扇形是一个面.重点:。
3 侧面是曲面底面是圆面圆柱,:⎩⎨⎧侧面是正方形或长方形底面是多边形棱体柱体,:侧面是曲面底面是圆面圆锥,:⎩⎨⎧侧面都是三角形底面是多边形棱锥锥体,:丰富的图形世界知识点汇总
1.
2.
3. 球体:由球面围成的(球面是曲面)
4. 几何图形是由点、线、面构成的。
①几何的表面有平面和曲面;
②面与面相交得到线;
③线与线相交得到点。
5. 棱:在棱柱中,任何相邻两个面的交线都叫做棱.。
6. 侧棱:相邻两个侧面的交线叫做侧棱..
,所有侧棱长都相等。
7. 棱柱的上、下底面的形状相同,侧面的形状都是长方形。
8. 根据底面图形的边数,人们将棱柱分为三棱柱、四棱柱、五棱柱、六棱柱……它们底面
图形的形状分别为三边形、四边形、五边形、六边形……
9. 长方体和正方体都是四棱柱。
10. 圆柱的表面展开图是由两个相同的圆形和一个长方形连成。
11. 圆锥的表面展开图是由一个圆形和一个扇形连成。
12. 设一个多边形的边数为n(n≥3,且n 为整数),从一个顶点出发的对角线有(n-3)条;可以
把n 边形成(n-2)个三角形;这个n 边形共有2
)3(-n n 条对角线。
13. 圆上两点之间的部分叫做弧.
,弧是一条曲线。
14. 扇形,由一条弧和经过这条弧的端点的两条半径所组成的图形。
15. 凸多边形和凹多边形都属于多边形。
有弧或不封闭图形都不是多边形。
北师大版七年级上册 第一章 丰富的图形世界一、几何体的分类:⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧⇒⎪⎩⎪⎨⎧⇒⎩⎨⎧椭球圆球球体锥三棱锥、四棱锥、五棱棱锥圆锥椎体柱三棱柱、四棱柱、五棱斜棱柱直棱柱棱柱圆柱柱体几何体 1.n 棱柱有两个底面,n 个侧面,共(n+2)个面;3n 条棱,n 条侧棱;2n 个顶点,底面是n 边形且大小形状完全相同.2.n 棱椎有一个底面,n 个侧面,共(n+1)个面;2n 条棱,n 条侧棱;( n+1)个顶点,底面是n 边形.3.棱柱的侧棱长均相等,直棱柱的侧面是长方形,斜棱柱的侧面是平行四边形,棱锥的侧面是三角形.4. 点、线、面的关系:点动成线、线动成面、面动成体。
面与面相交得到线,线与线相交得到点.二、展开与折叠1、正方体的展开图形 1-4-1型 共6种2-3-1型 共3种2-2型 1种 3-3型 1种注意:常见的易错图形一线超四型:田凹型:2、圆柱的平面展开图3、三棱锥柱的平面展开图4、圆锥的平面展开图5、三棱柱锥的平面展开图6、长方体的平面展开图7、五棱柱的平面展开图8、四棱锥的平面展开图三、图形的切割1、正方体的切割注意:可能出现的:锐角三角型、等边三角形、等腰三角形,正方形、矩形、非矩形的平行四边形、非等腰梯形、等腰梯形、五边形、六边形、正六边形.不可能出现:钝角三角形、直角三角形、直角梯形、正五边形、七边形或更多边形2、圆柱的切割3、圆锥的切割四、三视图1、三视图主视图:从正面看到的图形.左视图:从左面看到的图形.俯视图:从上面看到的图形.原则:1.位置:主视图左视图俯视图2.大小:长对正,高平齐,宽相等.3.虚实:在画图时,看得见部分的轮廓通常画成实现,看不见部分的轮廓线通常画成虚线.2、常见几何体的三视图:圆柱主视图左视图俯视图圆锥主视图左视图俯视图正方体主视图左视图俯视图三棱柱主视图左视图俯视图四棱柱主视图左视图俯视图球体主视图左视图俯视图3、小立方块搭成几何体的三视图第一章丰富的图形世界经典练习一、选择题1.下列说法中,正确的个数是().①柱体的两个底面一样大;②圆柱、圆锥的底面都是圆;③棱柱的底面是四边形;④长方体一定是柱体;⑤棱柱的侧面一定是长方形.(A)2个(B)3个(C)4个(D)5个2. 下面几何体截面一定是圆的是()( A)圆柱 (B) 圆锥(C)球 (D) 圆台3.如图绕虚线旋转得到的几何体是().4. 某物体的三视图是如图所示的三个图形,那么该物体的形状是()(A)长方体( B)圆锥体(C)立方体(D)圆柱体(D)(B)(C)(A)5.如图,其主视图是( )6.如图,是一个几何体的主视图、左视图和俯视图,则这个几何体是()7. ( )(A ) (B ) (C ) (D ) 8.如图是由一些相同的小正方体构成的立体图形的三种视图:构成这个立体图形的小正方体的个数是( ). A .5 B . 6 C .7 D .89.下面每个图形都是由6个全等的正方形组成的,其中是正方体的展开图的是( )A B C D10.如图,是一个正方体纸盒展开图,按虚线折成正方体后,若使相对面上的两数互为相反数,则A 、B 、C 表示的数依次是( )(A )235、、π-- (B)235、、π-(C )π、、235- (D)235-、、π二、填空题11.正方体与长方体的相同点是_________________,不同点是_______________。
《丰富的图形世界》知识梳理与复习(第一章丰富的图形世界)知识要点一:生活中的立体图形1、下列实物中外形类似于棱柱的有()①水桶②一堆谷物③螺母④鹅卵石⑤砖头⑥电视机包装箱⑦水管A、2个 B 、3个C、4个D、5个2、下列图形中有14条棱的是()3、在下面的几何体中:①长方体;②圆柱;③球;④五棱柱;⑤圆锥;⑥正方体;可以看成有两个底面的几何体是()A、①②④⑥B、②③④C、②④⑤⑥D、①②③⑥4、写出下列各立体图形的名称5、观察下图中的棱柱和圆柱;回答下列问题(1)该棱柱和圆柱各是由几个面围成的?它们都是平的吗?(2)该棱柱有几个顶点?经过每个顶点有几条棱?6、将长和宽分别为3cm 和2cm 的长方形分别绕长、宽所在的直线旋转一周得到两个几何体,哪个几何体的体积大?(2V r h π=)知识要点二:展开与折叠7、下列说法中错误的是( )A 、棱柱的侧面数与侧棱数相同B 、棱柱的顶点数一定是偶数C 、棱柱的面数一定是奇数D 、棱柱的棱数一定是3的倍数8、下图中不可能围成正方体的有( )A 、1个B 、2个C 、3个D 、4个9、小红制作了一个对面图案均相同的正方体礼品盒(如图所示),则这个正方体礼品盒的平面展开图应该为( )10、一个正方体的展开图如图所示,如果这个正方体相对的面上标注的数值相等,那么x = ,y = 。
