高三理数练习
- 格式:doc
- 大小:996.00 KB
- 文档页数:16
高三理科数学试题及答案一、选择题(每题4分,共40分)1. 函数y=\(\frac{1}{x}\)的图象在第一象限内是()A. 递增函数B. 递减函数C. 先递增后递减D. 先递减后递增2. 已知向量\(\vec{a}=(3,-2)\),\(\vec{b}=(2,3)\),则\(\vec{a}\cdot\vec{b}\)的值为()A. -5B. 5C. 13D. -133. 已知双曲线的方程为\(\frac{x^2}{a^2}-\frac{y^2}{b^2}=1\),其中a>0,b>0,若该双曲线的渐近线方程为y=±\(\frac{b}{a}\)x,则该双曲线的离心率为()A. \(\sqrt{2}\)B. \(\sqrt{3}\)C. \(\sqrt{5}\)D. 24. 已知函数f(x)=x^3-3x+1,若f(x)在区间(1,2)内有零点,则零点的个数为()A. 0B. 1C. 2D. 35. 已知等比数列{an}的前n项和为S_n,若S_3=7,S_6=28,则S_9的值为()A. 63B. 77C. 84D. 1266. 已知直线l的方程为y=kx+b,若直线l过点(1,2)且与直线y=-2x 平行,则直线l的方程为()A. y=-2x+4B. y=-2x+3C. y=2x-1D. y=2x+17. 已知函数f(x)=\(\ln(x+\sqrt{x^2+1})\),若f(x)在区间(0,+∞)上单调递增,则该函数的值域为()A. (0,+∞)B. (-∞,+∞)C. [0,+∞)D. R8. 已知抛物线C的方程为y^2=4x,若直线l与抛物线C相切,则直线l的斜率的取值范围为()A. (-∞,0]B. (0,+∞)C. [0,+∞)D. R9. 已知椭圆E的方程为\(\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\),其中a>b>0,若椭圆E的离心率为\(\frac{\sqrt{2}}{2}\),则椭圆E 的短轴长为()A. \(\sqrt{2}\)B. 1C. 2D. \(\sqrt{3}\)10. 已知函数f(x)=\(\frac{1}{x}\),若f(x)在区间[1,2]上的平均值为\(\frac{7}{12}\),则f(x)在区间[2,3]上的平均值为()A. \(\frac{7}{20}\)B. \(\frac{7}{15}\)C. \(\frac{7}{12}\)D. \(\frac{7}{10}\)二、填空题(每题4分,共20分)1. 已知函数f(x)=\(\frac{1}{x}\),若f(x)在区间[1,2]上的平均值为\(\frac{7}{12}\),则f(x)在区间[2,3]上的平均值为\(\frac{7}{20}\)。
2024届高三一轮复习联考(三)全国卷理科数学试题一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{12}A xx =<<∣,{||1}B x x =≤∣,则A B ⋃=()A.[)12-,B.()2-∞,C.[)13-, D.[]12-,2.已知复数()i i 1z =+,则z =()A.1B.C.D.23.已知命题p :x ∀∈R ,220x x m -+>,则满足命题p 为真命题的一个充分条件是()A.m>2B.0m <C.1m < D.m 1≥4.若函数()2220log 0x x x f x x x ⎧-=⎨>⎩,,,,则()2f f -=⎡⎤⎣⎦()A.2- B.2C.3- D.35.已知{}n a 是各项不全为零的等差数列,前n 项和是n S ,且2024S S =,若()2626m S S m =≠,则正整数m =()A.20B.19C.18D.176.已知平面向量a ,b满足a =,(b =,2a b -= ,则a 在b上的投影为()A.B.1C.2D.7.函数()2e e 1x xf x x --=+在[]3,3-上的大致图象为()A.B.C.D.8.已知角α的顶点与直角坐标系的原点重重合,始边与x 轴的非负半轴重合,终边经过点(2,)M m ,且sin 3α=-,则tan 2α=()A.55-B.C.55-D.55或9.已知等比数列{}n a 满足21q ≠,24m n a a a =,(其中m ,*n ∈N ),则91m n+的最小值为()A .6B.16C.32D.210.已知函数()cos 3f x x π⎛⎫=+ ⎪⎝⎭,若()f x 在[]0a ,上的值域是112⎡⎤-⎢⎥⎣⎦,,则实数a 的取值范围为()A .403π⎛⎤ ⎥⎝⎦, B.2433ππ⎡⎤⎢⎥⎣⎦, C.23π∞⎡⎫+⎪⎢⎣⎭, D.2533ππ⎡⎤⎢⎥⎣⎦,11.设4sin1a =,3sin2b =,2sin3c =,则()A.a b c<< B.c b a<< C.c a b<< D.a c b<<12.已知函数14sin π,01()2,1x x x f x x x -<≤⎧=⎨+>⎩,若关于x 的方程2[()](2)()10f x m f x m --+-=恰有5个不同的实数解,则实数m 的取值集合为()A.()35,B.[]35,C.()31--,D.[]31--,二、填空题:本题共4小题,每小题5分,共20分.13.已知1sin 62πα⎛⎫-= ⎪⎝⎭,则2cos 23πα⎛⎫+= ⎪⎝⎭___________.14.设m ,n 为不重合的直线,α,β,γ为不重合的平面,下列是αβ∥成立的充分条件的有___________(只填序号).①m α⊂,//m β②m α⊂,n β⊥,n m ⊥③αγ⊥,βγ⊥④m α⊥,m β⊥15.已知数列{}n a 为递减数列,其前n 项和22n S n n m =-++,则实数m 的取值范围是___________.16.已知点A ,B ,C 均在球O 的球面上运动,且满足3AOB π∠=,若三棱锥O ABC -体积的最大值为6,则球O 的体积为___________.三、解答题:共70分.解答应㝍出文字说明、证明过程或演算政骤.第17-21题为必考题,每个试题考生者必须作答.第22,23题为选考题,考生根据要求作答.17.已知函数()2cos 2cos 1f x x x x =-+,将函数()f x 的图象向左平移π3个单位长度,得到函数()g x 的图象.记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,4a =,12bc =,12A g ⎛⎫= ⎪⎝⎭(1)求角A ;(2)若角A 的平分线AD 交BC 于D ,求AD 的长.18.已知数列{}n a 满足()21112122222326n n n n n a a a a n -+-++++=-⋅+ .(1)求{}n a 的通项公式;(2)若2n an n b a =+,求数列{}n b 的前n 项和n T .19.已知ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c ,π4C =,cos cos 2cos a A c C b B +=.(1)求tan A .(2)若c =,求ABC 的面积.20.如图,在四棱锥P ABCD -中,底面ABCD 是矩形,O 是BC 的中点,PB PC ==,22PD BC AB ===.(1)求证:平面PBC ⊥平面ABCD ;(2)求直线AD 与平面PCD 所成角的正弦值.21.已知函数()1ln 1f x x x=-+.(1)求曲线()y f x =在点(1,(1))f 处的切线方程;(2)证明,对()0x ∀∈+∞,,均有()()11e 2ln 1f x x -+<++.22.在平面直角坐标系xOy 中,直线l 的参数方程为32212x a t y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),以O 为极点,x 轴的非负半轴为极轴建立极坐标系,曲线C 的极坐标方程为22413sin ρθ=+.(1)求直线l 和曲线C 的直角坐标方程;(2)若曲线C 经过伸缩变换2x x y y⎧=⎪⎨⎪='⎩'得到曲线C ',若直线l 与与曲线C '有公共点,试求a的取值范围.23.已知函数()22f x x x t =++-(0t >),若函数()f x 的最小值为5.(1)求t 的值;(2)若a b c ,,均为正实数,且2a b c t ++=,求1412a b c++的最小值.2024届高三一轮复习联考(三)全国卷理科数学试题一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.【1题答案】【答案】A【2题答案】【答案】B【3题答案】【答案】A【4题答案】【答案】D【5题答案】【答案】C【6题答案】【答案】B【7题答案】【答案】A【8题答案】【答案】A【9题答案】【答案】D【10题答案】【答案】B【11题答案】【答案】B【12题答案】【答案】C二、填空题:本题共4小题,每小题5分,共20分.【13题答案】【答案】12 ##-0.5【14题答案】【答案】④【15题答案】【答案】()2,-+∞【16题答案】【答案】三、解答题:共70分.解答应㝍出文字说明、证明过程或演算政骤.第17-21题为必考题,每个试题考生者必须作答.第22,23题为选考题,考生根据要求作答.【17题答案】【答案】(1)π3(2)13【18题答案】【答案】(1)21n a n =-;(2)2122323n n n T ++-=【19题答案】【答案】(1)tan 3A =(2)12【20题答案】【答案】(1)证明见解析(2)63【21题答案】【答案】(1)240x y +-=(2)证明见解析【22题答案】【答案】(1):20l x a -=,2214x y +=(2)[]1,1-【23题答案】【答案】(1)3t =(2)16 3。
2024学年黑龙江省哈尔滨市重点中学高三数学试题理下学期综合练习请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.要得到函数12y x π⎛⎫=-⎪⎝⎭的图象,只需将函数23y x π⎛⎫=- ⎪⎝⎭图象上所有点的横坐标( )A .伸长到原来的2倍(纵坐标不变),再将得到的图象向右平移4π个单位长度 B .伸长到原来的2倍(纵坐标不变),再将得到的图像向左平移4π个单位长度 C .缩短到原来的12倍(纵坐标不变),再将得到的图象向左平移524π个单位长度 D .缩短到原来的12倍(纵坐标不变),再将得到的图象向右平移1124π个单位长度2.已知抛物线22(0)y px p =>,F 为抛物线的焦点且MN 为过焦点的弦,若||1OF =,||8MN =,则OMN 的面积为( )A .B .C .D .23.已知:cos sin 2p x y π⎛⎫=+ ⎪⎝⎭,:q x y =则p 是q 的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件4.某人用随机模拟的方法估计无理数e 的值,做法如下:首先在平面直角坐标系中,过点1,0A 作x 轴的垂线与曲线x y e =相交于点B ,过B 作y 轴的垂线与y 轴相交于点C (如图),然后向矩形OABC 内投入M 粒豆子,并统计出这些豆子在曲线xy e =上方的有N 粒()N M <,则无理数e 的估计值是( )A .NM N-B .MM N-C .M NN- D .M N5.函数()y f x =满足对任意x ∈R 都有()()2f x f x +=-成立,且函数()1y f x =-的图象关于点()1,0对称,()14f =,则()()()201620172018f f f ++的值为( )A .0B .2C .4D .16.已知函数21,0()2ln(1),0x x x f x x x ⎧-+<⎪=⎨⎪+≥⎩,若函数()()g x f x kx =-有三个零点,则实数k 的取值范围是( ) A .112⎡⎤⎢⎥⎣⎦,B .112⎛⎫ ⎪⎝⎭,C .(0,1)D .12⎛⎫+∞ ⎪⎝⎭,7.执行如图所示的程序框图,如果输入2[2]t e ∈-,,则输出S 属于( )A .[32]-,B .[42]-,C .[0]2,D .2[3]e -,8.设命题:p 函数()x x f x e e -=+在R 上递增,命题:q 在ABC ∆中,cos cos A B A B >⇔<,下列为真命题的是( ) A .p q ∧B .()p q ∨⌝C .()p q ⌝∧D .()()p q ⌝∧⌝9.过抛物线C :y 2=4x 的焦点F C 于点M (M 在x 轴的上方),l 为C 的准线,点N 在l 上且MN ⊥l ,则M 到直线NF 的距离为( )AB .C .D .10.已知m ,n 是两条不重合的直线,α,β是两个不重合的平面,则下列命题中错误的是( ) A .若m //α,α//β,则m //β或m β⊂B .若m //n ,m //α,n α⊄,则n //αC .若m n ⊥,m α⊥,n β⊥,则αβ⊥D .若m n ⊥,m α⊥,则n //α11.下列函数中,在定义域上单调递增,且值域为[)0,+∞的是( ) A .()lg 1y x =+B .12y x =C .2x y =D .ln y x =12.已知不同直线l 、m 与不同平面α、β,且l α⊂,m β⊂,则下列说法中正确的是( ) A .若//αβ,则l//m B .若αβ⊥,则l m ⊥ C .若l β⊥,则αβ⊥D .若αβ⊥,则m α⊥二、填空题:本题共4小题,每小题5分,共20分。
高三年级理数试卷本试卷分第I 卷(选择题60分)和第Ⅱ卷(非选择题90分)两部分。
一共6页。
共24题。
本试卷共150分,考试时间120分钟.祝各位考生考试顺利!第Ⅰ卷 (60分)一、选择题(每小题5分,共60分。
下列每小题所给选项只有一项符合题意,请将正确答案的序号填涂在答题卡上)1.集合{}Z x x x A ∈≤+=,21,{}11,3≤≤-==x x y y B ,则=B A ( ) A .(]1,∞-B.[]1,1-C.φD.{}1,0,1-2.若z 是复数,且()13=+i z (i 为虚数单位),则z 的值为 ( )A .i +-3 B.i --3 C.i +3 D.i -33.已知甲、乙两名篮球运动员某十场比赛得分的茎叶图如图所示, 则甲、乙两人在这十场比赛中得分的平均数与方差的大小关系为( ) A . 乙甲x x < 22x x S S <<乙甲,乙甲 B. 乙甲x x < 22x x S S <>乙甲,乙甲 C. 乙甲x x >22x x S S >>乙甲,乙甲D. 乙甲x x > 22x x S S><乙甲,乙甲4. 一个几何体的三视图如图所示,则该几何体的体积为( )A .2B .1C .23 D .135.设x ,y 满足36020,3x y x y x y --≤⎧⎪-+≥⎨⎪+≥⎩若目标函数z=ax+y (a>0)的最大值为14,则a=( )A .1B .2C .23D .5396.等差数列{n a }前n 项和为n s ,满足4020s s =,则下列结论中正确的是( ) A 、30s 是n s 中的最大值 B 、30s 是n s 中的最小值 C 、30s =0 D 、60s =0乙 甲 8 6 4 3 1 58 6 3 2 4 58 3 4 9 45 01 3 1 6 797.阅读右面程序框图,任意输入一次(01)x x ≤≤与(01)y y ≤≤,则能输出数对(,)x y 的概率为( )A .13B .23 C .14D .348.若函数sin()y A x ωϕ=+(0A >,0ω>,||2πϕ<)在一个周期内的图象如图所示,,M N 分别是这段图象的最高点和最低点,且⋅=0,(O 为坐标原点)则A ω⋅=( ) A 、6πBCD9.已知双曲线221916x y -=,其右焦点为F ,P 其上一点,点M=1,0=⋅,则的最小值为( )A 3C 210.设D 是正123P P P ∆及其内部的点构成的集合,点0P 是123PP P ∆的中心,若集合0{|,||||,1,2,3}i S P P D PP PP i =∈≤=,则集合S 表示的平面区域是 ( ) A . 三角形区域B .四边形区域C . 五边形区域D .六边形区域11.如图,已知平面α⊥平面β,A 、B 是平面α与平面β的 交线上的两个定点,,DA CB ββ⊂⊂,且DA α⊥,CB α⊥,4AD =,8BC =,6AB =,在平面α上有一个动点P , 使得APD BPC ∠=∠,则PAB ∆的面积的最大值是( )A239 B 536 C 12 D 2412.已知函数()||,()xxaf x e a R e =+∈在区间[0,1]上单调递增,则实数a 的取值范围是( )A . [0,1]a ∈ B . ]0,1[-∈a C. [1,1]a ∈- D. ),[],(22+∞⋃--∞∈e e aβαA CBP D第Ⅱ卷( 90分)角为,则塔高为14.已知函数()f x 满足:(1)4f =,4()()()(),(,)f x f y f x y f x y x y R =++-∈,则(2010)f =____________.15.在平面直角坐标系中,定义点),(),,(2211y x Q y x P 之间的“直角距离”为||||),(2121y y x x Q P d -+-=。
