第4章 钨极氩弧焊
- 格式:ppt
- 大小:3.29 MB
- 文档页数:25
钨极氩弧焊钨极惰性气体保护电弧焊(tungsten inert —gas arc welding)使用纯钨或活化钨(钍钨、铈钨等)作为电极的惰性气体保护电弧焊,简称TIG焊优点(1)几乎可以焊接所有的金属或合金(2)焊接质量好(焊缝纯净、成形好、热影响区小) (3)适于薄板及打底/全位置焊(4)无飞溅缺点焊接效率低、成本高;对焊前清理要求严格;需要特殊的引弧措施;紫外线强烈、臭氧浓度高;抗风能力差。
材料:多用于有色金属及其合金厚度:多用于薄件(从生产效率考虑,以3mm以下为宜)位置:多用于打底(单面焊双面成形),薄件及管-管、管-板,也用于填充和盖面焊接材料(1)钢类焊丝可用的焊丝包括:实芯焊丝药芯焊丝(2)有色金属焊丝工艺参数焊丝直径、钨极直径、焊接电流、焊接电压、气体流量、(填丝速度)、(焊接速度)等。
电源直流电源、交流电源、交直流电源均采用陡降或垂直下降外特性。
陡降外特性的电源与普通电弧焊的并无多大差别,原则上可以通用。
直流正接优点电极载流能力强、熔深大、钨极烧损少、引弧容易反接没有阴极清理作用应用用于大多数的焊接场合(除Al、Mg外)交流正弦波交流:设备简单,但电弧稳定性差(要有特别稳弧措施)、有直流分量(要有特别措施消除)。
变脉宽方波交流:设备复杂,但电流参数灵活、电弧稳定、钨极烧损少,比正弦波交流有优势。
变极性方波交流:特点与变脉宽方波交流相同,但更好(因负半周电流大小对阴极清理作用影响更大)应用:用于焊接铝、镁、铝青铜等合金(表面易氧化、氧化膜致密)焊接设备电源控制系统引/稳弧装置焊枪供气系统(水冷系统)(自动焊设备还应包括焊接小车和送丝装置)焊接技术:1、选材:对结构钢,按等强原则选择焊接材料,对不锈钢、铝及铝合金等则主要考虑化学成分. ①焊丝的化学成分应与母材的性能相匹配,严格控制其化学成分、纯度和质量.主要化学成分应比母材稍高,以弥补高温的烧损.②TIG 焊使用钢焊丝时应尽量选专用焊丝,以减少主要化学成分的变化,保证焊缝一定的力学性能和熔池液态金属的流动性,获得良好的焊缝成型,避免产生裂纹等缺陷。
钨极氩弧焊的技术特点及应⽤钨极氩弧焊的技术特点及应⽤⼀、钨极氩弧焊的⼯作原理钨极氩弧焊是利⽤惰性⽓体(氩⽓)保护的⼀种电弧焊焊接⽅法。
从喷嘴中喷出的氩⽓在焊接中造成⼀个厚⽽密的⽓体保护层隔绝空⽓,在氩⽓层流的包围中,电弧在钨极与⼯件之间燃烧,利⽤电弧产⽣的热量,熔化被焊处,并填充焊丝,把两块分离的⾦属连接在⼀起,从⽽获得牢固的焊接接头。
⼆、钨极氩弧焊的特点钨极氩弧焊与⼿⼯焊条电弧焊相⽐主要有以下特点:l、氩⽓是惰性⽓体,⾼温下不分解,与焊缝⾦属不发⽣反应,不溶解于液态⾦属,故保护效果最佳,能有效的保护熔池⾦属,是⼀种⾼质量的焊接⽅法。
2、氩⽓是单原⼦⽓体,⾼温⽆⼆次吸放热分解反应,导电能⼒差,以及氩⽓流产⽣的压缩效应和冷却作⽤,使电弧热集中,温度⾼,电弧稳定性好,即使在低电流下电弧还能稳定燃烧。
3、氩弧焊热量集中,从喷嘴中喷出的氩⽓有冷却作⽤,因此焊缝热影响区窄,焊件变形⼩。
4、⽤氩⽓保护⽆熔渣,提⾼了⼯作效率,⽽且焊缝成形美观,质量好。