11、如图所示,是两个立体图形的展开图,请写出这两个立体图形的名称(1):(2):12、如图是一个多面体的展开图,每个面内都标注了字母,请根据要求回答问题:(1)如果面A在多面体的底部,哪一个面会在上面?(2)如果面F在前面,从左面看是面B,那么哪一面会在上面?(3)如果面D在后面,从右面看是面C,那么哪一面会在上面?知识要点三:截一个几何体13、用平面去截一个圆柱,截面的形状不可能是()A、三角形B、正方形C、长方形D、圆14、有下列几何体:①正方体;②长方体;③圆柱;④圆锥;⑤棱柱;⑥球这些几何体中截面可能是圆的有()A、2种B、3种C、4种D、5种15、正方体被一个平面所截,所得边数最多的多边形是A、四边形B、五边形C、六边形D、七边形16、写出下图中截面的形状17、如图所示,有一个正方体,棱长为5cm,如果在它的左上方截去一个长、宽、高分别为5cm,3cm,2cm的长方体,求它的表面积减少了百分之几?知识要点四:从三个方向看物体的形状18、下面四个几何体中,从左面看是四边形的几何体共有()A、1个B、2个C、3个D、4个19、如图所示是从三个方向看到的物体的形状图,对应的直观图是下列选项中的()20、如图所示,是一个几何体从三个方向看到的形状图,根据图中标注的数据可求得这个几何体的体积为()A、24πB、32πC、36πD、48π21、如图所示,把立方体的六个面分别涂上六种不同的颜色(红、黄、紫、蓝,白、绿),现将上述大小相同颜色分布完全一样的四个立方体拼成一个水平放置的长方体,那么立方体绿色面的对面颜色是()A、红色B、紫色C、白色D、蓝色21、如图是由几个立方块所搭成的几何体从上面看到的形状,则该几何体从正面看有列,从左面看有行。
七上数学第一章丰富的图形世界知识点归纳丰富的图形世界是数学中的一个重要分支,主要包括平面几何、立体
几何、图形变换等内容。
在七年级上册的数学教材中,对于图形世界的学
习主要涉及到以下几个知识点:
1.图形的命名和分类:学习如何命名和描述图形,包括点、线、线段、射线、角、多边形等,并了解几何图形的分类,如凸多边形、凹多边形、
等边三角形、等腰三角形、直角三角形等。
2.直线和射线的性质:学习直线和射线的定义及其性质,如直线的连
续性、方向性;射线的起点、方向和长度等。
3.角的性质:学习角的定义及其性质,包括角的度量、角的分类、角
的大小比较和角的平分线等。
4.三角形的性质:学习三角形的定义及其性质,包括三角形的三边关系、角的关系、三角形的分类和三角形的内切圆与外接圆等。
5.多边形的性质:学习多边形的定义及其性质,包括多边形的边数、
角数、对角线数以及各种多边形的特性,如正多边形、全等多边形、全等
三角形等。
6.平行线和平行四边形的性质:学习平行线和平行四边形的定义及其
性质,如平行线的判定条件、平行四边形的特性以及各种平行四边形的分类。
7.图形变换:学习图形的平移、旋转、翻转和对称等变换形式及其性质,了解图形变换前后的关系,如全等图形和相似图形等。
除了以上的知识点外,还可以通过练习题和实际问题来拓展对图形世
界的理解和应用,如解决面积、周长和体积等问题。
总之,丰富的图形世界知识点在七年级的数学教材中扮演着重要角色。
学生通过系统地学习这些知识,可以培养他们的观察能力、逻辑思维能力
和解决问题的能力,为他们将来的数学学习奠定坚实的基础。
丰富的图形世界专题复习【课标要点】1.通过观察现实生活中的物体,认识基本几何体及点、线、面.2.通过展开与折叠活动,认识棱柱的基本性质,能根据展开图想象和制作立体模型.3.通过展开与折叠、切与截、从不同方向看等数学实践活动,积累数学活动经验.4.能识别简单物体的三视图,会画立方体及其简单组合的三视图.5.通过平面图形与空间几何体相互转换的活动过程中,建立空间观念.6.认识常见几何体的基本特性,能对这些几何体进行正确的识别和简单的分类. 【知识网络】图1-1-2图1-1-3第1讲 几何体的三视图及常见几何体的侧面展开图【知识要点】1、了解直棱柱.圆柱.圆锥的侧面展开图,能根据展开图判断和制作立体模型.2、会画基本几何体的三视图,会判断简单物体的三视图,能根据三视图描述几何体或实物原型.3、重点:体会从不同方向看同一物体可能看到不同的结果,根据主视图、左视图、俯视图相象出实物图形.4、难点: 能画立方体及其简单组合的三视图.根据主视图、左视图、俯视图相象出实物图形.【典型例题】例1 棱长是1cm 的小立方体组成如图1-1-1所示的几何体,那么这个几何体的表面积是( )A. 36cm 2B . 33cm 2C. 30cm 2D. 27cm 2分析:考查学生观察想象能力,从6个方向观察都是6个边长为1cm 的正方形,所以表面积共计6×6 cm 2=36 cm2解: A例2 如图1-1-2是由相同的小正方体构成的几何体的三视图,这些相同的小正方体的个数是( )A .4个B .5个C .6个D .7个分析:在画三视图时,主俯列相等,从左向右看,画图取大数;左俯行相等,从上向下看,画图取大数.解:B图1-1-1图1-1-4图1-1-5图1-1-6例3 如图1-1-3平面图形中,是正方体的平面展开图形的是( ) 分析:主要考查学生的想象能力和动手操作能力. 解:C例4 如图1-1-4所示,直三棱柱的底面是等边三角形,在它的上底面上有一个半球形凹坑请你画出这个几何体的主视图.左视图和俯视图.分析:本题主要考查学生画简单组合体的三视图的能力,解答的思路是审题并观察几何体,明确这种较复杂的几何体是由哪些几何体组合而成的.它们是怎样组合的,联系三种视图的绘制要求画图.可以先画出主视图,再画其他两种视图.解:如图1-1-5:【知识运用】一、选择题1.下列图形中,不是正方体的展开图的是( ).2.如图1-1-6是正方体的一个表面展开图,展开前,2号面对面上的数字为( ) A.3 B.4 C.5 D.63.小明从正面观察图1-1-7所示的两个物体,看到的是( )主视左视俯视4.图1-1-8中几何体的主视图是图1-1-9中的()二、填空题5.根据下图1-1-10物体的三视图,填出几何体的名称并画出示意图是:.6.水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示.如1-1-11图所示,是一个正方体的平面展开图,若图中的“似”表示正方体的前面, “锦”表示右面, “程”表示下面,则“祝”. “你”. “前”分别表示正方体的______________________.三、解答题7.如图1-1-12中图(1)和图(2)分别是两个正方体的展开图,这两个正方体中,对面数字之和为2的数各有几对?有哪几对?8.