第七章 不等式一.基础题组1.设z x y =+,其中实数x ,y 满足2000x y x y y k +≥⎧⎪-≤⎨⎪≤≤⎩,若z 的最大值为6,则z 的最小值为( )A .3-B .2-C .1-D .02. 【黑龙江哈尔滨市第六中学2016届高三上学期期中考试7】已知),(y x P 为区域⎩⎨⎧≤≤≤-a x x y 0022内的任意一点,当该区域的面积为4时,y x z -=2的最大值是().A 6.B 0.C 2.D 223. 【山东师范大学附属中学2016届高三上学期第二次模拟考试5】设,x y 满足约束条件231,1x x y y x ≥⎧⎪-≤⎨⎪≥+⎩则下列不等式恒成立的是( ) A.3x ≥B.4y ≥C.280x y +-≥D.210x y -+≥4.【四川成都七中高2016届数学(理科)10月阶段考试(一)6】若实数a ,b满足11a b+=,则ab 的最小值为( )B .2C .D .45.【福建三明一中2016届上学期高三第一月考7】下列不等式一定成立的是()A .lg ⎝ ⎛⎭⎪⎫x 2+14>lg x(x>0)B .sin x +1sin x ≥2(x≠k π,k∈Z)C .x 2+1≥2|x|(x∈R)D .1x 2+1>1(x∈R) 6.【黑龙江牡丹江市一中2016届高三10月月考8】已知0a b >>,且1ab =,若01c <<,22log 2c a b p +=,2log c q =,则,p q 的大小关系是( ) A.q p > B.q p < C. q p = D. 无法确定7. 【山东潍坊一中2016届高三10月考2】 若0<<b a ,则下列不等式中不成立的是( )A .b a >B .ab a 11>- C .b a 11> D .22b a >8. 【河北衡水中学2016届高三上学期三调2】若,x y 满足010x y x x y +≥⎧⎪≥⎨⎪-≥⎩则下列不等式恒成立的是( ) A.1y ≥- B.2x ≥ C.220x y ++≥ D.210x y -+≥9. 【嘉兴市第一中学2015学年第一学期期中考试2】 已知:11,:(2)(6)0p m x m q x x -<<+--<,且q 是p 的必要不充分条件,则m 的取值范围是( ▲ )A .35m << B. 35m ≤≤ C .53m m ><或 D. 53m m ≥≤或10.【辽宁省葫芦岛市一高2016届上学期期中考试4】若实数x ,y 满足4024020+-⎧⎪--⎨⎪-+⎩x y x y x y ………,则目标函数23=+z x y 的最大值为( ).A 11.B 24.C 36.D 4911.浙江温州二外2015学年第一学期高三10月阶段性测试12】已知实数,x y 满足⎪⎩⎪⎨⎧≤-+≤≥092,,0y x x y x ,这y x z -=的最小值是.12.【山东潍坊一中2016届高三10月考12】设实数y x ,满足⎪⎩⎪⎨⎧>≥-≤-+.0,0,042y y x y x 则y x 2-的最大值为. 13. 【山东潍坊一中2016届高三10月考14】 在等式“()()911+=”的两个括号内各填入一个正整数,使它们的和最小,则填入的两个数依次为、.14.【河北衡水中学2016届高三上学期三调13】已知正实数,,a b c ,且1a b c ++=,则()222149a b c+++的最小值为.15. 【浙江宁波效实中学201届上学期高三期中考试13】已知,x y 均为正实数,且32x y +=,则2x yxy+的最小值为.二.能力题组1. 【福建三明一中2016届上学期高三第一月考9】 已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -2y +3≥0,x -3y +3≤0,y -1≤0,,若目标函数z =y -ax 仅在点(-3,0)处取到最大值,则实数a 的取值范围为( )A.),21(+∞B .(3,5) C .(-1,2) D.)1,31(2. 【华中师大一附中2015—2016学年度上学期高三期中检测8】 若对于任意的x [1,0]∈-,关于x 的不等式2320x ax b ++≤恒成立, 则221a b +-的最小值为( )A.45B94C. 95D.543.【河北衡水中学2016届高三上学期三调4】已知a b >,二次三项式220ax x b ++≥对于一切实数x 恒成立.又0x R ∃∈,使20020ax x b ++=成立,则22a b a b+-的最小值为( )A.1C.2D.4.【嘉兴市第一中学2015学年第一学期期中考试5】若x ,y 满足20200x y kx y y +-≥⎧⎪-+≥⎨⎪≥⎩且z =y -x 的最小值为-4,则k 的值为( ▲ ) A .-2 B .12-C .12D .2 5.【西藏日喀则地区一高2015学年第一学期10月检测15】已知O 为坐标原点,点M 的坐标为()2,1,点(),x y N 的坐标x 、y 满足不等式组2303301x y x y y +-≤⎧⎪+-≥⎨⎪≤⎩,则OM ⋅ON 的取值范围是.6. 【辽宁省抚顺市第一中学2016届高三10月月考15】 已知点(,)P x y 满足条件020x y xx y k ≥⎧⎪≤⎨⎪++≤⎩,若3z x y =+的最大值为8,则实数k=.7. 【嘉兴市第一中学2015学年第一学期期中考试14】 已知实数x 、y 、z 满足0x y z ++=,2221x y z ++=,则x 的最大值为▲ .三.拔高题组1. 【华中师大一附中2015—2016学年度上学期高三期中检测10】设函数2()3f x x ax a =-++,()2g x ax a =-,若0x R ∃∈,使得0()0f x <和0()0g x <同时成立,则a 的取值范围为( )A.(7,)+∞B.(6,)(,2)+∞-∞- C.(,2)-∞- D.(7,)(,2)+∞-∞-2. 【河北衡水中学2016届高三上学期三调12】已知正实数a b c 、、,若22241a b c ++=,则2ab ac ++的最大值为( )A.1B.23. 【嘉兴市第一中学2015学年第一学期期中考试8】 设{}(),(()())min (),()(),(()())f x f xg x f x g x g x f x g x ≤⎧=⎨>⎩.若2()f x x px q =++的图象经过两点(,0),(,0)αβ,且存在整数n ,使得1n n αβ<<<+成立,则( ▲ )A .{}1min (),(1)4f n f n +>B .{}1min (),(1)4f n f n +<C .{}1min (),(1)4f n f n +=D .{}1min (),(1)4f n f n +≥。
高三理科数学试题参考答案CADDC ADACA BC 13.{}52x x x <≠且 14.6a ≥- 15. 9 16.①③④17答案:解:(Ⅰ)()1cos 22f x x x ωω=-π2sin 216x ω⎛⎫=-+ ⎪⎝⎭. 因为函数()f x 的最小正周期为π,且0ω>, 所以2ππ2ω=,解得1ω=. (Ⅱ)由(Ⅰ)得π()2sin 216f x x ⎛⎫=-+ ⎪⎝⎭. 因为2π03x ≤≤, 所以ππ7π2666x --≤≤, 所以π1sin 226x ⎛⎫-- ⎪⎝⎭≤2≤. 因此π0sin 216x ⎛⎫-+ ⎪⎝⎭≤≤3,即()f x 的取值范围为[]03,. 18解:(1)由3cos()cos 2A CB -+=及π()B AC =-+得 3cos()cos()2A C A C --+=,-------2分 3cos cos sin sin (cos cos sin sin )2A C A C A C A C +--=, 3sin sin 4A C =. 又由题知2b ac =及正弦定理得2sin sin sin B A C =, 故23sin 4B =,-------4分sin 2B =或sin 2B =-(舍去), 于是π3B =或2π3B =.又由2b ac =知b a ≤或b c ≤, 所以π3B =.------------6分 由以上知:π3B =代入3cos()cos 2A C B -+=得:cos()1A C -=; 即3A C π==;因此ABC △为等边三角形,-------9分(2)因为ABC △为等边三角形,π83b B ==,. 所以ABC △的面积为21sin 2ABCS b B ∆==分 19.解:设1(1)n a a n d =+-,则1125,613,a d a d +=⎧⎨+=⎩解得11,2a d ==.………………4分 所以}{n a 的通项公式为1(1)221n a n n =+-⨯=-.…………………………………6分(2)解:依题意得2133n a n n b -==.……………………………………………………8分 因为21121393n n n n b b ++-==,所以}{n b 是首项为1133b ==,公比为9的等比数列,……10分 所以}{n b 的前n 项和3(19)3(91)198n n n T ⨯-==--.………………………………12分 20解:(1)21,3nn n a n b =-=。
重庆长寿中学高三数学理测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知集合,,则A. B.C. D.参考答案:C2. 如图是一几何体的三视图,则该几何体的体积是( )A.9B.10C.12D. 18参考答案:A3. 在同一个坐标系中画出函数的部分图象,其中且a≠1,则下列图象中可能正确的是参考答案:D 略4. 若,,则的大小关系为()A. B.C. D.参考答案:A5. 已知关于的方程在有且仅有两根,记为,则下列的四个命题正确的是()A.B.C.D.参考答案:C略6. 函数的图像可由的图像向右平移A.个单位 B.个单位 C.个单位 D.个单位参考答案:D略7. 对于非零向量,“∥”是“”成立的A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件参考答案:B8. “x >0,y >0”是“”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件参考答案:A【考点】必要条件、充分条件与充要条件的判断. 【分析】“x >0,y >0”?“”,反之不成立,例如取x=y=﹣1.【解答】解:“x >0,y >0”?“”,反之不成立,例如取x=y=﹣1.∴x >0,y >0”是“”的充分而不必要条件.故选:A .9. 函数的图象大致为( )参考答案: A10. 如果等差数列中,,那么等于A .21B .30C .35D .40参考答案:C 略二、 填空题:本大题共7小题,每小题4分,共28分11. 已知集合A={﹣1,3},B={2,4},则A∩B= .参考答案:{2}考点: 交集及其运算. 专题: 集合.分析: 根据交集的运算定义计算即可. 解答: 解:集合A={﹣1,3},B={2,4},∴A∩B={2};故答案为:{2}点评: 本题考查了交集的运算,属于基础题.12. 当时,,则方程根的个数是___________参考答案:答案:2个13. 如图,在边长为(为自然对数的底数)的正方形中,阴影部分的面积为.参考答案:e 2-2正方形的面积为 ;A(1,e),B(0,1)所以曲边形ACB的面积为因为与互为反函数,图像关于对称所以曲边形DEF的面积等于曲边形ACB的面积,都为1。
5高三数学(理科)专题训练 A. —B. -C. —D.—6.下列关系式中正确的是()《三角函数、三角包等变换与解三角形》A. sinllsin168C. sin11sin1687.在锐角cos10 sin168sin 11 cos10sin168 cos10cos10 sin11ABC中,角A,B.D.1 . 选择题为三角形的一个内角,边长分别为a,b.若2asinB角A等于()B所对的J3b,则tan A.1212c13B,()VC。
沪2.函数y sin x和函数增函数的区间是()12有cosx者B是A . - B. - C. - D.8.已知函数f (x) Acos( x )(A则f(x)是奇函数”是“0, 0,R),A. [2k. [2k ,2k Lk2— ](k2](k Z)BZ)C. [2k ,2ka](k Z)D.[2k -,2k25 3.已知sin(一2 ](kZ)2A .充分不必要条件B .必要不充分条件C.充分必要条件D .既不充分也不必要条件二、填空题9.已知扇形AOB的周长是6cm,该扇形中心角是1弧度,则该扇形面积是.1,那么510.设sin2 sincos A.() 2 B. 54.在图中,1C.51D. 25 5tan2 的值是11.在锐角ABC中,BC 1, BA、B是单位圆。
上的AC2 A,则小匕的值等于cosA点,C是圆与x轴正半轴的交点,A点的坐标为(3,4),5 5且AOB是正三角形.则cos COB的值为(),AC的取值范围为12.函数 f(x) si 的最大传A.C. 4 3、3103 4 310B.D.4 3.3103 4 . 310-2 sin cos(x )三、解答题山13.已知函数f(x) 3sin( x )( 0,- -)5,将函数y 3cosx sin x(x R)的图象向左平移m(m 0)个长度单位后,所得到的图象关于y轴对称,则m的最小值是() 的图象关于直线x —对称,且3图象上相邻两个最高点的距离为⑴求和的值;3 / ,求⑵右 f (—) 2 cos( ,)的值. 14 .已知向量, 1、।a (cosx, -), b2x R,设函数f (x)(1)求f (x)的最小正周期; (2)求f (x)在[0,—]上的最大值和2最小值.■ ---(3sin x, a b.15 .已知函数f (x) Asin(x —), x R,且 4f(- ) 3. 12 2(1)求A 的值;3⑵若 f( ) f()二, 2 求 f(3).416 .已知函数f (x) 3 sin xcos x Q x R,且函数f (x)的最小正周期为.(1)求的值和函数f(x)的单调增区问;(2)在ABC 中,角A,B,C 所对的边分 别是a,b,c,又A 4f (一 一) —, b 2, ABC 的面积 2 3 5等于3,求边长a 的值. 17 .已知函数x x xf (x) 2 sin - cos - . 3 cos -4 4 2(1)求函数f(x)的最小正周期及 最值;(2)令g(x) f (x 3),判断函数 g(x)的奇偶性,并说明理由.18 .在ABC 中,内角A 、B 、C 所对的边分别为a 、b 、c 已知a b, c 3,(1)求角C 的大小;4(2)若sin A —,求 ABC 的面积.5(",1cos2 x,2高三数学(理科)专题训练数列一、选择题1.数列\;’275,2.虎,/1,,的一个通项公式是()A. a n J3n 3B. a n J3n 1C. a n J3n 1D. % Cn 32.已知等差数列⑶}中,a? a9 16冏1,则a12的值是()A. 15B. 30C. 31D. 643.等比数列⑶}中,a〔a9 64, a3 a? 20,则an 的值是()A. 1B. 64C. 1 或64D. 1 或324. ABC的三边a,b, c既成等差数列又成等比数列,则此三角形是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等边三角形5.已知数列{a n}满足二、填空题9.在等差数列{a n}中,a〔a3 a5 12, a3 a4 a5 8,则通项a n 1 a n a n 1(n 2), a1 记S n a1 a2 a3结论正确的是()1, a2 3, a n,则下列A. a2014C. a2014 a20143,S2014a20141,S20141 ,S2053, S20'514142B.2D.6.如果在等差数列{a n}中,a3 a4 a5 12,那么a〔a2 a?()A. 14B. 21C. 28D. 357.数列{a n}中,a11,a2 2 3,a3 4 5 6,a47 那么a10 ()A. 495B. 505C. 550D. 5958.