5、氩弧焊明弧操作,熔池可观性好,便于观察和操作,技术容易掌握,适合各种位置焊接。
6、除⿊⾊⾦属外,可⽤于焊接不锈钢、铝、铜等有⾊⾦属及合⾦钢。
但氩弧焊成本⾼;⽽且氩⽓电离势⾼,引弧困难;氩弧焊产⽣紫外线强度⾼于⼿⼯焊条电弧焊5—30倍;另外,钨极有⼀定放射性,对焊⼯也有⼀定的危害,⽬前推⼴使⽤的铈钨极对焊⼯的危害较⼩。
三、钨极氩弧焊的分类钨极氩弧焊按操作⽅法可分为⼿⼯钨极氩弧焊和机械化焊接两种。
对于直线焊缝和规则的曲线焊缝,可采⽤机械化焊接。
⽽对于不规则的或较短的焊缝,则采⽤⼿⼯钨极氩弧焊。
⽬前使⽤较多的是直流⼿⼯钨极氩弧焊,直流钨极氩弧焊通常分为两种:1、直流反极性在钨极氩弧焊中,虽很少⽤直流反极性,但是,它有⼀种去除氧化膜作⽤。
所谓去除氧化膜作⽤,在交流焊的反极性半波也同样存在,它是成功地焊接铝、镁及其合⾦的重要因素。
铝、镁及其合⾦的表⾯存在⼀层致密难熔的氧化膜覆盖在焊接熔池表⾯,如不及时清除,焊接时会造成未熔合,在焊缝表⾯还会形成皱⽪或产⽣内⽓孔、夹渣,直接影响焊接质量。
钨极氩弧焊(TIG焊)的焊接工艺参数
钨极氩弧焊简称为TIG焊,它使用熔点很高的纯钨或钨合金(钍钨、铈钨)作为不熔化电极的氩气保护焊,故也称不熔化极氩弧焊。
为了确保钨极氩弧焊的质量,必须对焊件与焊丝表面进行清理,去除金属表面的氧化膜、油污等杂质,否则在焊接过程中将会影响电弧的稳定性,产生气孔和未熔合等缺陷.焊接工艺参数如下;
1)钨极直径:
钨极直径主要根据焊件厚度选取.此外,在同等焊接条件下,选用不同的电流种类和极性,钨极电流许用值不同,采用的钨极直径也不同.如钨极直径选择不当,将造成电弧不稳、钨极烧损和焊缝夹钨现象;
2)焊接电流:
当钨极直径选定后,再选择合适的焊接电流.各种直径的钍(铈)钨极许用电流值见表1-001;
3)氩气流量:
氩气流量主要根据钨极直径和喷嘴直径来选取,通常在3~20L/min范围内;
4)焊接速度:
氩气保护层是柔性的,当遇到侧向风力或焊接速度过快时,则氩气气流会产生弯曲而偏离熔池,影响气体保护效果,而且焊接速度会影响焊缝成形,因此应选择合适的焊接速度;
5)工艺因素:
主要指喷嘴形状与直径、喷嘴至焊件的距离、钨极伸出长度、填充焊丝直径等.虽然这些工艺因索变化不大,但对气体保护效果和焊接过程有一定影响,应根据具体情况选择.通常喷嘴直径在5~20mm内选用;喷嘴至焊件的距离不超过15mm;钨极伸出喷嘴长度为3~4mm;填充焊丝直径根据焊件厚度选择。
TIG焊焊接工艺参数:
杨怡平
2011-6-19。
TIG焊(钨极氩弧焊)的原理、特点及应用钨极惰性气体保护焊是利用高熔点钨棒作为一个电极,以工件作为另一个电极,并利用氩气、氦气或氩氦混合气体作为保护介质的一种焊接方法。
我国通常只采用氩气做保护气,因此又称为钨极氩弧焊,简称TIG焊或CGTAW焊。
1、TIG焊的原理用难熔金属纯钨或活化钨(钍钨、铈钨)作为电极,用氩气来保护电极和电弧区及熔化金属的一种电弧焊方法,通常又称为钨极氩弧焊,其原理如下图所示。
▲钨极氩弧焊的工作原理1—钨极2—填充金属3—工件4—焊缝金属5—电弧6—喷嘴7—保护气体氩气属惰性气体,不溶于液态金属。
焊接时电弧在电极与焊件之间燃烧,氩气使金属熔池、熔滴及钨极端头与空气隔绝。