如图1-1-13,一钢球置于圆柱的上底面,它们之间的接触点恰好是圆柱上底面的中心,请你画出图中所示几何体的主视图.左视图和俯视图.图1-2-1 图1-2-29.若要使得图1-1-14中平面展开图折叠成正方体后,相对面上的两个数之和为5,求x+y+z 的值第2讲 用平面截某几何体及生活中的平面图形【知识要点】1.截面:用一个平面去截一个几何体,截出的面叫做截面.2.多边形:由一些不在同一条直线上的线段依次首尾相连组成的封闭平面图形叫做多边形.3.从n(n>3整数)边形一个顶点出发,能够引(n -3)条对角线,这些对角线把n 边形分成了(n -2)个三角形,n 边形对角线总条数为(3)2n n 条. 重点:用一个平面去切、截一个正方体,所得截面的形状的特征以及圆柱.圆锥的截面形状特征,认识生活中各类物体所含有的平面图形并将基本图形抽象出来. 难点:用平面切、截几何体,很多情况是靠想象的,归纳.猜想一些规律性的结论.【典型例题】例1 (2004.武汉)如图1―2―1,五棱柱的正确截面是图如图1―2―2中的( ) 解:B例2 用一个平面去截一个正方体,截面形状不能为图如图1―2―3中的( ) 分析:截面可以是三角形.四边形.五边形.解:D例3 如图1-2-4 在正方体1111ABCD A B C D -中,连结AB l .AC.B 1C ,则△AB 1C 的形状是 三角形.分析:本题考查学生判断对立体图形的截面图形形状的能力;应先想到三角形的分类,确定从哪个方面解答,再去分析它的边长或角的大小,确定答案.解:三角形按边分,有等边三角形.等腰三角形和不等边三角形等三类.这里,AB 1.AC.B 1C 分别是全等的正方形的对角线,所以本题应填“等边”.例4 用一个平面去截几何体,若截面是三角形,这个几何体可能是________. 点拨:若截面是三角形,则需要几何体至少有三个平面且有共同的顶点,或几何体有一个平面,其他的若是曲面,必须能截出直线.符合上述条件的是棱柱、圆锥、棱锥、棱台.解:正方体、长方体、棱柱、棱锥、棱台、圆锥.【知识运用】 一、选择题1.用一个平面去截一个正方体,截面图形不可能是( )A.长方形B.梯形C.三角形D.圆2.用一个平面去截一个几何体,如果截面的形状是圆,则这个几何体不可能是( )A.圆柱B.圆锥C.正方体D.球3.正方体的截面不可能是( )A. 四边形B. 五边形C. 六边形D. 七边形 4.n 边形所有对角线的条数是( )(1)n(n-2)n(n-3)n(n-4)ABCD.2222n n -、、、二、填空题5.从多边形的一个顶点共引了6条对角线,那么这个 多边形的边数是_______________6.图1-2-5几何体的截面(图中阴影部分)依次是 . . . .三、解答7.观察下列1-2-6由棱长为1的小立方体摆成的图形,寻找规律:图 1-2-6如图①中:共有1个小立体,其中1个看得见,0个看不见;如图②中:共有8个小立方体,其中7个看得见,1个看不见;如图③中:共有27个小立方体,其中19个看得见,8个看不见;……,则第⑥个图中,看不见的小立方体有个。
第一章丰富的图形世界重点知识复习1.1 生活中的立体图形一、常见的几何体分类:1、2、二、图形是由点、线、面构成。
点动成线,线动成面,面动成体。
面与面相交得到线,线与线相交得到点。
面动成体可以通过平移和旋转实现。
例如:五棱柱、圆柱分别可以看作是由五边形或圆沿着竖直方向平移形成。
圆柱又可以看作是矩形绕着一边旋转一周形成。
易错点:1、观察下图,请把左边的图形绕着给定的直线旋转一周后可能形成的几何体选出来( D )2、如图,第二行的图形绕虚线旋转一周便能形成第一行的某个几何体,用线连一连.易错点:将一个长方形绕它的一边所在的直线旋转一周,得到的几何体是圆柱,现在有一个长为4厘米、宽为3厘米的长方形,分别绕它的长、宽所在的直线旋转一周,得到不同的圆柱体,它们的体积分别是多大?参考答案:48cm3(2)以宽所在的直线为轴旋转一周(1)以长所在的直线为轴旋转一周36cm3三、棱柱的特征:1、棱柱的上、下两底面平行且形状相同,大小一样;2、棱柱的侧面形状都是长方形;3、侧面的个数和底面图形的边数相等.4、棱柱的侧棱的长度都相等。
5、n 棱柱有2n 个顶点,3n 条棱,(n+2)个面。
6、n 棱锥(n+1)个顶点,2n 条棱,(n+1)个面。
四、侧面积与表面积计算:柱体的S 侧=ch (c 为底面周长,h 为高,当柱体为棱柱时,h 为侧棱的长)锥体为棱锥时S 侧=所有侧面三角形的面积之和;锥体为圆锥时S 侧=S 扇=360Rn 2(n 为圆心角的度数,R 为圆的半径)柱体的S 表=S 侧+S 底(此时S 底为2个)锥体的S 表=S 侧+S 底(此时S 底为1个)1.2 展开与折叠一、正方体的展开图(长方体也是类似的展开图):正方体有12条棱,需要剪7刀才能展开成平面图形。
二、圆柱、圆锥、正三棱锥、正四棱锥、正五棱锥、正三棱柱的展开图:圆柱的底面圆的周长和高分别是侧面展开图中长方体的长与宽,圆锥的侧面展开图是一个扇形,这个扇形的半径就是圆锥的母线(即圆锥的顶点与圆锥底面上任意一点的连线长,而扇形的弧长就是圆锥底面圆的周长。
七年级数学丰富的图形世界知识点专题总结丰富的图形世界(1)一、立体图形的表面展开图:几何体的表面展开图在中考中主要涉及两个方面的内容:一是考查几何体的侧面展开图,以圆锥和圆柱等几何体为主,二是考查几何体的表面展开图,以柱体为主要考查对象;其中难点为利用正方体的表面展开图,找对应面。
例题1(2)解析:利用空间想象或通过动手操作,将展开图还原成立体图形,看能否构成正方体.A,B,D选项的展开图都能折叠成一个正方体,C选项的展开图中含有“凹”的图形,不能折叠成一个正方体.故选C.二、截一个几何体:当用一个平面去截一个几何体时:首先要明确该截面是个平面图形,然后看截面与几何体哪些面相交;通过确定交线的条数来判断截面的边数,最后判断该平面图形的形状。
判断立体图形截面的形状是这类问题的重点和难点。
例题2(3)解:(1)截面与底面平行,可以得到圆形截面;(2)截面沿圆柱的高线切割,可得到长方形截面;(3)截面与底面平行,可以得到三角形截面.综上所述,截面的形状分别是圆形、长方形、三角形.三、从不同方向看物体:从不同方向看物体,主要指的是从正面、左面、上面看到的图形,最为常见的是由小正方体组成的图形从不同方向看到的图形,或根据从三个方向看到的图形判断小正方体的个数。