各项均为实数的等比数列{a n}的前n项和为S n,若S10 10, S30 70,贝US40 ()A. 150B. 200C. 150 或200D. 400 或50 a n .10.设等比数列{a n}的前n项和为S n,若"I 3,则S9 .11.设平面内有n条直线(n 2),其中任意两条直线都相交且交点不同;若用f(n)表示这n条直线把平面分成的区域个数,则f (2) , f(3) , f(4) .当n 4 时,f (n) .12.已知数列{a n}的通项公式为n 1a n log2----------(n N*).设其刖n 项n 2和为S n,则使S n 5成立的最小自然数n是.三、解答题13.等差数列{a n}的前n项和为S n,a123,公差d为整数,且第6 项为正,从第7项起变为负.(1)求d的值;(2)求S n的最大值;(3)当S n是正数时,求n的最大化14.设a1,d为实数,首项为诩、公差为d的等差数列{a n}的前n项和为S n,满足&S6 15 0.⑴若S5 5,求S6及为;(2)求d的取值范围.[0,5.,已知数歹{a n}的首项a1 a,S n是,薮列{a n}的前n项和,且满足S2 3n2a n S21,a n 0,(1)若数列{a n}是等差数列,求a 的值;(2)确定a的取值集合M,使a M时,数列{a n}是递增数列.16 .已知{a n }为递增的等比数列,且⑶自0}{ 10, 6, 2,0,1,3,4,16}.(1)求数列{a n }的通项公式; (2)是否存在等差数列{b n },使得对一切n N *都成立?若存在, 求出bn ;若不存在,说明理由.17 .等差数列{a n }各项均为正整数,a 1 3,前n 项和为S n ,等比数列 {b n }中,b 1 1,且b 2s 2 64, {b a n } 是公比为64的等比数列.(1)求 a n 与 b n ;1 113 (2)证明:-——3S 1 S 2S n 418.已知数列{a n }, S n 为其前n 项的 和,S n n a n 9, n N *.(1)证明数列{a n }不是等比数列;(2)令b n a n 1,求数列{b n }的通项公式b n ;(3)已知用数列{b n }可以构造新数 列.例如:{sin b n },…,请写出用数列{b n }构造 出的新数列{P n }的通项公式,使数 列{P n }满足以下两个条件,并说明 理由.①数列{ P n }为等差数列;②数列a 〔b na 2b n 1a 3b n 2a nb 12n{3b n }, {2b n1}, {b :}, {,}, {2b n },{P n}的前n项和有最大值.高三数学(理科)专题训练三<概率〉一、选择题1 .对满足A B的非空集合A、B有下列四个命题:其中正确命题的个数为()①若任取x A,则x B是必然事件②若x A,则x B是不可能事件③若任取x B,则x A是随机事件④若x B,则x A是必然事件A. 4B. 3C. 2D. 12.从1, 2,…,9中任取两个数,其中在下列事件中,是对立事件的是()①恰有一个是偶数和恰有一个是奇数②至少有一个是奇数和两个都是奇数③至少有一个是奇数和两个都是偶数④至少有一个奇数和至少有一个偶数A.①B.②④C.③D.①③3.如图所示,设D是图中边长为4 的正方形区域,E是D内函数y x2图象下方的点构成的区域,向D中随机投一点,则该点落入E中的概率为()A. 1B. 1C. -D. 12 3 4 54.投掷一枚均匀硬币和一枚均匀骰子各一次,记硬币正面向上”为事件A,骰子向上的点数是3”为内任取A. 1B. 1C. -D. 2 3 36.已知随机变量服从正态分布N(0, 2),若P( 2) 0.023, WJP( 2 2)的值为()7.把半径为2的圆分成相等的四弧,再将四弧围成星形放在半径为2的圆内,现在往该圆内任投8.某市组织一次高三调研考试,考试后统计的数学成绩服从正态分布~N(80,102),则下列命题中不正确的是()事件B,则事件A、件发生的概率是()B中至少有一A. —B. -C.12 2172D-5.如图所示,圆C内切于扇形AOB, AOB 一,若在扇形AOB3点,则该点在圆C内的概率为()点,此点落在星形内2 2 *2 1 2 ,()4 2 c 4 1A . — 1B . — C.——A.该市这次考试的数学平均成绩为80分B.分数在120分以上的人数与分数在60分以下的人数相同C.分数在110分以上的人数与分数在50分以下的人数相同D.该市这次考试的数学成绩标准差为10二、填空题9.盒子里共有大小相同的三只白球、一只黑球,若从中随机摸出两只球,则它们颜色不同的概率是. 10.在集合{x|x —,n 1,2,3, ,10}中任取6 1个元素,所取元素恰好满足方1一程cosx -的概率是.211.在区间[3,3]上随机取一个数x,使得|x 1 | |x 2| 1成立的概率为.12.在一次教师联欢会上,到会的女教师比男教师多12人,从这些教师中随机挑选一人表演节目,若选到男教师的概率为旦,则参20 加联欢会的教师共有 _______ 人.13.已知三、解答题14.袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,已知得到红球的概率是1,得到黑球或黄球的概率是—,3 12得到黄球或绿球的概率也是-,12试求得到黑球、黄球、绿球的概率分别是多少?15.某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别是2和3.现安排甲组研发新产品A,3 5乙组研发新产品B.设甲、乙两组的研发相互独立.(1)求至少有一种新产品研发成功的概率;(2)若新产品A研发成功,预计企业可获利润120万元;若新产品B研发成功,预计企业可获得利润100万元.求该企业可获利润的分布列和数学期望.16.一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示:将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立. (1)求在未来连续3天里,有连续2 大的日销售量都不低于100个且另一大的日销售量低于50个的概率;(2)用X表示在未来3天里日销售量2{(x, y)|x y 6,x Qy 0}, A {(x, y)|x 4, y 0,x y 0}. 若向区域上随机投一点P,则P落入区域A的概率是.不低于100个的天数,求随机变量X 的分布列,期望E(X)及方差D(X).17设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0605050.4,各人是否需使用设备相互独立.(1)求同一工作日至少3人需使用设备的概率;(2) X表示同一工作日需使用设备的人数,求X的数学期望.18乒乓球台面被球网分成甲、乙两部分.如图,甲上有两个不相交的区域A,B,乙被划分为两个不相交的区域C,D .某次测试要求队员接到落点在甲上的来球后向乙回球.规定:回球一次,落点在C上记3分,落点在1分,其它情况记0分,落点D上记1在C上的概率为—,在D上的概率为 5 3.假设共有两次来球且落在A, B上 5 各一次,小明的两次回球互不影响. 求:(I )小明两次回球的落点中恰有一次的落点在乙上的概率;(II )两次回球结束后,小明得分之和的分布列与数学期望.高三数学(理科)专题训练四《立体几何初步》一、选择题1.已知ABC的三个顶点为A(3,3,2)、B(4, 3,7)、C(0,5,1), 则BC边上的中线长为()A. 5B. 4C. 3D. 22.如图所示,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()A. 6B. 9C. 12D. 183. 一个几何体的三视图形状都相同,大小均相等,那么这个几何体不可能是()A.球B.三棱锥C.正方体D.圆柱4.已知m、n表示两条不同直线,表示平面,下列说法中正确的是()A .若m// , n〃,则m// nB.若m// ,m n,,则nC.若m , m n,,贝U n〃D.若m , n ,,则m n5.已知一个几何体的三视图如图所示(单位:cm),则该几何体的体积为()A. 10 cm3B. 20 cm3c 10 3 20 3C. ---- c m D . ---- cm6.已知过球面上A,B,C三点的截面和球心的距离等于球半径的一半,且AB BC CA 2,则球的半径是()7.用a,b,c表示三条不同的直线,表示平面,给出下列命题:其中正确的命题是()①若a // b,b // c,则a // c;②若 a b,b c,贝U a c;③若a// ,b//,则a//b;④若a ,b ,则a//b.A.①②B.②③C.①④D.③④8. 一个圆锥和一个半球有公共底A.3B. 4C. - D. 45 5二、填空题9.已知三棱柱ABC顶点都在球。
1.抛物线x 2=12y 的焦点到准线的距离是( )A .2B .1 C.12 D.14 2.过点P(-2,3)的抛物线的标准方程是( )A .y 2=-92x 或x 2=43yB .y 2=92x 或x 2=43yC .y 2=92x 或x 2=-43yD .y 2=-92x 或x 2=-43y3.若抛物线y =ax 2的焦点坐标是(0,1),则a =( )A .1 B.12 C .2 D.144.若抛物线y 2=2px 上一点P(2,y 0)到其准线的距离为4,则抛物线的标准方程为( )A .y 2=4xB .y 2=6xC .y 2=8xD .y 2=10x5.已知点A(-2,3)在抛物线C :y 2=2px 的准线上,记C 的焦点为F ,则直线AF 的斜率为( )A .-43B .-1C .-34D .-126.若抛物线y 2=2px(p>0)上一点到焦点和到抛物线对称轴的距离分别为10和6,则抛物线的方程为( )A .y 2=4xB .y 2=36xC .y 2=4x 或y 2=36xD .y 2=8x 或y 2=32x7.以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E 两点.已知|AB|=42,|DE|=25,则C 的焦点到准线的距离为( )A .2B .4C .6D .88.已知直线l 1:4x -3y +6=0和直线l 2:x =-1,抛物线y 2=4x 上一动点P 到直线l 1和直线l 2的距离之和的最小值是( )A.355 B .2 C.115 D .39.点A 是抛物线C 1:y 2=2px(p>0)与双曲线C 2:x 2a 2-y 2b2=1(a>0,b>0)的一条渐近线的交点,若点A 到抛物线C 1的准线的距离为p ,则双曲线C 2的离心率等于( )A. 2B. 3C. 5D. 610.设抛物线C :y 2=2px(p>0)的焦点为F ,点M 在C 上,|MF|=5,若以MF 为直径的圆过点(0,2),则C 的方程为( )A .y 2=4x 或y 2=8xB .y 2=2x 或y 2=8xC .y 2=4x 或y 2=16xD .y 2=2x 或y 2=16x11.已知抛物线y 2=2px(p>0)上一点M 到焦点F 的距离等于2p ,则直线MF 的斜率为( )A .± 3B .±1C .±34D .±3312.已知抛物线y 2=2px(p>0)的焦点为F ,△ABC 的顶点都在抛物线上,且满足FA →+FB →+FC →=0,则1k AB +1k BC +1k CA=( )A .0B .1C .2D .2p13.经过抛物线y 2=8x 的焦点和顶点且与其准线相切的圆的半径为________.14.已知抛物线x 2=4y 的焦点为F ,准线为l ,P 为抛物线上一点,过P 作PA ⊥l 于点A ,当∠AFO =30°(O 为坐标原点)时,|PF|=________.15.已知定点Q(2,-1),F 为抛物线y 2=4x 的焦点,动点P 为抛物线上任意一点,当|PQ|+|PF|取最小值时,P 的坐标为________.16.右图是抛物线形拱桥,当水面在l 时,拱顶离水面2米,水面宽4米.水位下降1米后,水面宽________米.17.抛物线y2=2px(p>0)有一个内接直角三角形,直角顶点是原点,一条直角边所在直线方程为y=2x,斜边长为513,求此抛物线方程.18.已知抛物线C:x2=2py(p>0),圆O:x2+y2=1.(1)若抛物线C的焦点F在圆上,且A为C和圆O的一个交点,求|AF|;(2)若直线l与抛物线C和圆O分别相交于点M,N,求|MN|的最小值及相应p的值.1.抛物线x 2=12y 的焦点到准线的距离是( )A .2B .1 C.12 D.14答案 D 解析 抛物线标准方程x 2=2py(p>0)中p 的几何意义为:抛物线的焦点到准线的距离,又p =14,故选D.2.过点P(-2,3)的抛物线的标准方程是( )A .y 2=-92x 或x 2=43yB .y 2=92x 或x 2=43yC .y 2=92x 或x 2=-43yD .y 2=-92x 或x 2=-43y答案 A 解析 设抛物线的标准方程为y 2=kx 或x 2=my ,代入点P(-2,3),解得k =-92, m =43,∴y 2=-92x 或x 2=43y ,选A.3.若抛物线y =ax 2的焦点坐标是(0,1),则a =( )A .1 B.12 C .2 D.14答案 D 因为抛物线的标准方程为x 2=1a y ,所以其焦点坐标为(0,14a ),则有14a =1,a =14, 4.若抛物线y 2=2px 上一点P(2,y 0)到其准线的距离为4,则抛物线的标准方程为( )A .y 2=4xB .y 2=6xC .y 2=8xD .y 2=10x答案 C 解析 ∵抛物线y 2=2px ,∴准线为x =-p2.∵点P(2,y 0)到其准线的距离为4, ∴|-p2-2|=4.∴p =4,∴抛物线的标准方程为y 2=8x.5.已知点A(-2,3)在抛物线C :y 2=2px 的准线上,记C 的焦点为F ,则直线AF 的斜率为( )A .-43B .-1C .-34D .-12答案 C 解析 因为点A 在抛物线的准线上,所以-p2=-2,所以该抛物线的焦点F(2,0),所以k AF =3-0-2-2=-34. 6.若抛物线y 2=2px(p>0)上一点到焦点和到抛物线对称轴的距离分别为10和6,则抛物线的方程为( )A .y 2=4xB .y 2=36xC .y 2=4x 或y 2=36xD .y 2=8x 或y 2=32x答案 C 解析 因为抛物线y 2=2px(p>0)上一点到抛物线的对称轴的距离为6,所以若设该点为P ,则P(x 0,±6).因为P 到抛物线的焦点F(p2,0)的距离为10,所以由抛物线的定义得x 0+p2=10 ①.因为P 在抛物线上,所以36=2px 0 ②.由①②解得p =2,x 0=9或p =18,x 0=1,则抛物线的方程为y 2=4x 或y 2=36x.7.以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E 两点.已知|AB|=42,|DE|=25,则C 的焦点到准线的距离为( )A .2B .4C .6D .8 答案 B解析 由题意,不妨设抛物线方程为y 2=2px(p>0),由|AB|=42,|DE|=25,可取A(4p ,22),D(-p 2,5),设O 为坐标原点,由|OA|=|OD|,得16p 2+8=p 24+5,得p =4,所以选B.8.已知直线l 1:4x -3y +6=0和直线l 2:x =-1,抛物线y 2=4x 上一动点P 到直线l 1和直线l 2的距离之和的最小值是( )A.355 B .2 C.115 D .3答案 B 解析 由题可知l 2:x =-1是抛物线y 2=4x 的准线,设抛物线的焦点为F(1,0),则动点P 到l 2的距离等于|PF|,则动点P 到直线l 1和直线l 2的距离之和的最小值,即焦点F 到直线l 1:4x -3y +6=0的距离,所以最小值是|4-0+6|5=2,故选B.9.点A 是抛物线C 1:y 2=2px(p>0)与双曲线C 2:x 2a 2-y 2b2=1(a>0,b>0)的一条渐近线的交点,若点A 到抛物线C 1的准线的距离为p ,则双曲线C 2的离心率等于( )A. 2B. 3C. 5D. 6 答案 C解析 求抛物线C 1:y 2=2px(p>0)与双曲线C 2:x 2a 2-y 2b 2=1(a>0,b>0)的一条渐近线的交点为⎩⎪⎨⎪⎧y 2=2px ,y =b a x ,解得⎩⎨⎧x =2pa 2b 2,y =2pa b ,所以2pa 2b 2=p 2,c 2=5a 2,e =5,故选C.10.设抛物线C :y 2=2px(p>0)的焦点为F ,点M 在C 上,|MF|=5,若以MF 为直径的圆过点(0,2),则C 的方程为( )A .y 2=4x 或y 2=8xB .y 2=2x 或y 2=8xC .y 2=4x 或y 2=16xD .y 2=2x 或y 2=16x答案 C 解析 方法一:设点M 的坐标为(x 0,y 0),由抛物线的定义,得|MF|=x 0+p2=5,则x 0=5-p 2. 又点F 的坐标为(p 2,0),所以以MF 为直径的圆的方程为(x -x 0)(x -p2)+(y -y 0)y =0.将x =0,y =2代入得px 0+8-4y 0=0,即y 022-4y 0+8=0,所以y 0=4. 由y 02=2px 0,得16=2p(5-p2),解之得p =2或p =8. 所以C 的方程为y 2=4x 或y 2=16x.故选C.方法二:由已知得抛物线的焦点F(p2,0),设点A(0,2),抛物线上点M(x 0,y 0), 则AF →=(p 2,-2),AM →=(y 022p,y 0-2).由已知得,AF →·AM →=0,即y 02-8y 0+16=0,因而y 0=4,M(8p ,4).由抛物线定义可知:|MF|=8p +p2=5.又p>0,解得p =2或p =8,故选C.11.已知抛物线y 2=2px(p>0)上一点M 到焦点F 的距离等于2p ,则直线MF 的斜率为( )A .± 3B .±1C .±34D .±33答案 A 解析 设M(x M ,y M ),由抛物线定义可得|MF|=x M +p 2=2p ,解得x M =3p2,代入抛物线方程可得y M =±3p ,则直线MF 的斜率为y M x M -p 2=±3pp =±3,选项A 正确.12.已知抛物线y 2=2px(p>0)的焦点为F ,△ABC 的顶点都在抛物线上,且满足FA →+FB →+FC →=0,则1k AB +1k BC +1k CA=( )A .0B .1C .2D .2p 答案 A解析 设点A(x 1,y 1),B(x 2,y 2),C(x 3,y 3),F(p 2,0),则(x 1-p 2,y 1)+(x 2-p 2,y 2)+(x 3-p2,y 3)=(0,0),故y 1+y 2+y 3=0.∵1k AB =x 2-x 1y 2-y 1=12p (y 22-y 12)y 2-y 1=y 2+y 12p ,同理可知1k BC =y 3+y 22p ,1k CA =y 3+y 12p ,∴1k AB +1k BC +1k CA =2(y 1+y 2+y 3)2p=0. 13.经过抛物线y 2=8x 的焦点和顶点且与其准线相切的圆的半径为________. 答案 3 解析 圆心是x =1与抛物线的交点.r =1+2=3.14.已知抛物线x 2=4y 的焦点为F ,准线为l ,P 为抛物线上一点,过P 作PA ⊥l 于点A ,当∠AFO =30°(O 为坐标原点)时,|PF|=________.答案 43解析 设l 与y 轴的交点为B ,在Rt △ABF 中,∠AFB =30°,|BF|=2,所以|AB|=233.设P(x 0,y 0),则x 0=±233,代入x 2=4y 中,得y 0=13,从而|PF|=|PA|=y 0+1=43. 15.已知定点Q(2,-1),F 为抛物线y 2=4x 的焦点,动点P 为抛物线上任意一点,当|PQ|+|PF|取最小值时,P 的坐标为________.答案 (14,-1)解析 设点P 在准线上的射影为D ,则根据抛物线的定义可知|PF|=|PD|,∴要使|PQ|+|PF|取得最小值,即D ,P ,Q 三点共线时|PQ|+|PF|最小.将Q(2,-1)的纵坐标代入y 2=4x 得x =14,故P 的坐标为(14,-1).16.右图是抛物线形拱桥,当水面在l 时,拱顶离水面2米,水面宽4米.水位下降1米后,水面宽________米.答案 26解析 建立如图所示的平面直角坐标系, 设抛物线的方程为x 2=-2py(p>0),由点(2,-2)在抛物线上,可得p =1,则抛物线方程为x 2=-2y. 当y =-3时,x =±6,所以水面宽为2 6 米.17.抛物线y 2=2px(p>0)有一个内接直角三角形,直角顶点是原点,一条直角边所在直线方程为y =2x ,斜边长为513,求此抛物线方程.解析 设抛物线y 2=2px(p>0)的内接直角三角形为AOB ,直角边OA 所在直线方程为y =2x ,另一直角边所在直线方程为y =-12x.解方程组⎩⎪⎨⎪⎧y =2x ,y 2=2px ,可得点A 的坐标为⎝⎛⎭⎫p 2,p ;解方程组⎩⎪⎨⎪⎧y =-12x ,y 2=2px ,可得点B 的坐标为(8p ,-4p). ∵|OA|2+|OB|2=|AB|2,且|AB|=513,∴⎝⎛⎭⎫p 24+p 2+(64p 2+16p 2)=325.∴p =2,∴所求的抛物线方程为y 2=4x.18.已知抛物线C :x 2=2py(p>0),圆O :x 2+y 2=1.(1)若抛物线C 的焦点F 在圆上,且A 为C 和圆O 的一个交点,求|AF|;(2)若直线l 与抛物线C 和圆O 分别相交于点M ,N ,求|MN|的最小值及相应p 的值.解析 (1)由题意F(0,1),∴C :x 2=4y.解方程组⎩⎨⎧x 2=4y ,x 2+y 2=1,得y A =5-2,∴|AF|=5-1.(2)设M(x 0,y 0),则切线l :y =x 0p (x -x 0)+y 0,整理得x 0x -py -py 0=0. 由|ON|=1得|py 0|=x 02+p 2=2py 0+p 2,∴p =2y 0y 02-1且y 02-1>0.∴|MN|2=|OM|2-1=x 02+y 02-1=2py 0+y 02-1=4y 02y 02-1+y 02-1=4+4y 02-1+(y 02-1)≥8,当且仅当y 0=3时等号成立.∴|MN|的最小值为22,此时p = 3.。
(新课标版)高三理科数学复习(全套)题型配套练习汇总题型专项集训题型练1选择题、填空题综合练(一)能力突破训练1.已知集合A={1,2,3,4},B={y|y=3x-2,x∈A},则A∩B=()A.{1}B.{4}C.{1,3}D.{1,4}2.若复数z满足2z+=3-2i,其中i为虚数单位,则z=()A.1+2iB.1-2iC.-1+2iD.-1-2i3.若a>b>1,0<c<1,则()A.a c<b cB.ab c<ba cC.a log b c<b log a cD.log a c<log b c4.执行如图所示的程序框图,若输入的a值为1,则输出的k值为()A.1B.2C.3D.45.等差数列{a n}的公差d≠0,且a3,a5,a15成等比数列,若a1=3,S n为数列{a n}的前n项和,则S n的最大值为()A.8B.6C.4D.46.某三棱锥的三视图如图所示,则该三棱锥的表面积是()A.2+B.4+C.2+2D.57.已知直线l1:x+2y+1=0,l2:Ax+By+2=0(A,B∈{1,2,3,4}),则l1与l2不平行的概率为()A.B.C.D.8.某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A点表示十月的平均最高气温约为15 ℃,B点表示四月的平均最低气温约为5 ℃.下面叙述不正确的是()A.各月的平均最低气温都在0 ℃以上B.七月的平均温差比一月的平均温差大C.三月和十一月的平均最高气温基本相同D.平均最高气温高于20 ℃的月份有5个9.将函数y=sin图象上的点P向左平移s(s>0)个单位长度得到点P'.若P'位于函数y=sin 2x的图象上,则()A.t=,s的最小值为B.t=,s的最小值为C.t=,s的最小值为D.t=,s的最小值为10.函数f(x)=x cos x2在区间[0,2]上的零点的个数为()A.2B.3C.4D.511.如图,半圆的直径AB=6,O为圆心,C为半圆上不同于A,B的任意一点,若P为半径OC上的动点,则()·的最小值为()A.B.9 C.-D.-912.函数f(x)=(1-cos x)sin x在[-π,π]上的图象大致为()13.已知圆(x-2)2+y2=1经过椭圆=1(a>b>0)的一个顶点和一个焦点,则此椭圆的离心率e=.14.的展开式中的常数项为.(用数字表示)15.(2017浙江,11)我国古代数学家刘徽创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度.祖冲之继承并发展了“割圆术”,将π的值精确到小数点后七位,其结果领先世界一千多年,“割圆术”的第一步是计算单位圆内接正六边形的面积S6,S6=.16.曲线y=x2与直线y=x所围成的封闭图形的面积为.思维提升训练1.设集合A={y|y=2x,x∈R},B={x|x2-1<0},则A∪B=()A.(-1,1)B.(0,1)C.(-1,+∞)D.(0,+∞)2.已知i是虚数单位,是z=1+i的共轭复数,则在复平面内对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限3.(2017山东,理7)若a>b>0,且ab=1,则下列不等式成立的是()A.a+<log2(a+b)B.<log2(a+b)<a+C.a+<log2(a+b)<D.log2(a+b)<a+4.若变量x,y满足约束条件则z=3x-y的最小值为()A.-7B.-1C.1D.25.某算法的程序框图如图,若输出的y=,则输入的x的值可能为()A.-1B.0C.1D.56.已知双曲线C:=1(a>0,b>0)的一条渐近线与直线x+2y+1=0垂直,则双曲线C的离心率为()A.B.C.D.7.函数y=x sin x在[-π,π]上的图象是()8.在△ABC中,a,b,c分别为∠A,∠B,∠C所对的边,若函数f(x)=x3+bx2+(a2+c2-ac)x+1有极值点,则∠B的取值范围是()A.B.C.D.9.将函数y=sin 2x(x∈R)的图象分别向左平移m(m>0)个单位、向右平移n(n>0)个单位所得到的图象都与函数y=sin(x∈R)的图象重合,则|m-n|的最小值为()A.B.C.D.10.(2017安徽江南十校联考)质地均匀的正四面体表面分别印有0,1,2,3四个数字,某同学随机地抛掷此正四面体2次,若正四面体与地面重合的表面数字分别记为m,n,且两次结果相互独立,互不影响.记m2+n2≤4为事件A,则事件A发生的概率为()A. B. C. D.11.已知O是锐角三角形ABC的外接圆圆心,∠A=60°,=2m·,则m的值为()A.B.C.1 D.12.设O为坐标原点,P是以F为焦点的抛物线y2=2px(p>0)上任意一点,M是线段PF上的点,且|PM|=2|MF|,则直线OM的斜率的最大值为()A. B. C. D.113.(2017江苏,10)某公司一年购买某种货物600吨,每次购买x吨,运费为6万元/次,一年的总存储费用为4x万元.要使一年的总运费与总存储费用之和最小,则x的值是.14.在平面直角坐标系中,设直线l:kx-y+=0与圆O:x2+y2=4相交于A,B两点,,若点M在圆O上,则实数k=.15.如图,在△ABC中,AB=BC=2,∠ABC=120°.若平面ABC外的点P和线段AC上的点D,满足PD=DA,PB=BA,则四面体PBCD的体积的最大值是.16.已知等差数列{a n}前n项的和为S n,且满足=3,则数列{a n}的公差为.参考答案题型练1选择题、填空题综合练(一)能力突破训练1.D解析由题意知集合B={1,4,7,10},则A∩B={1,4}.故选D.2.B解析设z=a+b i(a,b∈R),则2z+=3a+b i=3-2i,故a=1,b=-2,则z=1-2i,选B.3.C解析特殊值验证法,取a=3,b=2,c=,因为,所以A错;因为3>2,所以B错;因为log3=-log32>-1=log2,所以D错;因为3log2=-3<2log3=-2log32,所以C正确.故选C.4.B解析由程序框图可知,输入a=1,则k=0,b=1;进入循环体,a=-,a=b不成立,k=1,a=-2,a=b不成立,k=2,a=1,此时a=b=1,输出k,则k=2,故选B.5.D解析由题意得(a1+4d)2=(a1+2d)(a1+14d),即(3+4d)2=(3+2d)(3+14d),解得d=-2或d=0(舍去).所以S n=3n+(-2)=-n2+4n.所以当n=2时,S n=-n2+4n取最大值(S n)max=8-4=4.故选D.6.C解析由三视图还原几何体如图.∴S表面积=S△BCD+2S△ACD+S△ABC=2×2+21+2=2+=2+27.A解析由A,B∈{1,2,3,4},则有序数对(A,B)共有16种等可能基本事件,而(A,B)取值为(1,2)时,l1∥l2,故l1与l2不平行的概率为1-8.D解析由题图可知,0℃在虚线圈内,所以各月的平均最低气温都在0℃以上,A正确;易知B,C正确;平均最高气温高于20℃的月份有3个,分别为六月、七月、八月,D错误.故选D.9.A解析设P'(x,y).由题意得,t=sin,且P'的纵坐标与P的纵坐标相同,即y=又P'在函数y=sin2x的图象上,则sin2x=,故点P'的横坐标x=+kπ或+kπ(k∈Z),由题意可得s的最小值为10.A解析令f(x)=0,即x cos x2=0,得x=0或cos x2=0,则x=0或x2=kπ+,x∈Z.∵x∈[0,2],∴x2∈[0,4],得k的取值为0,即方程f(x)=0有两个解,则函数f(x)=x cos x2在区间上的零点的个数为2,故选A.11.C解析=2,∴()=2=-2||·||.又||+||=||=3≥2||·||,∴()-故答案为-12.C解析由函数f(x)为奇函数,排除B;当0≤x≤π时,f(x)≥0,排除A;又f'(x)=-2cos2x+cos x+1,令f'(0)=0,则cos x=1或cos x=-,结合x∈[-π,π],求得f(x)在(0,π]上的极大值点为,靠近π,排除D.13解析因为圆(x-2)2+y2=1与x轴的交点坐标为(1,0),(3,0),所以c=1,a=3,e=14解析T k+1=x4-k(-1)k x4-2k(-1)k,令4-2k=0,得k=2,展开式中的常数项为15解析将正六边形分割为6个等边三角形,则S6=616解析在同一平面直角坐标系中作出函数y=x2与y=x的图象如图,所围成的封闭图形如图中阴影所示,设其面积为S.由故所求面积S=(x-x2)d x=思维提升训练1.C解析A={y|y>0},B={x|-1<x<1},则A∪B={x|x>-1},选C.2.C解析=1-i,则=-i,对应复平面内点的坐标为,在第三象限.3.B解析不妨令a=2,b=,则a+=4,,log2(a+b)=log2(log22,log24)=(1,2),即<log2(a+b)<a+故选B.4.A解析画出约束条件对应的可行域(如图).由z=3x-y得y=3x-z,依题意,在可行域内平移直线l0:y=3x,当直线l0经过点A时,直线l0的截距最大,此时,z取得最小值.由则A(-2,1),故z的最小值为3×(-2)-1=-7.5.C解析由算法的程序框图可知,给出的是分段函数y=当x>2时y=2x>4,若输出的y=,则sin,结合选项可知选C.6.C解析∵双曲线C:=1(a>0,b>0)的焦点在x轴上,∴其渐近线方程为y=±x.∵渐近线与直线x+2y+1=0垂直,∴渐近线的斜率为2,=2,即b2=4a2,c2-a2=4a2,c2=5a2,=5,,双曲线的离心率e=7.A解析容易判断函数y=x sin x为偶函数,可排除D;当0<x<时,y=x sin x>0,排除B;当x=π时,y=0,可排除C.故选A.8.D解析函数f(x)的导函数f'(x)=x2+2bx+(a2+c2-ac),若函数f(x)有极值点,则Δ=(2b)2-4(a2+c2-ac)>0,得a2+c2-b2<ac,由余弦定理,得cos B=,则B>,故选D.9.C解析函数y=sin2x(x∈R)的图象向左平移m(m>0)个单位可得y=sin2(x+m)=sin(2x+2m)的图象,向右平移n(n>0)个单位可得y=sin2(x-n)=sin(2x-2n)的图象.若两图象都与函数y=sin(x∈R)的图象重合,则(k1,k2∈Z),即(k1,k2∈Z).所以|m-n|=(k1,k2∈Z),当k1=k2时,|m-n|min=故选C.10.A解析根据要求进行一一列举,考虑满足事件A的情况.两次数字分别为(0,0),(0,1),(1,0),(0,2),(2,0),(0,3),(3,0),(1,2),(2,1),(1,3),(3,1),(2,3),(3,2),(1,1),(2,2),(3,3),共有16种情况,其中满足题设条件的有(0,0),(0,1),(1,1),(1,0),(2,0),(0,2),共6种情况,所以由古典概型的概率计算公式可得事件A发生的概率为P(A)=,故选A.11.A解析如图,当△ABC为正三角形时,A=B=C=60°,取D为BC的中点,,则有=2m,)=2m,2,∴m=,故选A.12.C解析设P(2pt2,2pt),M(x,y)(不妨设t>0),F,则,∴k OM=,当且仅当t=时等号成立.