例题3(4)四、解题方法与技巧:1、分类讨论思想:当被研究的问题包含多种可能情况时,不能一概而论,必须按可能出现的情况来分类讨论,得出各种情况下的对应结果。
例题4(5)解:若按组成几何体的面是平面或曲面来划分:(1)(2)(6)(7)是一类,组成它的各面全是平面;(3)(4)(5)是一类,组成它的面至少有一个是曲面.若按柱、锥、球来划分:(1)(2)(4)(7)是一类,即柱体;(5)(6)是一类,即锥体;(3)是球体。
2、正方体表面展开图的识别技巧:每一个正方体都是由三对相对的面围成的,如果能在展开的平面图形中,找到三对相对无重叠的面,那么就能找到符合实际意义的正方体的表面展开图,在表面展开图中找相对的面是探究正方体表面展开图的关键。
初一数学复习资料 1第一章:丰富的图形世界知识要求:1、经历图形的展开、折叠与切截,从不同方向观察体验数学活动,积累数学活动经验。
2、在平面图形与几何体相互转换等活动中,发展空间概念。
3、认识常见几何体的基本特征,能对这些几何体进行正确的识别和简单的分类。
4、通过丰富的实例,进一步认识点、线、面,了解有关点、线、及某些平面图形的一些简单性质。
5、初步体会从不同方向观察同一物体可能会看到不同的图形,能识别简单物体的三视图, 会画立方体及其简单组合的三视图。
6、了解直棱柱、圆柱、圆锥的侧面展开图,能根据展开图想像和制作立体模型。
7、进一步丰富数学学习的成功体验,激发对空间与图形学习的好奇心,初步形成积极参与数学活动、主动与他人合作交流的意识。
知识重点:立体图形的分类、简单平面图形的识别、简单物体三视图的识别与画法知识难点:三种几何体(棱柱、圆柱、圆锥的侧面展开图画法以及根据展开图判断简单的立体模型, 另外三视图的画法也是本章的难点。
考点:本章是为以后的学习打基础的, 常见几何体特别是棱柱的性质, 三视图, 几何体的展开图特别是正方体的展开图是本章的考试热点。
知识点:一、几种常见的几何体1、面与面相交成线,线与线相交得到点。
也可以理解成:点动成线,线动成面,面动成体。
2、几何体一般可以分成多面体和旋转体。
多面体:由多个平面组成的封闭的几何体叫多面体,多面体的各个面都是平面。
主要的多面体:棱柱、棱锥、棱台体。
主要的旋转体:圆柱、圆锥、球体、圆台体。
4、立体图形的截面截面:一个平面与一个几何体相交所成的图形叫做截面。
常见几何体的截面:长方体、正方体主要截面:三角形、四边形(正方形、长方形、梯形、五边形、六边形圆柱的主要截面:圆、椭圆、长方形、半椭圆圆锥的主要截面:圆、椭圆、三角形、半椭圆5、正方体的侧面展开图正方体的侧面展开图分为三类:(1 1+4+1, 共有 6种; (2 2+3+1(也可看成是 1+3+2 , 共有 3种; (3 2+2+2,只有一种; (4 3+3,只有一种要把一个正方体截开,需要截 7刀,侧面展开图中,相对的面要相隔一行。
第一章丰富旳图形世界1.几何图形从实物中抽象出来旳多种图形, 包括立体图形和平面图形。
立体图形:有些几何图形旳各个部分不都在同一平面内, 它们是立体图形。
平面图形:有些几何图形旳各个部分都在同一平面内, 它们是平面图形。
2.点、线、面、体(1)几何图形旳构成点: 线和线相交旳地方是点, 它是几何图形中最基本旳图形。
线:面和面相交旳地方是线, 分为直线和曲线。
面: 包围着体旳是面, 分为平面和曲面。
体: 几何体也简称体。
(2)点动成线, 线动成面, 面动成体。
点、线、面、体都是几何图形。
任何一种几何体都由点、线、面构成, 点无大小, 线有曲直而无粗细, 平面是无限延伸旳, 面有平面和曲面, 面面相交得线, 线线相交得点。
3.生活中旳立体图形圆柱柱生活中旳立体图形球棱柱: 三棱柱、四棱柱(长方体、正方体)、五棱柱、……(按名称分) 锥圆锥棱锥4.棱柱及其有关概念:棱: 在棱柱中, 任何相邻两个面旳交线, 都叫做棱。
侧棱: 相邻两个侧面旳交线叫做侧棱。
棱柱旳所有侧棱长都相等。
n棱柱有两个底面, n个侧面, 共(n+2)个面;3n条棱, n条侧棱;2n个顶点。
面: 棱柱旳上、下底面相似。
侧面都是长方形, 棱柱旳名称与底面多边形旳边数有关。
将一种图形折叠后能否变成棱柱, 一要看有无两个底面, 二要看底面旳形状, 三要看两个底面旳位置。
(要学会自己总结规律。
)5.正方体旳平面展开图: 11种一种正方体旳表面沿某些棱剪开, 可得到十一种不一样旳平面图形, 这些平面图形通过折叠后又能围成一种正方体, 圆柱和圆锥旳侧面展开图分别是长方形和扇形。
任何一种立体图形旳表面沿某些棱剪开都可以得到不一样旳平面图形, 必须提高自己旳空间想象力。
一四一型6种二三一型3种二二二型1种三三型 1种6.截一种正方体: 用一种平面去截一种正方体, 若这个平面与这个正方体旳几种面相交, 则截面就是几边形, 依次得到三角形、四边形、五边形、六边形, 不也许得到七边形。
专题1.13丰富的图形世界(全章知识梳理与考点分类讲解)一、知识梳理【知识点1】几何图形:从实物中抽象出来的各种图形,包括立体图形和平面图形。
【知识点2】点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形中最基本的图形。
线:面和面相交的地方是线,分为直线和曲线。
面:包围着体的是面,分为平面和曲面。
体:几何体也简称体。
(2)点动成线,线动成面,面动成体。
【知识点3】生活中的立体图形生活中的立体图形:三棱柱、四棱柱(长方体、正方体)、五棱柱、……(按名称分)⎡⎡⎢⎢⎣⎢⎢⎡⎢⎢⎢⎣⎣圆柱柱球圆锥锥棱锥球体:由球面围成的(球面是曲面)圆柱:圆柱的表面展开图是由两个相同的圆形和一个长方形连成。
圆锥:圆锥的表面展开图是由一个圆形和一个扇形连成。
【知识点4】棱柱及其有关概念:棱:在棱柱中,任何相邻两个面的交线,都叫做棱。
侧棱:相邻两个侧面的交线叫做侧棱。
棱柱的上、下底面的形状相同,侧面的形状都是长方形根据底面图形的边数,人们将棱柱分为三棱柱、四棱柱、五棱柱、六棱柱……它们底面图形的形状分别为三角形、四边形、五边形、六边形……长方体和正方体都是四棱柱。
n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。
【知识点5】正方体的平面展开图:11种1-4-1型:6种2-3-1型:3种2-2-2型:1种3-3型:1种【知识点6】截一个正方体:用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形。