∴(k OM)max=,故选C.13.30解析一年的总运费与总存储费用之和为4x+6=44×2=240,当且仅当x=,即x=30时等号成立.14.±1解析如图,,则四边形OAMB是锐角为60°的菱形,此时,点O到AB距离为1.由=1,解得k=±1.15解析由题意易知△ABD≌△PBD,∠BAD=∠BPD=∠BCD=30°,AC=2设AD=x,则0≤x≤2,CD=2-x,在△ABD中,由余弦定理知BD=设△PBD中BD边上的高为d,显然当平面PBD⊥平面CBD时,四面体PBCD的体积最大,从而V P-BCD d×S△BCD=BC×CD×sin30°=, 令=t∈[1,2],则V P-BCD,即V P-BCD的最大值为16.2解析∵S n=na1+d,=a1+d,d.又=3,∴d=2.题型练2选择题、填空题综合练(二)能力突破训练1.已知集合M={x|(x+2)(x-2)≤0},N={x|-1<x<3},则M∩N=()A.{x|-1≤x<2}B.{x|-1<x≤2}C.{x|-2≤x<3}D.{x|-2<x≤2}2.已知=1+i(i为虚数单位),则复数z=()A.1+iB.1-iC.-1+iD.-1-i3.一个由半球和四棱锥组成的几何体,其三视图如下图所示.则该几何体的体积为()A.πB.πC.πD.1+π4.已知sin θ=,cos θ=,则tan等于()A.B.C.D.55.已知p:∀x∈[-1,2],4x-2x+1+2-a<0恒成立,q:函数y=(a-2)x是增函数,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.已知x,y∈R,且x>y>0,则()A.>0B.sin x-sin y>0C.<0D.ln x+ln y>07.已知实数x,y满足约束条件则z=2x+4y的最大值是()A.2B.0C.-10D.-158.已知函数f(x)=log2x,x∈[1,8],则不等式1≤f(x)≤2成立的概率是()A. B. C. D.9.已知等差数列{a n}的通项是a n=1-2n,前n项和为S n,则数列的前11项和为()A.-45B.-50C.-55D.-6610.已知P为椭圆=1上的一点,M,N分别为圆(x+3)2+y2=1和圆(x-3)2+y2=4上的点,则|PM|+|PN|的最小值为()A.5B.7C.13D.1511.以下数表的构造思路源于我国南宋数学家杨辉所著的《详解九章算术》一书中的“杨辉三角形”.该表由若干行数字组成,从第二行起,每一行中的数字均等于其“肩上”两数之和,表中最后一行仅有一个数,则这个数为()A.2 017×22 013B.2 017×22 014C.2 017×22 015D.2 016×22 01612.已知a>0,a≠1,函数f(x)=+x cos x(-1≤x≤1),设函数f(x)的最大值是M,最小值是N,则()A.M+N=8B.M+N=6C.M-N=8D.M-N=613.(2017天津,理12)若a,b∈R,ab>0,则的最小值为.14.已知f(x)为偶函数,当x<0时,f(x)=ln(-x)+3x,则曲线y=f(x)在点(1,-3)处的切线方程是.15.执行如图所示的程序框图,若输入a=1,b=2,则输出的a的值为.16.已知直线y=mx与函数f(x)=的图象恰好有三个不同的公共点,则实数m的取值范围是.思维提升训练1.设集合A={x|x+2>0},B=,则A∩B=()A.{x|x>-2}B.{x|x<3}C.{x|x<-2或x>3}D.{x|-2<x<3}2.复数z=(i为虚数单位)的虚部为()A.2B.-2C.1D.-13.已知a=,b=,c=2,则()A.b<a<cB.a<b<cC.b<c<aD.c<a<b4.已知x,y满足约束条件则z=-2x+y的最大值是()A.-1B.-2C.-5D.15.若实数x,y满足|x-1|-ln=0,则y关于x的函数图象的大致形状是()6.已知简谐运动f(x)=A sin(ωx+φ)的部分图象如图所示,则该简谐运动的最小正周期T和初相φ分别为() A.T=6π,φ=B.T=6π,φ=C.T=6,φ=D.T=6,φ=7.设a,b是两个非零向量,则使a·b=|a|·|b|成立的一个必要不充分条件是()A.a=bB.a⊥bC.a=λb(λ>0)D.a∥b8.在△ABC中,AC=,BC=2,B=60°,则BC边上的高等于()A.B.C.D.9.(2017河南安阳一模)已知圆(x-1)2+y2=的一条切线y=kx与双曲线C:=1(a>0,b>0)有两个交点,则双曲线C的离心率的取值范围是()A.(1,)B.(1,2)C.(,+∞)D.(2,+∞)10.已知数列{a n}的前n项和为S n,若S1=1,S2=2,且S n+1-3S n+2S n-1=0(n∈N*,n≥2),则此数列为()A.等差数列B.等比数列C.从第二项起为等差数列D.从第二项起为等比数列11.一名警察在审理一起珍宝盗窃案时,四名嫌疑人甲、乙、丙、丁的供词如下,甲说:“罪犯在乙、丙、丁三人之中”;乙说:“我没有作案,是丙偷的”;丙说:“甲、乙两人中有一人是小偷”;丁说:“乙说的是事实”.经过调查核实,四人中有两人说的是真话,另外两人说的是假话,且这四人中只有一人是罪犯,由此可判断罪犯是()A.甲B.乙C.丙D.丁12.若函数y=f(x)的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y=f(x)具有T性质.下列函数中具有T性质的是()A.y=sin xB.y=ln xC.y=e xD.y=x313.已知一个四棱锥的底面是平行四边形,该四棱锥的三视图如图所示(单位:m),则该四棱锥的体积为m3.14.设F是双曲线C:=1的一个焦点.若C上存在点P,使线段PF的中点恰为其虚轴的一个端点,则C的离心率为.15.下边程序框图的输出结果为.16.(x+2)5的展开式中,x2的系数等于.(用数字作答)参考答案题型练2选择题、填空题综合练(二)能力突破训练1.B解析由已知,得M={x|-2≤x≤2},N={x|-1<x<3},则M∩N={x|-1<x≤2},故选B.2.D解析由已知得z==-1-i.3.C解析由三视图可知,上面是半径为的半球,体积为V1=,下面是底面积为1,高为1的四棱锥,体积V2=1×1=,故选C.4.D解析利用同角正弦、余弦的平方和为1求m的值,再根据半角公式求tan,但运算较复杂,试根据答案的数值特征分析.由于受条件sin2θ+cos2θ=1的制约,m为一确定的值,进而推知tan也为一确定的值,又<θ<π,所以,故tan>1.5.A解析关于p:不等式化为22x-2·2x+2-a<0,令t=2x,∵x∈[-1,2],∴t,则不等式转化为t2-2t+2-a<0,即a>t2-2t+2对任意t恒成立.令y=t2-2t+2=(t-1)2+1,当t时,y max=10,所以a>10.关于q:只需a-2>1,即a>3.故p是q的充分不必要条件.6.C解析由x>y>0,得,即<0,故选项A不正确;由x>y>0及正弦函数的单调性,可知sin x-sin y>0不一定成立,故选项B不正确;由0<<1,x>y>0,可知,即<0,故选项C正确;由x>y>0,得xy>0,xy不一定大于1,故ln x+ln y=ln xy>0不一定成立,故选项D不正确.故选C.7.B解析实数x,y满足约束条件对应的平面区域为如图ABO对应的三角形区域,当动直线z=2x+4y经过原点时,目标函数取得最大值为z=0,故选B.8.B解析由1≤f(x)≤2,得1≤log2x≤2,解得2≤x≤4.由几何概型可知P=,故选B.9.D解析因为a n=1-2n,S n==-n2,=-n,所以数列的前11项和为=-66.故选D.10.B解析由题意知椭圆的两个焦点F1,F2分别是两圆的圆心,且|PF1|+|PF2|=10,从而|PM|+|PN|的最小值为|PF1|+|PF2|-1-2=7.11.B解析如图,当第一行3个数时,最后一行仅一个数,为8=23-2×(3+1);当第一行4个数时,最后一行仅一个数,为20=24-2×(4+1);当第一行5个数时,最后一行仅一个数,为48=25-2×(5+1);当第一行6个数时,最后一行仅一个数,为112=26-2×(6+1).归纳推理,得当第一行2016个数时,最后一行仅一个数,为22016-2×(2016+1).故选B.12.B解析f(x)=+x cos x=3++x cos x,设g(x)=+x cos x,则g(-x)=-g(x),函数g(x)是奇函数,则g(x)的值域为关于原点对称的区间,当-1≤x≤1时,设-m≤g(x)≤m,则3-m≤f(x)≤3+m, ∴函数f(x)的最大值M=3-m,最小值N=3+m,得M+N=6,故选B.13.4解析∵a,b∈R,且ab>0,=4ab+≥414.y=-2x-1解析当x>0时,-x<0,则f(-x)=ln x-3x.因为f(x)为偶函数,所以f(x)=f(-x)=ln x-3x,所以f'(x)=-3,f'(1)=-2.故所求切线方程为y+3=-2(x-1),即y=-2x-1.15.32解析第一次循环,输入a=1,b=2,判断a≤31,则a=1×2=2;第二次循环,a=2,b=2,判断a≤31,则a=2×2=4;第三次循环,a=4,b=2,判断a≤31,则a=4×2=8;第四次循环,a=8,b=2,判断a≤31,则a=8×2=16;第四次循环,a=16,b=2,判断a≤31,则a=16×2=32;第五次循环,a=32,b=2,不满足a≤31,输出a=32.16.(,+∞)解析作出函数f(x)=的图象,如图.直线y=mx的图象是绕坐标原点旋转的动直线.当斜率m≤0时,直线y=mx与函数f(x)的图象只有一个公共点;当m>0时,直线y=mx始终与函数y=2-(x≤0)的图象有一个公共点,故要使直线y=mx与函数f(x)的图象有三个公共点,必须使直线y=mx与函数y=x2+1(x>0)的图象有两个公共点,即方程mx=x2+1在x>0时有两个不相等的实数根,即方程x2-2mx+2=0的判别式Δ=4m2-4×2>0,解得m>故所求实数m的取值范围是(,+∞).思维提升训练1.D解析由已知,得A={x|x>-2},B={x|x<3},则A∩B={x|-2<x<3},故选D.2.B解析z==1-2i,得复数z的虚部为-2,故选B.3.A解析因为a==b,c=2=a,所以b<a<c.4.A解析作出约束条件的可行域如图阴影部分所示,平移直线l0:y=2x,可得在点A(1,1)处z取得最大值,最大值为-1.5.B解析已知等式可化为y=根据指数函数的图象可知选项B正确,故选B.6.C解析由图象易知A=2,T=6,∴ω=又图象过点(1,2),∴sin=1,∴φ+=2kπ+,k∈Z,又|φ|<,∴φ=7.D解析因为a·b=|a|·|b|cosθ,其中θ为a与b的夹角.若a·b=|a|·|b|,则cosθ=1,向量a与b方向相同;若a∥b,则a·b=|a|·|b|或a·b=-|a|·|b|,故选D.8.B解析设AB=a,则由AC2=AB2+BC2-2AB·BC cos B知7=a2+4-2a,即a2-2a-3=0,∴a=3(负值舍去).∴BC边上的高为AB·sin B=39.D解析由已知得,解得k2=3.由消去y,得(b2-a2k2)x2-a2b2=0,则4(b2-a2k2)a2b2>0,即b2>a2k2.因为c2=a2+b2,所以c2>(k2+1)a2.所以e2>k2+1=4,即e>2.故选D.10.D解析由S1=1得a1=1,又由S2=2可知a2=1.因为S n+1-3S n+2S n-1=0(n∈N*,且n≥2),所以S n+1-S n-2S n+2S n-1=0(n∈N*,且n≥2),即(S n+1-S n)-2(S n-S n-1)=0(n∈N*,且n≥2),所以a n+1=2a n(n∈N*,且n≥2),故数列{a n}从第2项起是以2为公比的等比数列.故选D.11.B解析因为乙、丁两人的观点一致,所以乙、丁两人的供词应该是同真或同假.若乙、丁两人说的是真话,则甲、丙两人说的是假话,由乙说真话推出丙是罪犯;由甲说假话,推出乙、丙、丁三人不是罪犯,矛盾.所以乙、丁两人说的是假话,而甲、丙两人说的是真话,由甲、丙的供词内容可以断定乙是罪犯.12.A解析当y=sin x时,y'=cos x,因为cos0·cosπ=-1,所以在函数y=sin x图象存在两点x=0,x=π使条件成立,故A正确;函数y=ln x,y=e x,y=x3的导数值均非负,不符合题意,故选A.本题实质上是检验函数图象上存在两点的导数值乘积等于-1.13.2解析由三视图知四棱锥高为3,底面平行四边形的底为2,高为1,因此该四棱锥的体积为V=(2×1)×3=2.故答案为2.14解析不妨设F(c,0)为双曲线右焦点,虚轴一个端点为B(0,b),依题意得点P为(-c,2b),又点P在双曲线上,所以=1,得=5,即e2=5,因为e>1,所以e=15.8解析由程序框图可知,变量的取值情况如下:第一次循环,i=4,s=;第二次循环,i=5,s=;第三次循环,i=8,s=;第四次循环,s=不满足s<,结束循环,输出i=8.16.80解析通项公式为T r+1=x5-r2r,令5-r=2,得r=3.则x2的系数为23=80.题型练3大题专项(一)三角函数、解三角形综合问题1.(2017江苏,16)已知向量a=(cos x,sin x),b=(3,-),x∈[0,π].(1)若a∥b,求x的值;(2)记f(x)=a·b,求f(x)的最大值和最小值以及对应的x的值.2.在△ABC中,角A,B,C的对边分别为a,b,c,已知2(tan A+tan B)=.(1)证明:a+b=2c;(2)求cos C的最小值.3.(2017全国Ⅰ,理17)△ABC的内角A,B,C的对边分别为a,b,c.已知△ABC的面积为.(1)求sin B sin C;(2)若6cos B cos C=1,a=3,求△ABC的周长.4.已知函数f(x)=4tan x sin·cos.(1)求f(x)的定义域与最小正周期;(2)讨论f(x)在区间上的单调性.5.已知函数f(x)=a cos2a sin ωx-a(ω>0,a>0)在一个周期内的图象如图所示,其中点A 为图象上的最高点,点B,C为图象与x轴的两个相邻交点,且△ABC是边长为4的正三角形.(1)求ω与a的值;(2)若f(x0)=,且x0∈,求f(x0+1)的值.6.在平面直角坐标系xOy中,已知向量m=,n=(sin x,cos x),x∈.(1)若m⊥n,求tan x的值;(2)若m与n的夹角为,求x的值.参考答案题型练3大题专项(一)三角函数、解三角形综合问题1.解(1)因为a=(cos x,sin x),b=(3,-),a∥b,所以-cos x=3sin x.若cos x=0,则sin x=0,与sin2x+cos2x=1矛盾,故cos x≠0.于是tan x=-又x∈[0,π],所以x=(2)f(x)=a·b=(cos x,sin x)·(3,-)=3cos x-sin x=2cos因为x∈[0,π],所以x+,从而-1≤cos于是,当x+,即x=0时,f(x)取到最大值3;当x+=π,即x=时,f(x)取到最小值-22.(1)证明由题意知2,化简得2(sin A cos B+sin B cos A)=sin A+sin B,即2sin(A+B)=sin A+sin B,因为A+B+C=π,所以sin(A+B)=sin(π-C)=sin C.从而sin A+sin B=2sin C.由正弦定理得a+b=2c.(2)解由(1)知c=,所以cos C==,当且仅当a=b时,等号成立.故cos C的最小值为3.解(1)由题设得ac sin B=,即c sin B=由正弦定理得sin C sin B=故sin B sin C=(2)由题设及(1)得cos B cos C-sin B sin C=-,即cos(B+C)=-所以B+C=,故A=由题设得bc sin A=,即bc=8.由余弦定理得b2+c2-bc=9,即(b+c)2-3bc=9,得b+c=故△ABC的周长为3+4.解(1)f(x)的定义域为f(x)=4tan x cos x cos=4sin x cos=4sin x=2sin x cos x+2sin2x-=sin2x+(1-cos2x)-=sin2x-cos2x=2sin,所以,f(x)的最小正周期T==π.(2)令z=2x-,函数y=2sin z的单调递增区间是,k∈Z.由-+2kπ≤2x-+2kπ,得-+kπ≤x+kπ,k∈Z.设A=,B=,易知A∩B=所以,当x时,f(x)在区间上单调递增,在区间上单调递减.5.解(1)由已知可得f(x)=a=a sin∵BC==4,∴T=8,∴ω=由题图可知,正三角形ABC的高即为函数f(x)的最大值a,得a=BC=2(2)由(1)知f(x0)=2sin,即sin∵x0,x0+,∴cos,∴f(x0+1)=2sin=2sin=2=26.解(1)∵m=,n=(sin x,cos x),且m⊥n,∴m·n=(sin x,cos x)=sin x-cos x=sin=0.又x,∴x-∴x-=0,即x=tan x=tan=1.(2)由(1)和已知,得cos==sin又x-,∴x-,即x=题型练4大题专项(二)数列的通项、求和问题1.设数列{a n}的前n项和为S n,满足(1-q)S n+qa n=1,且q(q-1)≠0.(1)求{a n}的通项公式;(2)若S3,S9,S6成等差数列,求证:a2,a8,a5成等差数列.2.已知等差数列{a n}的首项a1=1,公差d=1,前n项和为S n,b n=.(1)求数列{b n}的通项公式;(2)设数列{b n}前n项和为T n,求T n.3.已知数列{a n}的前n项和S n满足:S n=(a n-1),a为常数,且a≠0,a≠1.(1)求数列{a n}的通项公式;(2)若a=,设b n=,且数列{b n}的前n项和为T n,求证:T n<.4.已知等差数列{a n}的前n项和为S n,公比为q的等比数列{b n}的首项是,且a1+2q=3,a2+4b2=6,S5=40.(1)求数列{a n},{b n}的通项公式a n,b n;(2)求数列的前n项和T n.5.已知数列{a n}满足a1=,且a n+1=a n-(n∈N*).(1)证明:1≤≤2(n∈N*);(2)设数列{}的前n项和为S n,证明:(n∈N*).6.已知数列{a n}的首项为1,S n为数列{a n}的前n项和,S n+1=qS n+1,其中q>0,n∈N*.(1)若2a2,a3,a2+2成等差数列,求数列{a n}的通项公式;(2)设双曲线x2-=1的离心率为e n,且e2=,证明:e1+e2+…+e n>.参考答案题型练4大题专项(二)数列的通项、求和问题1.(1)解当n=1时,由(1-q)S1+qa1=1,a1=1.当n≥2时,由(1-q)S n+qa n=1,得(1-q)S n-1+qa n-1=1,两式相减,得a n=qa n-1.又q(q-1)≠0,所以{a n}是以1为首项,q为公比的等比数列,故a n=q n-1.(2)证明由(1)可知S n=,又S3+S6=2S9,所以,化简,得a3+a6=2a9,两边同除以q,得a2+a5=2a8.故a2,a8,a5成等差数列.2.解(1)∵在等差数列{a n}中,a1=1,公差d=1,∴S n=na1+d=,∴b n=(2)b n==2,∴T n=b1+b2+b3+…+b n=2+…+=2+…+=2故T n=3.(1)解因为a1=S1=(a1-1),所以a1=a.当n≥2时,a n=S n-S n-1=a n-a n-1,得=a,所以数列{a n}是首项为a,公比也为a的等比数列.所以a n=a·a n-1=a n.(2)证明当a=时,a n=,所以b n=因为,所以b n=所以T n=b1+b2+…+b n<+…+因为-<0,所以,即T n<4.解(1)设{a n}公差为d,由题意得解得故a n=3n-1,b n=(2)+22n+1,∴T n=+…+(22n+3-8)=5.证明(1)由题意得a n+1-a n=-0,即a n+1≤a n,故a n由a n=(1-a n-1)a n-1,得a n=(1-a n-1)(1-a n-2)…(1-a1)a1>0.由0<a n,得[1,2],即12.(2)由题意得=a n-a n+1,所以S n=a1-a n+1.①由和12,得12,所以n2n,因此a n+1(n∈N*).②由①②得(n∈N*).6.解(1)由已知,S n+1=qS n+1,S n+2=qS n+1+1,两式相减得到a n+2=qa n+1,n≥1.又由S2=qS1+1得到a2=qa1,故a n+1=qa n对所有n≥1都成立.所以,数列{a n}是首项为1,公比为q的等比数列.从而a n=q n-1.由2a2,a3,a2+2成等差数列,可得2a3=3a2+2,即2q2=3q+2,则(2q+1)(q-2)=0,由已知,q>0,故q=2.所以a n=2n-1(n∈N*).(2)由(1)可知,a n=q n-1.所以双曲线x2-=1的离心率e n=由e2=,解得q=因为1+q2(k-1)>q2(k-1),所以>q k-1(k∈N*).于是e1+e2+…+e n>1+q+…+q n-1=,故e1+e2+…+e n>题型练5大题专项(三)统计与概率问题1.为推动乒乓球运动的发展,某乒乓球比赛允许不同协会的运动员组队参加.现有来自甲协会的运动员3名,其中种子选手2名;乙协会的运动员5名,其中种子选手3名.从这8名运动员中随机选择4人参加比赛.(1)设A为事件“选出的4人中恰有2名种子选手,且这2名种子选手来自同一个协会”,求事件A发生的概率;(2)设X为选出的4人中种子选手的人数,求随机变量X的分布列和数学期望.2.袋子中装有大小相同的白球和红球共7个,从袋子中任取2个球都是白球的概率为,每个球被取到的机会均等.现从袋子中每次取1个球,如果取出的是白球则不再放回,设在取得红球之前已取出的白球个数为X.(1)求袋子中白球的个数;(2)求X的分布列和数学期望.3.某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:(1)求一续保人本年度的保费高于基本保费的概率;(2)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率;(3)求续保人本年度的平均保费与基本保费的比值.4.某市A,B两所中学的学生组队参加辩论赛,A中学推荐了3名男生、2名女生,B中学推荐了3名男生、4名女生,两校所推荐的学生一起参加集训.由于集训后队员水平相当,从参加集训的男生中随机抽取3人、女生中随机抽取3人组成代表队.(1)求A中学至少有1名学生入选代表队的概率;(2)某场比赛前,从代表队的6名队员中随机抽取4人参赛.设X表示参赛的男生人数,求X的分布列和数学期望.5.一款击鼓小游戏的规则如下:每盘游戏都需击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得-200分).设每次击鼓出现音乐的概率为,且各次击鼓出现音乐相互独立.(1)设每盘游戏获得的分数为X,求X的分布列.(2)玩三盘游戏,至少有一盘出现音乐的概率是多少?(3)玩过这款游戏的许多人都发现,若干盘游戏后,与最初的分数相比,分数没有增加反而减少了.请运用概率统计的相关知识分析分数减少的原因.6.某工厂为了检查一条流水线的生产情况,从该流水线上随机抽取40件产品,测量这些产品的质量(单位:g),整理后得到如下的频率分布直方图(其中质量的分组区间分别为(490,495],(495,500],(500,505],(505,510],(510,515]).(1)若从这40件产品中任取两件,设X为质量超过505 g的产品数量,求随机变量X的分布列;(2)若将该样本分布近似看作总体分布,现从该流水线上任取5件产品,求恰有两件产品的质量超过505 g的概率.参考答案题型练5大题专项(三)统计与概率问题1.解(1)由已知,有P(A)=所以,事件A发生的概率为(2)随机变量X的所有可能取值为1,2,3,4.P(X=k)=(k=1,2,3,4).所以,随机变量X的分布列为X1234P随机变量X的数学期望E(X)=1+2+3+42.解(1)设袋子中有n(n∈N*)个白球,依题意,得,即,化简,得n2-n-6=0,解得n=3或n=-2(舍去).故袋子中有3个白球.(2)由(1)得,袋子中有4个红球,3个白球.X的可能取值为0,1,2,3.P(X=0)=;P(X=1)=;P(X=2)=;P(X=3)=则X的分布列为X0123P故E(X)=0+1+2+33.解(1)设A表示事件:“一续保人本年度的保费高于基本保费”,则事件A发生当且仅当一年内出险次数大于1,故P(A)=0.2+0.2+0.1+0.05=0.55.(2)设B表示事件:“一续保人本年度的保费比基本保费高出60%”,则事件B发生当且仅当一年内出险次数大于3,故P(B)=0.1+0.05=0.15.又P(AB)=P(B),故P(B|A)=因此所求概率为(3)X0.85a a1.25a1.5a1.75a2aP0.300.150.200.200.100.05E(X)=0.85a×0.30+a×0.15+1.25a×0.20+1.5a×0.20+1.75a×0.10+2a×0.05=1.23a.因此续保人本年度的平均保费与基本保费的比值为1.23.4.解(1)由题意知,参加集训的男、女生各有6名.参赛学生全从B中学抽取(等价于A中学没有学生入选代表队)的概率为因此,A中学至少有1名学生入选代表队的概率为1-(2)根据题意,X的可能取值为1,2,3.P(X=1)=,P(X=2)=,P(X=3)=所以X的分布列为X123P因此,X的数学期望为E(X)=1×P(X=1)+2×P(X=2)+3×P(X=3)=1+2+3=2.5.解(1)X可能的取值为10,20,100,-200.根据题意,P(X=10)=;P(X=20)=;P(X=100)=;P(X=-200)=所以X的分布列为X1020100-200P(2)设“第i盘游戏没有出现音乐”为事件A i(i=1,2,3),则P(A1)=P(A2)=P(A3)=P(X=-200)=所以,“三盘游戏中至少有一盘出现音乐”的概率为1-P(A1A2A3)=1-=1-因此,玩三盘游戏至少有一盘出现音乐的概率是(3)X的数学期望为E(X)=10+20+100-200=-这表明,获得分数X的均值为负,因此,多次游戏之后分数减少的可能性更大.6.解(1)根据频率分布直方图可知,质量超过505g的产品数量为[(0.01+0.05)×5]×40=12.由题意得随机变量X的所有可能取值为0,1,2.P(X=0)=;P(X=1)=;P(X=2)=则随机变量X的分布列为X012P(2)由题意得该流水线上产品的质量超过505g的概率为=0.3.设Y为该流水线上任取5件产品质量超过505g的产品数量,则Y~B(5,0.3).故所求概率为P(Y=2)=0.32×0.73=0.3087.题型练6大题专项(四)立体几何综合问题1.如图,已知四棱台ABCD-A1B1C1D1的上、下底面分别是边长为3和6的正方形.A1A=6,且A1A ⊥底面ABCD.点P,Q分别在棱DD1,BC上.(1)若P是DD1的中点,证明:AB1⊥PQ;(2)若PQ∥平面ABB1A1,二面角P-QD-A的余弦值为,求四面体ADPQ的体积.2.如图,在斜三棱柱ABC-A1B1C1中,侧面AA1B1B⊥底面ABC,侧棱AA1与底面ABC所成角为60°,AA1=2,底面ABC是边长为2的正三角形,点G为△ABC的重心,点E在BC1上,且BE=BC1.(1)求证:GE∥平面AA1B1B;(2)求平面B1GE与底面ABC所成锐角二面角的余弦值.如图,在几何体ABCDE中,四边形ABCD是矩形,AB⊥平面BEC,BE⊥EC,AB=BE=EC=2,G,F 分别是线段BE,DC的中点.(1)求证:GF∥平面ADE;(2)求平面AEF与平面BEC所成锐二面角的余弦值.4.在如图所示的组合体中,ABCD-A1B1C1D1是一个长方体,P-ABCD是一个四棱锥.AB=2,BC=3,点P∈平面CC1D1D,且PD=PC=.(1)证明:PD⊥平面PBC;(2)求P A与平面ABCD所成角的正切值;(3)当AA1的长为何值时,PC∥平面AB1D.5.如图,在四棱锥P-ABCD中,P A⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,P A=AD=2,AC=1.(1)证明:PC⊥AD;(2)求二面角A-PC-D的正弦值;(3)设E为棱P A上的点,满足异面直线BE与CD所成的角为30°,求AE的长.6.已知四边形ABCD满足AD∥BC,BA=AD=DC=BC=a,E是BC的中点,将△BAE沿AE翻折成△B1AE,使平面B1AE⊥平面AECD,F为B1D的中点.。
高三数列专题训练二一、解答题1.在公差不为零的等差数列{}n a 中,已知23a =,且137a a a 、、成等比数列. (1)求数列{}n a 的通项公式;(2)设数列{}n a 的前n 项和为n S ,记292n nb S =,求数列{}n b 的前n 项和n T . 2.已知等差数列{}n a 的前n 项和为n S ,公差,50,053=+≠S S d 且1341,,a a a 成等比数列.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设⎭⎬⎫⎩⎨⎧n n a b 是首项为1,公比为3的等比数列,求数列{}n b 的前n 项和n T .3.设等比数列{}n a 的前n 项和为n S ,218a =,且1116S +,2S ,3S 成等差数列,数列{}n b 满足2n b n =. (1)求数列{}n a 的通项公式;(2)设n n n c a b =⋅,若对任意*n N ∈,不等式121212n n c c c S λ+++≥+-…恒成立,求λ的取值范围.4.已知等差数列{n a }的公差2d =,其前n 项和为n S ,且等比数列{n b }满足11b a =,24b a =,313b a =.(Ⅰ)求数列{n a }的通项公式和数列{n b }的前n 项和n B ; (Ⅱ)记数列{1nS }的前n 项和为n T ,求n T . 5.设数列{}n a 的前n 项和为n S ,且满足()21,2,3,n n S a n =-=.(1)求数列{}n a 的通项公式;(2)若数列{}n b 满足11b =,且1n n n b b a +=+,求数列{}n b 的通项公式; (3)设()3n n c n b =-,求数列{}n c 的前n 项和n T .6.已知差数列等{}n a 的前n 项和n S ,且对于任意的正整数n满足1n a =+.(1)求数列{}n a 的通项公式;(2)设11n n n b a a +=, 求数列{}n b 的前n 项和n B .7.对于数列}{n a 、}{n b ,n S 为数列}{n a 的前n 项和,且n a S n S n n n ++=+-+)1(1,111==b a ,231+=+n n b b ,*∈N n .(1)求数列}{n a 、}{n b 的通项公式; (2)令)1()(2++=n n n b n n a c ,求数列}{n c 的前n 项和n T .8.已知{}n a 是各项均为正数的等比数列,且1212112()a a a a +=+, 34534511164()a a a a a a ++=++. (1)求{}n a 的通项公式; (2)设21()n n nb a a =+,求数列{}n b 的前n 项和n T . 9.已知数列{}n a 的首项11a =,前n 项和为nS ,且1210n n S S n +---=(*n ∈N ).(Ⅰ) 求证:数列{1}n a +为等比数列; (Ⅱ) 令n n b na =,求数列{}n b 的前n 项和n T . 10.已知各项都为正数的等比数列{}n a 满足312a 是13a 与22a 的等差中项,且123a a a =. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设3log n n b a =,且n S 为数列{}n b 的前n 项和,求数列12{}nnS S +的前n 项和n T . 11.已知数列{}n a 的前n 项和为n S ,2121,2n n n a S a a ==+.(1)求数列{}n a 的通项公式;(2)若2n an b =,求13521...n b b b b +++++.12.设公差不为0的等差数列{}n a 的首项为1,且2514,,a a a 构成等比数列.(1)求数列{}n a 的通项公式; (2)若数列{}n b 满足*121211,2n n n b b b n N a a a +++=-∈,求{}n b 的前n 项和n T . 13.已知数列{}n a 是等比数列,满足143,24a a ==,数列{}n b 满足144,22b b ==,且{}n n b a -是等差数列.(I )求数列{}n a 和{}n b 的通项公式; (II )求数列{}n b 的前n 项和。