【知识点7】三视图物体的三视图指主视图、俯视图、左视图。
主视图:从正面看到的图,叫做主视图。
左视图:从左面看到的图,叫做左视图。
俯视图:从上面看到的图,叫做俯视图。
二、考点分类讲解【题型一】生活中的立体图形【例1】如图,请写出下列立体图形是由哪些几何体组合而成的.【答案】见解析.【分析】根据生活中常见的几何体的特征进行求解即可得到答案.解:图①是由底面完全重合的圆锥和圆柱组合而成的;图②是由底面完全重合的两个圆锥组合而成的;图③是由完全相同的四个正方体组合而成的.【点拨】本题主要考查了立体图形中的几何体,解题的关键在于能够熟练掌握常见的几何体的特征.【例2】十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型,回答下列问题:(1)根据上面多面体模型,完成表格中的空格:多面体顶点数(V)面数(F)棱数(E)四面体44长方体8612正八面体812正十二面体201230四面体棱数是;正八面体顶点数是.你发现顶点数(V)、面数(F)、棱数(E)之间存在的关系式是.(2)一个多面体的面数比顶点数小8,且有30条棱,则这个多面体的面数是.(3)某个玻璃饰品的外形是简单多面体,它的外表面是由三角形和八边形两种多边形拼接而成,且有24个顶点,每个顶点出都有3条棱,设该多面体外表三角形的个数为a个,八边形的个数为b个,求a b 的值.【答案】(1)6;6;V+F-E=2;(2)12(3)a+b=14.【分析】(1)观察可得顶点数+面数-棱数=2;(2)代入(1)中的式子即可得到面数;(3)得到多面体的棱数,求得面数即为a+b的值.(1)解:四面体的棱数为6;正八面体的顶点数为6;关系式为:V+F-E=2;故答案为:6;6;V+F-E=2;(2)解:∵一个多面体的面数比顶点数小8,∴V=F+8,∵V+F-E=2,且E=30,∴F+8+F-30=2,解得F=12;故答案为:12;(3)解:∵有24个顶点,每个顶点处都有3条棱,两点确定一条直线;∴共有24×3÷2=36条棱,那么24+F-36=2,解得F=14,∴a+b=14.【点拨】本题考查了欧拉公式和数学常识,注意多面体的顶点数,面数,棱数之间的关系及灵活运用.【变式】一个六棱柱的顶点个数、棱的条数、面的个数分别是()A .6、12、6B .12、18、8C .18、12、6D .18、18、24【答案】B 【分析】一个六棱柱是由两个六边形的底面和6个长方形的侧面组成,根据其特征进行填空即可.解:一个六棱柱的顶点个数是12,棱的条数是18,面的个数是8.故选B .【点拨】此题主要考查了认识立体图形,利用n 棱柱有2n 个顶点,有(n +2)个面,有3n 条棱得出是解题关键.【例3】探究:有一长6cm ,宽4cm 的矩形纸板,现要求以其一组对边中点所在直线为轴,旋转180°,得到一个圆柱,现可按照两种方案进行操作:方案一:以较长的一组对边中点所在直线为轴旋转,如图①;方案二:以较短的一组对边中点所在直线为轴旋转,如图②.(1)请通过计算说明哪种方法构造的圆柱体积大;(2)若将此长方形绕着它的其中一条边所在的直线为轴旋转360°,则得到的圆柱体积为多少?【答案】(1)按方案一方法构造的圆柱体积大;(2)将此长方形绕着它的其中一条边所在的直线为轴旋转360°,则得到的圆柱体积为为144cm 3或96cm 3【分析】(1)分别按方案一,方案二转法,根据体积公式找出半径与高,代入计算即可;(2)分两种情况,按长方形长边所在的直线为轴旋转360°,绕长方形的短边所在的直线为轴旋转360°,确定半径与高代入体积公式计算即可.(1)解:方案一:以较长的一组对边中点所在直线为轴旋转,旋转半径为r =3cm ,体积为:223436r h πππ=⨯⨯=cm 3,方案二:以较短的一组对边中点所在直线为轴旋转,旋转半径为r =2cm ,体积为:222624r h πππ=⨯⨯=cm 3,按方案一方法构造的圆柱体积大;(2)解:分两种情况绕长方形的短边所在的直线为轴旋转360°,得到的圆柱体积为2264144r h πππ=⨯⨯=cm 3;绕长方形绕长边所在的直线为轴旋转360°,则得到的圆柱体积为224696r h πππ=⨯⨯=cm 3,综合将此长方形绕着它的其中一条边所在的直线为轴旋转360°,则得到的圆柱体积为为144cm 3或96cm 3.【点拨】本题考查基本图形旋转得到的体积问题,掌握解决旋转半径与圆柱体的高是解题关键.【变式】下列图形旋转一周,能得到如图几何体的是()A .B .C .D .【答案】A【分析】根据面动成体,判断出各个选项旋转得到的立体图,即可得出结论.解:A .旋转一周可得本题的几何体,故选项正确,符合题意;B .旋转一周为两个圆锥结合体,故选项错误,不符合题意;C .旋转一周为圆锥和圆柱的结合体,故选项错误,不符合题意;D .旋转一周为两个圆锥和一个圆柱的结合体,故选项错误,不符合题意;故选:A .【点拨】此题考查了面动成体,解题的关键是要有空间想象能力,熟悉并判断出旋转后的立体图形.【题型二】展开与折叠【例4】如图是一个长方体纸盒的展开图,如果长方体相对面上的两个数字之和相等,求2x y -的值.【答案】16【分析】分别找到x 与y 相对的数字即可求解.解:因为这是长方体纸盒的展开图,所以“4”与“10”相对,“x ”与“2”相对,“6”与“y ”相对,所以26410x y +=+=+,所以12x =,8y =,所以2212816x y -=⨯-=.【点拨】本题考查了长方体的展开图,正确找出相对面是解题的关键.【变式】如图正方体纸盒,展开图可以得到()A .B .C .D .【答案】A【分析】根据折叠后圆、等于符号及小于符号所在的面的位置进行判断即可.解:A.圆、等于符号及小于符号所在的面折叠后互为邻面,且小于符号的开口与等于符号开口一致,符合题意;B.小于符号与等于符号的面折叠后是对面,不符合题意;C.折叠后,小于符号的开口方向与等于符号开口方向不同,不符合题意;D.折叠后,小于符号开口没有指向圆,不符合题意.故答案选A.【点拨】本题考查了正方体的展开图,熟练掌握正方体的展开图,明白对面相隔不相邻这一原则以及正确区分折叠后图形的相对位置是解题的关键.【例5】如图所示,图1为一个棱长为8的正方体,图2为图1的表面展开图(数字和字母写在外表面上,字母也可以表示数),请根据要求回答问题:(1)如果正方体相对面上的两个数字之和相等,则x =______,y =______.