高三数学《函数与导数、三角函数与解三角形》测试题(理科)一、选择题1.设2:f x x →是集合A 到集合B 的映射,若{}1,2B =,则AB 为( ) A .∅B .{1}C .∅或{2}D .∅或{1}2.函数x x x f ln )(+=的零点所在的区间为( ) A .(-1,0)B .(0,1)C .(1,2)D .(1,e )3.若函数2()log (3)a f x x ax =-+在区间(,]2a -∞上为减函数,则a 的取值范围是( )A .(0,1)B .(1,+∞)C .(1,23)D .(0,1)∪(1,23)4.若0()ln 0xe x g x xx ⎧≤=⎨>⎩,则1(())2g g = ( )A .12B .1C .12e D .ln 2-5.已知32()f x ax bx cx d =+++的图象如图所示,则有 ( ) A .0b < B .01b <<C .12b <<D .2b >6. 已知函数()f x 定义域为R ,则下列命题:①若()y f x =为偶函数,则(2)y f x =+的图象关于y 轴对称. ②若(2)y f x =+为偶函数,则()y f x =关于直线2x =对称. ③若函数(21)y f x =+是偶函数,则(2)y f x =的图象关于直线12x 对称. ④若(2)(2)f x f x -=-,则则()y f x =关于直线2x =对称. ⑤函数(2)y f x =-和(2)y f x =-的图象关于2x =对称.其中正确的命题序号是 ( ) A.①②④ B.①③④ C.②③⑤ D.②③④ 7.y =(sin x +cos x )2-1是( ) A .最小正周期为2π的偶函数 B .最小正周期为2π的奇函数 C .最小正周期为π的偶函数D .最小正周期为π的奇函数8.把函数y =sin(ωx +φ)(ω>0,|φ|<π)的图象向左平移π6个单位,再将图像上所有点的横坐标伸长到原来的2倍(纵坐标不变)所得的图象解析式为y =sin x ,则( )xA .ω=2,φ=π6B .ω=2,φ=-π3C .ω=12,φ=π6D .ω=12,φ=π129.若函数f (x )=sin ωx +cos ωx (ω>0)的最小正周期为1,则它的图像的一个对称中心为( )A.⎝⎛⎭⎫-π8,0 B.⎝⎛⎭⎫π8,0 C .(0,0)D.⎝⎛⎭⎫-π4,0 10.函数y =cos(ωx +φ)(ω>0,0<φ<π)为奇函数,该函数的部分图象如右图所表示,A 、B 分别为最高与最低点,并且两点间的距离为22,则该函数的一条对称轴为( )A .x =2πB .x =π2C .x =1D .x =211.tan10°+tan50°+tan120°tan10°·tan50°的值应是( )A .-1B .1C .- 3D.3 12. 函数)(x f 在定义域R 内可导,若)2()(x f x f -=,且当)1,(-∞∈x 时,0)()1(<'-x f x ,设).3(),21(),0(f c f b f a ===则 ( )A .c b a <<B .b a c <<C .a b c <<D .a c b <<二、填空题13.设()f x 是定义在R 上且以3为周期的奇函数,若(1)1f ≤,23(2)1a f a -=+,则实数a 的取值范围是 .14.已知函数xx x f 2)(+=,x x x g ln )(+=,1)(--=x x x h 的零点分别为,,21x x 3x ,则321,,x x x 的大小关系是 .15.已知f (x )=2sin ⎝⎛⎭⎫2x -π6-m 在x ∈[0,π2]上有两个不同的零点,则m 的取值范围是________.16.对于函数f (x )=2cos 2x +2sin x cos x -1(x ∈R )给出下列命题:①f (x )的最小正周期为2π;②f (x )在区间[π2,5π8]上是减函数;③直线x =π8是f (x )的图像的一条对称轴;④f (x )的图像可以由函数y =2sin2x 的图像向左平移π4而得到.其中正确命题的序号是________(把你认为正确的都填上). 三、简答题17.在△ABC 中,A 、B 、C 的对边分别为a 、b 、c ,已知a +b =5,c =7,且4sin 2A +B2-cos2C =72.(1)求角C 的大小; (2)求△ABC 的面积.18.在△ABC 中,内角A ,B ,C 对边的边长分别是a ,b ,c ,已知c =2,C =π3.(1)若△ABC 的面积等于3,求a ,b ;(2)若sin C +sin(B -A )=2sin2A ,求△ABC 的面积.19.向量m =(a +1,sin x ),n =(1,4cos(x +π6)),设函数g (x )=m ·n (a ∈R ,且a 为常数).(1)若a 为任意实数,求g (x )的最小正周期;(2)若g (x )在[0,π3)上的最大值与最小值之和为7,求a 的值.20.设函数22()(1)ln(1)f x x x =+-+ (1)求函数)(x f 的单调区间;(2)当]1,11[--∈e ex 时,不等式()f x m <恒成立,求实数m 的取值范围; (3)关于x 的方程2()f x x x a =++在[0,2]上恰有两个相异实根,求a 的取值范围. 21.设函数bx xex f xa +=-)(,曲线)(x f y =在点(2,)2(f )处的切线方程为4)1(+-=x e y .(1)求a ,b 的值; (2)求)(x f 的单调区间. 22.答案解析选择题 1—5 DBCAA 6—12 CDBAC CB填空题 13. 213aa <-≥或 14. 321x x x >> 15.[-1,2] 16.②③ 简答题17.[解析] (1)∵A +B +C =180°,4sin 2A +B 2-cos2C =72.∴4cos 2C 2-cos2C =72,∴4·1+cos C 2-(2cos 2C -1)=72,∴4cos 2C -4cos C +1=0,解得cos C =12,∵0°<C <180°,∴C =60°. (2)∵c 2=a 2+b 2-2ab cos C , ∴7=(a +b )2-3ab ,解得ab =6. ∴S △ABC =12ab sin C =12×6×32=332.18.[解析] (1)由余弦定理及已知条件得,a 2+b 2-ab =4,又因为△ABC 的面积等于3,所以12ab sin C=3,得ab =4.联立方程组⎩⎨⎧a 2+b 2-ab =4,ab =4,解得a =2,b =2.(2)由题意得sin(B +A )+sin(B -A )=4sin A cos A ,即sin B cos A =2sin A cos A , 当cos A =0时,A =π2,B =π6,a =433,b =233,当cos A ≠0时,得sin B =2sin A ,由正弦定理得b =2a ,联立方程组⎩⎨⎧a 2+b 2-ab =4,b =2a ,解得a =233,b =433. 所以△ABC 的面积S =12ab sin C =233.19.[解析] g (x )=m ·n =a +1+4sin x cos(x +π6)=3sin2x -2sin 2x +a +1 =3sin2x +cos2x +a =2sin(2x +π6)+a(1)g (x )=2sin(2x +π6)+a ,T =π.(2)∵0≤x <π3,∴π6≤2x +π6<5π6当2x +π6=π2,即x =π6时,y max =2+a .当2x +π6=π6,即x =0时,y min =1+a ,故a +1+2+a =7,即a =2.20. (1)函数定义域为),1()1,(+∞---∞ ,,1)2(2]11)1[(2)(++=+-+='x x x x x x f 由,0)(>'x f 得210x x -<<->或 ;由,0)(<'x f 得.012<<--<x x 或则递增区间是(2,1),(0,)--+∞递减区间是(,2),(1,0)-∞--。
高三数学试题(理科)一、选择题(本大题共12小题,每小题5.0分,共60分)1.已知复平面内的平行四边形ABCD中,定点A对应的复数为i(i是虚数单位),向量BC 对应的复数为2+i,则点D对应的复数为()A. 2 B. 2+2i C.-2 D.-2-2i2.在判断两个变量y与x是否相关时,选择了4个不同的模型,它们的相关指数分别为:模型1的相关指数为0.98,模型2的相关指数为0.80,模型3的相关指数为0.50,模型4的相关指数为0.25.其中拟合效果最好的模型是().A.模型1 B.模型2 C.模型3 D.模型43.设随机变量X的分布列如下表,且E(X)=1.6,则a-b=()A.0.2B.0.1C.-0.2D.-0.44.若方程x3-3x+m=0在[0,2]上有解,则实数m的取值范围是()A. [-2,2] B. [0,2]C. [-2,0]D. (-∞,-2)∪(2,+∞)5.已知圆上9个点,每两点连一线段,所有线段在圆内的交点有()A.36个 B.72个 C.63个 D.126个6.函数f(x)=ax3+x+1有极值的一个充分而不必要条件是()A.a<0 B.a>0 C.a<-1 D.a<17.若(n∈N*),且,则() A.81 B.16 C.8 D.18.一个篮球运动员投篮一次得3分的概率为a,得2分的概率为b,不得分的概率为c(a,b,c∈(0,1)),已知他投篮一次得分的均值为2(不计其他得分情况),则ab的最大值为()A. B. C. D.9.高三毕业时,甲、乙、丙等五位同学站成一排合影留念,已知甲、乙二人相邻,则甲、丙相邻的概率是()A. B. C. D.10.已知x与y之间的几组数据如表:假设根据如表数据所得线性回归直线方程为,若某同学根据表中的前两组数据(1,0)和(2,2)求得的直线方程为,则以下结论正确的是()A., B., C., D.,11.某人射击一发子弹的命中率为0.8,现在他射击19发子弹,理论和实践都表明,在这19发子弹中命中目标的子弹数X的概率满足P(X=k)=(k=0,1,2,…,19),则他射完19发子弹后,击中目标的子弹最可能是 ()A.14发 B.15发 C.16发 D.15发或16发12.函数f(x)=ax3+bx2+cx+d(a≠0),若a+b+c=0,导函数f′(x)满足f′(0)f′(1)>0,设f′(x)=0的两根为x1,x2,则|x1-x2|的取值范围是()A.323⎡⎫⎪⎢⎪⎣⎭,B.14,39⎡⎤⎢⎥⎣⎦C.133⎡⎫⎪⎢⎪⎣⎭, D.1193⎡⎫⎪⎢⎣⎭,第II 卷非选择题二、填空题(本大题共4小题,每小题5.0分,共20分)13.某人从某城市的A地乘公交车到火车站,由于交通拥挤,所需时间(单位:分钟)X~N(50,),则他在时间段(30,70]内赶到火车站的概率为________.14.如图(1),在三角形ABC中,AB⊥AC,若AD⊥BC,则AB2=BD·BC;若类比该命题,如图(2),三棱锥A-BCD中,AD⊥面ABC,若A点在三角形BCD所在平面内的射影为M,则有________.15.设M=,则M与1的大小关系是__________.16.若对任意的x∈A,则x∈,就称A是“具有伙伴关系”的集合.集合M={-1,0,,,1,2,3,4}的所有非空子集中,具有伙伴关系的集合的个数为________.三、解答题(本大题共6小题,共70分)17.(本小题共12分)已知一元二次方程x2-ax+1=0(a∈R).(1)若x=37+i44是方程的根,求a的值;(2)若x1,x2是方程两个虚根,且|x1-1|>|x2|,求a的取值范围.18. (本小题共12分)随着生活水平的提高,人们的休闲方式也发生了变化.某机构随机调查了n 个人,其中男性占调查人数的.已知男性中有一半的人的休闲方式是运动,而女性只有的人的休闲方式是运动.(1)完成如图2×2列联表:(2)若在犯错误的概率不超过0.05的前提下,可认为“休闲方式有关与性别”,那么本次被调查的人数至少有多少?(3)根据(2)的结论,本次被调查的人中,至少有多少人的休闲方式是运动?参考公式:=,其中n=a+b+c+d.参考数据:19.若n为正整数,试比较3·2n-1与n2+3的大小,分别取n=1,2,3,4,5加以试验,根据试验结果猜测一个一般性结论,并用数学归纳法证明.20.为防止风沙危害,某地决定建设防护绿化带,种植杨树、沙柳等植物.某人一次种植了n株沙柳.各株沙柳的成活与否是相互独立的,成活率为p,设ξ为成活沙柳的株数,数学期望E(ξ)为3,标准差为.(1)求n和p的值,并写出ξ的分布列;(2)若有3株或3株以上的沙柳未成活,则需要补种.求需要补种沙柳的概率.21.已知函数f(x)=(ax-x2)e x.(1)当a=2时,求f(x)的单调递减区间;(2)若函数f(x)在(-1,1]上单调递增,求a的取值范围;(3)函数f(x)是否可为R上的单调函数?若是,求出a的取值范围,若不是,说明理由.22.设函数f(x)=|x-a|+x.(1)当a=2时,求函数f(x)的值域;(2)若g(x)=|x+1|,求不等式g(x)-2>x-f(x)恒成立时a的取值范围.答案解析1.B2.A3.C4.A5.D【解析】此题可化归为:圆上9个点可组成多少个四边形,每个四边形的对角线的交点即为所求,所以,交点有=126(个)6.C7.A8.D9.C10. C11. D【解析】由≥且≥,解得15≤k≤16,即P(X=15)=P(X=16)最大12.A【解析】由题意得f′(x)=3ax2+2bx+c,∵x1,x2是方程f′(x)=0的两个根,∴x 1+x2=-,x1·x2=,∴|x1-x2|2=(x+x2)2-4x1·x2=.∵a+b+c=0,∴c=-a-b,∴|x 1-x2|2==()2+·+.∵f′(0)·f′(1)>0,f′(0)=c=-(a+b),且f′(1)=3a+2b+c=2a+b,∴(a+b)(2a+b)<0,即2a2+3ab+b2<0,∵a≠0,两边同除以a2,得()2+3+2<0,解得-2<<-1.由二次函数的性质可得,当=-时,|x 1-x2|2有最小值为,当趋于-1时,|x1-x2|2趋于,故|x 1-x2|2∈[,),故|x1-x2|∈[,).13. 0.9544 14.=S △BCM·S△BCD15.【答案】M<1【解析】∴M==1.16.【答案】15【解析】具有伙伴关系的元素组有-1;1;,2;,3;共4组,所以集合M的所有非空子集中,具有伙伴关系的非空集合中的元素,可以是具有伙伴关系的元素组中的任一组、二组、三组、四组,又集合中的元素是无序的,因此,所求集合的个数为+++=15.17.解(1)已知一元二次方程x2-ax+1=0(a∈R),若x=+i是方程的根,则x=-i也是方程的根.(+i)+(-i)=a,解得a=.(2)x 1,x2是方程x2-ax+1=0的两个虚根,不妨设x1=,x2=,a∈(-2,2),|x 1-1|>|x2|,∴(-1)2+(-)2>()2+()2,∴a<1.综上,-2<a<1.18.【解】(1)依题意,被调查的男性人数为,其中有人的休闲方式是运动;被调查的女性人数为,其中有人的休闲方式是运动,则2×2列联表如图。
20正视图侧视图俯视图808080高三理数小题训练(5)班级 姓名 成绩一、选择题:本大题共10小题,每小题5分,共50分。
题号 1 2345678910答案二、填空题:本大题共5小题,每小题5分,共25分。
11 12 13 14 15 A 、 B 、 C 、一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1、在复平面内,复数21i+ 对应的点与原点的距离是 A. 1 B. 2 C.2 D. 222、定义}|{B x A x x B A ∉∈=-且,若}6,3,2{},5,4,3,2,1{==N M ,则N -M 等于 A .MB .NC .{1,4,5}D .{6}3、已知R b a ∈,则“33log log a b >”是 “11()()22ab<”的A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件4、已知()xf x a b =+的图象如图所示,则()3f = A.22233-C.333D.333或333-5、若0,0a b >>,则不等式1a b x-<<等价于 A.10x a -<<或10x b << B.11x b a-<< C.1x b <-或1x a > D.1x a <-或1x b >6、设a 为函数()sin 3cos y x x x R =∈的最大值,则二项式6(x x-的展开式中含2x 项的系数是 A .192 B .182 C .192- D .182-7、设函数⎪⎩⎪⎨⎧>≤++=0,20,)(2x x c bx x x f ,若2)2(),0()4(-=-=-f f f 则关于x 的方程x x f =)( 的解的个数是 A .1 B .2 C .3 D .48、某师傅需用合板制作一个工作台,工作台由主体和附属两部分组成,主体 部分全封闭,附属部分是为了防止工件滑出台面而设置的护墙,其大致形状的 三视图如右图所示(单位长度: cm), 则按图中尺寸,做成的工作台用去的合板 的面积为(制作过程合板损耗和合板厚度忽略不计)A. 240000cmB. 240800cmC. 21600(2217)cm +D. 241600cmxy 2 O -2 ··B DO ACP9、 过双曲线12222=-by a x (a >0, b >0)的右焦点F 作圆222a y x =+的切线FM (切点为M )交y 轴于点P 。