(2)如果面“10”是左面,面“6”在前面,则上面是______(填“x ”或“y ”或“2”)(3)图1中,点M 为所在棱的中点,在图2中找点M 的位置,直接写出图2中△ABM 的面积.【答案】(1)12;8(2)2;(3)16或80【分析】(1)正方体展开图中,相对的两个面之间必然隔着一个正方形,由此知道“2”与“x ”是相对面,“4”与“10”是相对面,“6”与“y ”是相对面,由相对面两个数之和相等,列式计算即可;(2)由相邻面和相对面的关系,分析判断即可得到答案;(3)由点M 所在的棱为两个面共用,可以判断得到点M 的位置,根据三角形面积公式,即可得到答案.解:(1)∵正方体相对面上的两个数字之和相等∴2+410x =+,6410y +=+∴12x =,8y =故答案为:12;8(2)若面“10”是左面,面“6”在前面,则上面是“2”(3)因为点M 所在的棱为两个面共用,所以它的位置有两种情况,第一种情况如下图:设点M 左边的顶点为点D ,则11841622ABM S AB DM ==⨯= △第二种情况如下图:118208022ABM S AB AM ==⨯= △综上所述,ABM的面积为:16或80【点拨】本题考查正方体的展开图,能够准确区分展开图的相对面和相邻面是解题的关键.【变式】图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则在图2中,小虫从点A沿着正方体的棱长爬行到点B的长度为()A.0B.1C.2D.3【答案】B【分析】将图1折成正方体,然后判断出A、B在正方体中的位置关系,从而可得到AB之间的距离.解:将图1折成正方体后点A和点B为同一条棱的两个端点,得出AB=1,则小虫从点A沿着正方体的棱长爬行到点B的长度为1.故选B.【点拨】本题主要考查的是展开图折成几何体,判断出点A和点B在几何体中的位置是解题的关键.【例5】如图是一个立体图形的展开图,每个面上都标注了数字(图示立体图形的面为立体图形的外表面),请根据要求回答问题:(1)如果面1在立体图形的顶部,那么哪一面会在下面?(2)如果面3在前面,从左面看是面2,那么哪一面会在上面?(3)如果面5在后面,从右面看是面4,那么哪一面会在下面?【答案】(1)面3会在下面.(2)面4会在上面.(3)面3会在下面.【分析】把图中所示的展开图折叠成立体图形,标有数字1的面与标有数字3的面相对,标有数字2的面与标有数字5的面相对,标有数字6的面与标有数字4的面相对.解:根据题意和图示:(1)面3会在下面;(2)面4会在上面;(3)面3会在下面.【点拨】本题考查了学生的空间想象能力及推理判断能力.【变式】如图所示的正方体,如果把它展开,可以是下列图形中的()A .B .C .D .【答案】B【分析】根据正方形展开图的特征,判断各个面的对面、邻面的特征即可.解:由“相间Z 端是对面”可知A 、D 不符合题意,而C 折叠后,圆形在前面,正方形在上面,则三角形的面在右面,与原图不符,只有B 折叠后符合,故选:B .【点拨】此题考查的是正方体的展开图,掌握利用正方形展开图的特征判断各个面的对面、邻面的特征是解决此题的关键.【题型三】截一个几何体【例5】将一个长方体的一个角切去,所得的立体图形的棱的数量为______.【答案】15条或14条或12条或13条【分析】根据长方体的特征:长方体有12条棱.在顶点处截去一个角就多出三条棱,但是长方体原本的12条棱少了几条要画图分类讨论.解:①12315+=(条);②1213-+113=+14=(条);③1233-+93=+12=(条);④1223-+103=+13=(条);答:所得立体图形的棱的条数为15条或14条或12条或13条故答案为:15条或14条或12条或13条【点拨】本题考查了长方体的特征和截长方体,明确在顶点处截去一个角就多出3条棱是解题关键.【变式1】如图中几何体的截面分别是________.【答案】长方形,等腰三角形解:①中几何体的截面是长方形,②中几何体的截面是等腰三角形,【变式2】如图①②③是将正方体截去一部分后得到的几何体.(1)根据要求填写表格:图面数(f)顶点数(v)棱数(e)①②③(2)猜想f,v,e三个数量间有何关系;(3)根据猜想计算,若一个几何体有2021个顶点,4035条棱,试求出它的面数.【答案】(1)7;9;14;6;8;12;7;10;15;(2)f+v-e=2;(3)2016【分析】(1)根据图形数出即可.(2)根据(1)中结果得出f+v-e=2.(3)代入f+v-e=2求出即可.解:(1)图①,面数f=7,顶点数v=9,棱数e=14,图②,面数f=6,顶点数v=8,棱数e=12,图③,面数f=7,顶点数v=10,棱数e=15,故答案为:7,9,14.6,8,12,7,10,15.(2)f+v-e=2.(3)∵v=2021,e=4035,f+v-e=2∴f+2021-4035=2,f=2016,即它的面数是2016.【点拨】本题考查了截一个几何体,图形的变化类的应用,关键是能根据(1)中的结果得出规律.【题型四】从三个方向看物体的形状【例6】画出下面由11个小正方体搭成的几何体从不同角度看得到的图形.(1)请画出从正面看、从左面看、从上面看的平面图形.(2)小立方体的棱长为3cm ,现要给该几何体表面涂色(不含底面),求涂上颜色部分的总面积.(3)如果在这个组合体中,再添加一个相同的正方体组成一个新组合体,从正面、左面看这个新组合体时,看到的图形与原来相同,可以有______种添加方法,画出添加正方体后,从上面看这个组合体时看到的一种图形.【答案】(1)见解析;(2)315cm 2;(3)2【分析】(1)根据三视图的画法,画出这个简单组合体的三视图即可;(2)分别求出最上层,中间层和最下面一层需要涂色的面,即可求解;(3)根据再添加一个相同的正方体组成一个新组合体,从正面、左面看这个新组合体时,看到的图形与原来相同,进行求解即可.(1)解:如图所示,即为所求:(2)解:由题意可知,几何体的最上层一共有5个面需要涂色,中间一层一共有12个面需要涂色,最小面一层一共有18个面需要涂色,∴一共用12+18+5=35个面需要涂色,∴涂上颜色部分的总面积2=3335=315cm ⨯⨯(3)解:如图所示,一共有2种添加方法.【点拨】本题主要考查了画简单几何体的三视图,简单组合体的表面积等等,解题的关键在于能够熟练掌握相关知识.