高三年级数 学(理科)练习一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合{}1A x x =>,{}B x x m =<,且A B =R U ,那么m 的值可以是 (A )1- (B )0 (C )1 (D )2(2)在等比数列{}n a 中,14358a a a a ==,,则7a =(A )116(B )18 (C )14(D )12(3)在极坐标系中,过点3(2,)2π且平行于极轴的直线的极坐标方程是 (A )sin 2ρθ=- (B )cos 2ρθ=- (C )sin 2ρθ= (D )cos 2ρθ=(4)已知向量=(1)=(1)x x ,a b ,,-,若2-a b 与b 垂直,则=a(A(B(C )2 (D )4(5)执行如图所示的程序框图,输出的k 值是(A )4 (B )5(C )6 (D )7(6)从甲、乙等5个人中选出3人排成一列,则甲不在排头的排法种数是(A )12 (B )24 (C )36 (D )48(7)已知函数2,1,()1,1,x ax x f x ax x ⎧-+≤=⎨->⎩ 若1212,,x x x x ∃∈≠R ,使得12()()f x f x =成立,则实数a 的取值范围是(A )2a < (B )2a >(C )22a -<< (D )2a >或2a <-(8)在正方体''''ABCD A B C D -中,若点P (异于点B )是棱上一点,则满足BP 与'AC 所成的角为45°的点P 的个数为(A )0 (B )3 (C )4 (D )6二、填空题:本大题共6小题,每小题5分,共30分,把答案填在题中横线上. (9)复数2i1ia +-在复平面内所对应的点在虚轴上,那么实数a = .(10)过双曲线221916x y -=的右焦点,且平行于经过一、三象限的渐近线的直线方程是 .(11)若1tan 2α=,则cos(2)απ2+= .(12)设某商品的需求函数为1005Q P =-,其中,Q P 分别表示需求量和价格,如果商品需求弹性EQEP大于1(其中'EQ Q P EP Q=-,'Q 是Q 的导数),则商品价格P 的取值范围是 .(13)如图,以ABC ∆的边AB 为直径的半圆交AC 于点D ,交BC 于点E ,EF AB ^于点F ,3AF BF =,22BE EC ==,那么CDE Ð= ,CD = .(14)已知函数1,,()0,,x f x x ìÎïï=íïÎïîR Q Q ð则 (ⅰ)(())f f x = ;FEDC BAA'B'C'D'ABCD(ⅱ)给出下列三个命题: ①函数()f x 是偶函数; ②存在(1,2,3)i x i ?R ,使得以点(,())(1,2,3)i i x f x i =为顶点的三角形是等腰直角三角形; ③存在(1,2,3,4)i x i?R ,使得以点(,())(1,2,3,4)i i x f x i =为顶点的四边形为菱形.其中,所有真命题的序号是 .三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. (15)(本小题满分13分)在ABC ∆中,角A ,B ,C 的对边分别为,,a b c ,且A ,B , C 成等差数列.(Ⅰ)若b =3a =,求c 的值;(Ⅱ)设sin sin t A C =,求t 的最大值.(16)(本小题满分14分)在四棱锥P ABCD -中,AB //CD ,AB AD ^,P4,2AB AD CD===,PA^平面ABCD,4PA=. (Ⅰ)设平面PAB I平面PCD m=,求证:CD//m;(Ⅱ)求证:BD⊥平面PAC;(Ⅲ)设点Q为线段PB上一点,且直线QC与平面PAC所成角的正弦值为3,求PQPB的值.(17)(本小题满分13分)某学校随机抽取部分新生调查其上学所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中,上学所需时间的范围是[0,100],样本数据分组为[0,20),[20,40),[40,60),[60,80),[80,100].(Ⅰ)求直方图中x 的值;(Ⅱ)如果上学所需时间不少于1小时的学生可申请在学校住宿,请估计学校600名新生中有多少名学生可以申请住宿;(Ⅲ)从学校的新生中任选4名学生,这4名学生中上学所需时间少于20分钟的人数记为X ,求X 的分布列和数学期望.(以直方图中新生上学所需时间少于20分钟的频率作为每名学生上学所需时间少于20分钟的概率)(18)(本小题满分13分)已知函数21()e()(0)kxf x x x k k-=+-<.(Ⅰ)求()f x 的单调区间;(Ⅱ)是否存在实数k ,使得函数()f x 的极大值等于23e ?若存在,求出k 的值;若不存在,请说明理由.(19)(本小题满分13分)在平面直角坐标系xOy 中,椭圆G 的中心为坐标原点,左焦点为1(1,0)F -, P 为椭圆G 的上顶点,且145PF O ∠=︒. (Ⅰ)求椭圆G 的标准方程;(Ⅱ)已知直线1l :1y kx m =+与椭圆G 交于A ,B 两点,直线2l :2y kx m =+(12m m ≠)与椭圆G 交于C ,D 两点,且||||AB CD =,如图所示.(ⅰ)证明:120m m +=;(ⅱ)求四边形ABCD 的面积S 的最大值.(20)(本小题满分14分)对于集合M ,定义函数1,,()1,.M x M f x x M -∈⎧=⎨∉⎩对于两个集合M ,N ,定义集合{()()1}M N M N x f x f x ∆=⋅=-. 已知{2,4,6,8,10}A =,{1,2,4,8,16}B =.(Ⅰ)写出(1)A f 和(1)B f 的值,并用列举法写出集合A B ∆;(Ⅱ)用Card (M )表示有限集合M 所含元素的个数,求()()Card X A Card X B ∆+∆的最小值; (Ⅲ)有多少个集合对(P ,Q ),满足,P Q A B ⊆U ,且()()P A Q B A B ∆∆∆=∆?海淀区高三年级第二学期期中练习数 学(理科)参考答案及评分标准 2012.04一. 选择题:本大题共8小题,每小题5分,共40分.二.填空题:本大题共6小题,每小题5分,共30分.(9)2 (10)43200x y --= (11)45- (12)(10,20) (13)60°(14)1 ①③ 三.解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. (15)(本小题满分13分) 解:(Ⅰ)因为,,A B C 成等差数列, 所以2B A C =+. 因为A B C ++=π, 所以3B π=. ………………………………………2分 因为b =3a =,2222cosb ac ac B =+-,所以2340c c --=. ………………………………………5分所以4c =或1c =-(舍去). ………………………………………6分(Ⅱ)因为23A C +=π, 所以2sin sin()3t A A π=- 1sin sin )2A A A =+ 11cos22()422A A -=+11sin(2)426A π=+-. ………………………………………10分 因为203A π<<,所以72666A πππ-<-<.所以当262A ππ-=,即3A π=时,t 有最大值34.………………………………………13分(16)(本小题满分14分)(Ⅰ)证明: 因为AB //CD ,CD ⊄平面PAB ,AB ⊂平面PAB ,所以CD //平面PAB . ………………………………………2分 因为CD ⊂平面PCD ,平面PAB I 平面PCD m =,所以CD //m . ………………………………………4分(Ⅱ)证明:因为AP ^平面ABCD ,AB AD ^,所以以A 为坐标原点,,,AB AD AP 所在的直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,则(4,0,0)B ,(0,0,4)P,(0,D,(2,C .………………………………………5分所以(4,BD =-u u u r,(2,AC =u u u r, (0,0,4)AP =u u u r,所以(4)2000BD AC ⋅=-⨯+⨯=u u u r u u u r,(4)00040BD AP ⋅=-⨯++⨯=u u u r u u u r.所以 BD AC ⊥,BD AP ⊥.因为 AP AC A =I ,AC ⊂平面PAC ,PA ⊂平面PAC ,所以 BD ⊥平面PAC .………………………………………9分(Ⅲ)解:设PQPB λ=(其中01λ#),(,,)Q x y z ,直线QC 与平面PAC 所成角为θ.所以 PQ PB λ=u u u r u u u r.所以 (,,4)(4,0,4)x y z λ-=-.所以 4,0,44,x y z λλì=ïïï=íïï=-+ïïî即(4,0,44)Q λλ-+.所以(42,44)CQ λλ=---+u u u r. ………………………………………11分 由(Ⅱ)知平面PAC的一个法向量为(4,BD =-u u u r.………………………………………12分因为 sin cos ,CQ BDCQ BD CQ BDθ×=<>=×u u u r u u u ru u u r u u u r u u u r u u u r ,所以=. 解得 7[0,1]12λ=∈. 所以 712PQ PB =. ………………………………………14分(17)(本小题满分13分) 解:(Ⅰ)由直方图可得:200.025200.0065200.0032201x ⨯+⨯+⨯+⨯⨯=.所以 0.0125x =. ………………………………………2分 (Ⅱ)新生上学所需时间不少于1小时的频率为:0.0032200.12⨯⨯=, ………………………………………4分因为6000.1272⨯=,所以600名新生中有72名学生可以申请住宿.………………………………………6分(Ⅲ)X 的可能取值为0,1,2,3,4. ………………………………………7分由直方图可知,每位学生上学所需时间少于20分钟的概率为14, 4381(0)4256P X ⎛⎫=== ⎪⎝⎭, 3141327(1)C 4464P X ⎛⎫⎛⎫===⎪⎪⎝⎭⎝⎭,22241327(2)C 44128P X ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,334133(3)C 4464P X ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,411(4)4256P X ⎛⎫===⎪⎝⎭. 所以X 的分布列为:………………………………………12分812727310123412566412864256EX =⨯+⨯+⨯+⨯+⨯=.(或1414EX =⨯=)所以X 的数学期望为1. ………………………………………13分(18)(本小题满分13分) 解:(Ⅰ)()f x 的定义域为R . 221'()e()e (21)e [(2)2]kxkx kx f x k x x x kx k x k---=-+-++=-+-+,即 '()e(2)(1)(0)kxf x kx x k -=--+<. ………………………………………2分令'()0f x =,解得:1x =-或2x k=. 当2k =-时,22'()2e (1)0xf x x =+≥,故()f x 的单调递增区间是(,)-??. ………………………………………3分 当20k -<<时,()f x ,'()f x 随x 的变化情况如下:所以,函数()f x 的单调递增区间是(,)k-∞和(1,)-+∞,单调递减区间是(,1)k-.………………………………………5分当2k <-时,()f x ,'()f x 随x 的变化情况如下:所以,函数()f x 的单调递增区间是(,1)-∞-和(,)k+∞,单调递减区间是(1,)k-.………………………………………7分(Ⅱ)当1k =-时,()f x 的极大值等于23e -. 理由如下:当2k =-时,()f x 无极大值.当20k -<<时,()f x 的极大值为22241()e ()f kk k-=+, ………………………………………8分令22241e ()3e k k--+=,即2413,k k += 解得 1k =-或43k =(舍).………………………………………9分当2k <-时,()f x 的极大值为e (1)kf k-=-.………………………………………10分因为 2e e k-<,1102k <-<, 所以 2e 1e 2k k --<. 因为221e 3e 2--<, 所以 ()f x 的极大值不可能等于23e -. ………………………………………12分 综上所述,当1k =-时,()f x 的极大值等于23e -.………………………………………13分(19)(本小题满分13分)(Ⅰ)解:设椭圆G 的标准方程为22221(0)x y a b a b+=>>.因为1(1,0)F -,145PF O ∠=︒,所以1b c ==.所以 2222a b c =+=. ………………………………………2分所以 椭圆G 的标准方程为2212x y +=. ………………………………………3分 (Ⅱ)设11(,)A x y ,22(,)B x y ,33(,)C x y ,44(,)D x y .(ⅰ)证明:由122,1.2y kx m x y =+⎧⎪⎨+=⎪⎩消去y 得:22211(12)4220k x km x m +++-=.则2218(21)0k m ∆=-+>,1122211224,1222.12km x x km x x k ⎧+=-⎪⎪+⎨-⎪=⎪+⎩………………………………………5分 所以||AB ====同理||CD =. ………………………………………7分 因为 ||||AB CD =,所以=.因为 12m m ≠,所以 120m m +=. ………………………………………9分(ⅱ)解:由题意得四边形ABCD 是平行四边形,设两平行线,AB CD 间的距离为d ,则d =.因为 120m m +=, 所以d =………………………………………10分所以||S AB d =⋅=2221121k m m -++=≤=(或S ==所以 当221212k m +=时, 四边形ABCD 的面积S取得最大值为………………………………………13分(20)(本小题满分14分)解:(Ⅰ)(1)=1A f ,(1)=1B f -,{1,6,10,16}A B ∆=.………………………………………3分(Ⅱ)根据题意可知:对于集合,C X ,①若a C Î且a X Ï,则(({})()1Card C X a Card C X ∆=∆-U ;②若a C Ï且a X Ï,则(({})()1Card C X a Card C X ∆=∆+U .所以 要使()()Card X A Card X B ∆+∆的值最小,2,4,8一定属于集合X ;1,6,10,16是否属于X 不影响()()Card X A Card X B ∆+∆的值;集合X 不能含有A B U 之外的元素.所以 当X 为集合{1,6,10,16}的子集与集合{2,4,8}的并集时,()()Card X A Card X B ∆+∆取到最小值4. ………………………………………8分(Ⅲ)因为 {()()1}A B A B x f x f x ∆=⋅=-,所以 A B B A ∆=∆.由定义可知:()()()A B A B f x f x f x ∆=⋅.所以 对任意元素x ,()()()()()()()A B C A B C A B C f x f x f x f x f x f x ∆∆∆=⋅=⋅⋅, ()()()()()()()A B C A B C A B C f x f x f x f x f x f x ∆∆∆=⋅=⋅⋅. 所以 ()()()()A B C A B C f x f x ∆∆∆∆=. 所以 ()()A B C A B C ∆∆=∆∆.由 ()()P A Q B A B ∆∆∆=∆知:()()P Q A B A B ∆∆∆=∆. 所以 ()()()()()P Q A B A B A B A B ∆∆∆∆∆=∆∆∆. 所以 P Q ∆∆∅=∅. 所以 P Q ∆=∅,即P Q =. 因为 ,P Q A B ⊆U ,所以 满足题意的集合对(P ,Q )的个数为72128=.………………………………………14分。