【变式1】如图,是由若干个完全相同的小正方体组成的一个几何体,请画出这个几何体的从正面看,从左面看和从上面看的平面图形.(用阴影表示)【分析】画出从正面、左面、上面看到的形状即可.解:如图所示【点拨】本题考查了从不同方向看到的几何体.应注意“长对正、宽相等、高平齐”.【变式2】用小立方块搭一个几何体,如图是从正面和上面看到的几何体的形状图,最少需要___个小立方块,最多需要___个小立方块.【答案】913【分析】易得这个几何体共有3层,从上面看可得第一层正方体的个数,由正面看可得第二层和第三层最少或最多的正方体的个数,相加即可.解:搭这样的几何体最少需要6+2+1=9个小正方体,最多需要6+2+3213+=个小正方体;故答案为:9,13.【点拨】此题主要考查了学生对不同方向观察图形的掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“从上面看打地基,从正面看疯狂盖,从左面看拆违章”就更容易得到答案.【变式3】如图,6个边长为1的正方体组成一个几何体,从正面、左面、上面看到的这个几何体的形状图的面积之和是__________.【答案】13【分析】先画出从正面、左面、上面看到的这个几何体的形状图,确定小正方形的和,乘以面积1即可解:∵几何体从三个方向看的几何体的形状图如下:∴从正面、左面、上面看到的这个几何体的形状图的面积之和是(5+4+4)×1×1=13,故答案为:13.【点拨】本题考查了从正面、左面、上面看几何体的形状图,正确画出形状图是解题的关键.。
七年级数学上册《丰富的图形世界》知识点总结七年级数学上册《丰富的图形世界》知识点总结上学的时候,说起知识点,应该没有人不熟悉吧?知识点在教育实践中,是指对某一个知识的泛称。
相信很多人都在为知识点发愁,下面是小编收集整理的七年级数学上册《丰富的图形世界》知识点总结,欢迎大家分享。
知识点1:1.生活中常见的立体图形:圆柱、圆锥、棱柱、棱锥、球1)圆柱与棱柱相同点:圆柱和棱柱都有两个底面且两个底面的形状、大小完全相同。
不同点:①圆柱的底面是圆,棱柱的底面是多边形。
②圆柱的侧面是一个曲面,棱柱的侧面是由几个平面围成的,且每个平面都是平行四边形,棱柱的底面是多边形,而圆柱的底面是圆。
2)棱柱的有关概念及特点(1)棱柱的有关概念:在棱柱中相邻两个面的交线叫做棱,相邻两个侧面的交线叫做侧棱。
(2)棱柱的三个特征:一是棱柱的所有侧棱长都相等;二是棱柱的上、下底面的形状相同,并且都是多边形;三是侧面的形状都是平行四边形。
(3)棱柱的分类:棱柱可分为直棱柱和斜棱柱。
本书只讨论直棱柱(简称棱柱),直棱柱的侧面是长方形。
人们通常根据底面图形的边数将棱柱分为三棱柱、四棱柱、五棱柱……它们的底面图形的形状分别是三角形、四边形、五边形……(4)棱柱中的点、棱、面之间的关系:底面多边形的边数n确定该棱柱是n棱柱,它有2n个顶点,3n条棱,其中有n条侧棱,有(n+2)个面,n个侧面。
3)点、线、面构成立体图形(图形的构成元素)图形是由点、线、面构成的,其中面有平面,也有曲面;线有直线也有曲线。
点、线、面、体之间的关系是:点动成线,线动成面、面动成体,面与面相交得到线,线与线相交得到点。
2.展开与折叠1)棱柱的表面展开图是由两个相同的多边形和一些长方形组成的。
沿棱柱表面不同的棱剪开,可得到不同组合方式的表面展开图。
2)圆柱的表面展开图是由两个大小相同的圆(底面)和一个长方形(侧面)组成,其中侧面展开图长方形的一边的长是底面圆的周长,另一边的长是圆柱的高。
第一章丰富的图形世界知识点总结本章可分为三大板块第一大板块常见几何体的性质与分类1、常见几何体:圆柱、棱柱(长方体、正方体)、棱锥、圆锥、球体。
2、性质:底面的个数与形状、侧面的个数与形状、是否含有曲面。
3、分类依据:底面数(柱体、椎体、球体);是否含有曲面;是否含有顶点等。
总结时注意类比与对比。
4、棱体(棱锥)的命名以及N棱柱棱数、面数、顶点数求法(尝试总结N棱锥的棱数、面数、顶点数)。
简单逆向思维应用,根据棱数、面数、顶点数判断是何种几何体(注意数学思想之分类讨论)。
第二大板块常见几何体的组成与形成1、组成:点、线、面。
面与面相交得到线,线与线相交得到点。
点动成线,线动成面,面动成体。
能说出常见几何体中侧面与底面相交得到几条线,分别是什么形状。
顶点处有几条棱,几个面。
2、形成:面的旋转。
常见几何体可以看作哪些平面图形旋转得到。
第三大板块体与面之间的转化关系(体会数学思想之转化化归思想)。
1、展开与折叠:一般几何体的展开与折叠,展开时注重动手操作到空间想象的转变,折叠时注意结合几何体的性质来判断。
正方体的展开与折叠,对展开图的观察总结,掌握对面、邻面以及有共同顶点的几个面在展开图中的关系,并能利用逆向思维还原。
截面:截面的形成(面截体),截面的本质(面截面所得线围成的平面)。
正方体、圆柱、圆锥等所能得到的截面类型并能通过空间想象做出截面,逆向思维通过截面判断是由什么几何体截得。
2、三视图:主视图(长与高)、左视图(宽与高)、俯视图(长与宽)会画单独几何体和简单组合体的三视图(长对正、宽相等、高平齐)。
简单应用之求组合体面积。
根据数字俯视图画出主视图与俯视图(答案唯一),体会三视图之间的联系。
逆向思维根据三视图还原几何体(理解答案不唯一),从而得到简单应用之根据三视图推测组合体中小方块数目。
本章贯穿的几大思维:逆向思维形象思维到抽象思维转化的思维学习方法通过动手操作培养空间想象‘。
第一章丰富的图形世界重点知识复习
生活中的立体图形
一、常见的几何体分类:
1、2、
二、图形是由点、线、面构成。
点动成线,线动成面,面动成体。
面与面相交得到线,线与线相交得到点。
“线”可分为直线与曲线两种
“面”可分为平面与曲面两种
图形变化常见的几种方法:
(1)平移(2)旋转(3)翻折(轴对称)等
面动成体可以通过平移和旋转实现。
例如:五棱柱、圆柱分别可以看作是由五边
形或圆沿着竖直方向平移形成。
圆柱又可以看作是矩形绕着一边旋转一周形成。
棱柱、棱锥中,任何相邻两个面的交线叫做棱
相邻两个侧面的交线叫做侧棱
底面与侧面的交线叫做底边
棱柱的棱与棱的交点叫做棱柱的顶点
棱锥的各侧棱的公共点叫做棱锥的顶点
易错点:
1、观察下图,请把左边的图形绕着给定的直线旋转一周后可能形成的几何体选出来
(D)
2、如图,第二行的图形绕虚线旋转一周便能形成第一行的某个几何体,用线连一连.
易错点:
将一个长方形绕它的一边所在的直线旋转一周,得到的几何体是圆柱,现在有一个长为4厘米、宽为3厘米的长方形,分别绕它的长、宽所在的直线旋转一周,得到不同的圆柱体,它们的体积分别是多大
参考答案:
三、棱柱的特征:
1、棱柱的上、下两底面平行且形状相同,大小一样;
2、棱柱的侧面形状都是长方形;
3、侧面的个数和底面图形的边数相等.
4、棱柱的侧棱的长度都相等。
5、n 棱柱有2n 个顶点,3n 条棱,(n+2)个面。
6、n 棱锥(n+1)个顶点,2n 条棱,(n+1)个面。
四、侧面积与表面积计算:
柱体的S 侧=ch (c 为底面周长,h 为高,当柱体为棱柱时,h 为侧棱的长)
锥体为棱锥时S 侧=所有侧面三角形的面积之和;
锥体为圆锥时S 侧=S 扇=360
R n 2 (n 为圆心角的度数,R 为圆的半径) 柱体的S 表=S 侧+S 底(此时S 底为2个)锥体的S 表=S 侧+S 底(此时S 底为1个)
展开与折叠
一、正方体的展开图(长方体也是类似的展开图):
正方体有12条棱,需要剪7刀才能展开成平面图形。
二、圆柱、圆锥、正三棱锥、正四棱锥、正五棱锥、正三棱柱的展开图:
圆柱的底面圆的周长和高分别是侧面展开图中长方体的长与宽,圆锥的侧面展开图是一个扇形,这个扇形的半径就是圆锥的母线(即圆锥的顶点与圆锥底面上任意一点的连线长,而扇形的弧长就是圆锥底面圆的周长。
三、特殊的展开图中的数量关系:
1、底面圆直径等于高的圆柱侧面展开图是正方形。
2、侧面展开图是半圆的圆锥轴截面是等边三角形。
易错点:
1、一个几何体全部展开后铺在平面上,不可能是(B)
A、一个三角形
B、一个圆
C、三个正方形
D、一个小圆和半个大圆
2、如图是一个正方体的展开图,每个面上都标注了字母,请根据要求回答问题:
(1)若A面为底面,则哪一面在上面(答:F)
(2)若A面为前面,B面在左面,则哪一面在上面(答:E)
(3)若C面为后面,D面在右面,则哪一面在下面(答:A)
截一个几何体
一、正方体的截面:三角形、四边形、五边形、六边形。
二、正方体切去一个角,截面形状可以是一般的锐角三角形、锐角的等腰三角形、等边三角形,不能截出直角三角形和钝角三角形。
图(1)(2)(3)(4)中木块的顶点数,棱数,面数如下表:
顶点数,棱数,面数之间的关系仍然符合欧拉公式:f+v-e=2
三、正方体的截面可以是特殊的四边形,有正方形、长方形、梯形、平行四边形、菱形。
四、圆柱、圆锥的截面:
1、圆柱的截面形状可以是圆、长方形、椭圆、不规则图形。
2、圆锥的截面形状可以是圆、椭圆、等腰三角形、不规则图形,其中只有轴截面才能得到三角形,其余图形都含有曲线。
圆锥的轴截面可以是等腰三角形、等边三角形、等腰直角三角形。
五、三棱锥的截面可以是三角形、长方形、四边形。
其中四边形可以是特殊的矩形、
梯形。
易错点:
1、几何体正方体、长方体、三棱锥、三棱柱、圆柱、圆锥中,截面可能是长方形的有(4)种。
2、用一个平面去截掉一个正方体的一条棱。
(1)剩下的几何体有几个顶点几条棱几个面(答:10,15,7)
(2)若按此方法去截掉一个n棱柱的一条棱,则剩下的几何
体有几个顶点几条棱几个面(答:2n+2,3n+3,n+3)
从不同方向看
一、三种视图之间的关系:主俯长对正,主左高平齐,俯左宽相等。
二、三种视图完全相等的几何体只有球和正方体。
三、旋转体(圆柱、圆锥、球等)的主视图、左视图完全一样。
四、圆锥的俯视图是圆和圆心。
五、从立体图得到它的三视图是唯一的,但从三视图复原回它的立体图却不一定唯一。
例如:
易错点:
1、画出下面几何体的三视图。
解:主视图俯视图左视图
2、由五个小立方块搭成的一个几何体,它的主视图和左视图如图所示,你能画出它的俯视图吗(只画一种)
解:俯视图
3、用小立方块搭一个几何体,使得它的主视图和俯视图如图所示。
这样的几何体只有一种吗它最少需要多少个小立方块最多需要多少个小立方块
解:
最少10个最少16个
4、如图是由一些完全相同的小立方块搭成的几何体的三种视图,那么搭成这个几何体所用的小立块的个数是_______。
(答:8)
4题图5题图
5、如图是由一些完全相同的小立方块搭成的几何体的三种视图,那么搭成这个几何体所用的小立块的个数是_____________。
(答:9或10或11)
6、用小正方块搭一个几何体,使它的主视图、俯视图如图所示,这样的几何体只有一种吗最少需几块最多需几块
答:最少7块。
最多9块。
7、一个几何体是由若干个相同的正方体组成的,其主视图和左视图如图所示,则这个几何体最多可由_______个这样的正方体组成。
答:最多15块。
8、用小正方块搭一个几何体,使得它的主视图和俯视图如图所示.
(l)画出它的左视图;
(2)符合条件的几何体只有一种吗它最小需要多少小立方块.最多需要多少块小立方块
答:最少5块。
最多6块。
9、用小正方块搭一个几何体的主视图和俯视图如图所示.则搭建这样的几何体至少用多少个小立方体画出这种几何体的一种左视图。
答:共有三种。
10、一个由小立方块组成的几何体的主视图、左视图相同,如图,组成这个小立方块最少有几块最多有几块在俯视图中注明小立方块的块数。
答:最少9块。
最多27块。
生活中的平面图形
一、多边形:由不在同一条直线上的线段首尾顺次相连组成的封闭图形.
扇形:由一条弧和经过这条弧的端点的两条半径所组成的图形。
二、从一个多边形的同一个顶点出发,分别连接这个顶点与其余各顶点,可以把这个多边形分割成(n-2)个三角形,可以得到(n一3)条对角线。
从一个多边形内部的任意一点出发,分别连接这个点与其余各顶点,可以把这个多边形分割成n个三角形。
从一个多边形边上除顶点外的任意一点出发,分别连接这个点与其余各顶点,可以把这个多边形分割成(n-1)个三角形。
三、一个n边形一共有
2)3
(
n
n条对角线。
易错点:
1、平面内有5个点,每两个点都用直线连接起来,则最多可得______条直线,最少可得______条直线。
(答: 10,1)
2、平面内的三条直线可把平面分割成最少______部分,最多_____部分。
(答:4,7)。