2、TIG焊的特点(1)优点①用难熔金属钝钨或活化钨制作的电极在焊接过程中不熔化。
利用氩气隔绝大气,防止了氧、氮、氢等气体对电弧及熔池的影响,被焊金属及焊丝的元素不易烧损(仅有极少数烧损)。
因此,容易保持恒定的电弧长度,焊接过程稳定,焊接质量好。
②焊接时可不用焊剂,焊缝表面无熔渣,便于观察熔池及焊缝成形,及时发现缺陷,在焊接过程中可采取适当措施来消除缺陷。
③钨极氩弧稳定性好,当焊接电流小于10A时电弧仍能稳定燃烧。
因此特别适合薄板焊接。
由于热源和填充焊丝分别控制,热量调节方便,使焊接热输入更容易控制。
因此,适于各种位置的焊接,也容易实现单面焊双面成形。
④氩气流对电弧有压缩作用,故热量较集中,熔池较小;由于氩气对近缝区的冷却,可使热影响区变窄,焊件变形量减小。
焊接接头组织紧密,综合力学性能较好;在焊接不锈钢时,焊缝的耐蚀性特别是抗晶间腐蚀性能较好。
⑤由于填充焊丝不通过焊接电流,所以不会产生因熔滴过渡造成的电弧电压和电流变化引起的飞溅现象,为获得光滑的焊缝表面提供了良好的条件。
钨极氩弧焊的电弧是明弧,焊接过程参数稳定,便于检测及控制,便于实现机械化和自动化焊接。
(2)缺点①钨极氩弧焊利用气体进行保护,抗侧向风的能力较差。
钨极氩弧焊的电流种类和极性钨极氩弧焊的电流种类和极性钨极氩弧焊时,焊接电弧正、负极的导电和产热机构与电极材料的热物理性能有密切关系、从而对焊接工艺有显著影响。
下面分别讨论采用不同电流种类和极性进行钨极氩弧焊的情况。
一、直流钨极氩弧焊直流钨极氩弧焊时,电流极性没有变化,电弧连续而稳定,按电源极性的不同接法,又可将直流钨极氩弧焊分为直流正极性法和直流反极性法两种方法。
1.直流正极性法直流正极性法焊接时,焊件接电源正极,钨极接电源负极。
由于钨极熔点很高,热发射能力强,电弧中带电粒子绝大多数是从钨极上以热发射形式产生的电子。
这些电子撞击焊件(负极),释放出全部动能和位能(逸出功),产生大量热能加热焊件,从而形成深而窄的焊缝。
该法生产率高,焊件收缩应力和变形小。
另一方面,由于钨极上接受正离子撞击时放出的能量比较小,而且由于钨极在发射电子时需要付出大量的逸出功,所以钨极上总的产热量比较小,因而钨极不易过热,烧损少;对于同一焊接电流可以采用直径较小的钨极。
再者,由于钨极热发射能力强,采用小直径钨棒时,电流密度大,有利于电弧稳定。
综上所述,直流正极性有如下特点:1)熔池深而窄,焊接生产率高,焊件的收缩应力和变形都小。
2)钨极许用电流大,寿命长。
3)电弧引燃容易,燃烧稳定。
总之,直流正极性优点较多,所以除铝、镁及其合金的焊接以外,钨极氩弧焊一般都采用直流正极性焊接。
2.直流反极性法直流反极性时焊件接电源负极,钨极接正极。
这时焊件和钨极的导电和产热情况与直流正极性时相反。
由于焊件一般熔点较低,电子发射比较困难,往往只能在焊件表面温度较高的阴极斑点处发射电子,而阴极斑点总是出现在电子逸出功较低的氧化膜处。
当阴极斑点受到弧柱中来的正离子流的强烈撞击时,温度很高,氧化膜很快被汽化破碎,显露出纯洁的焊件金属表面,电子发射条件也由此变差。
这时阴极斑点就会自动转移到附近有氧化膜存在的地方,如此下去,就会把焊件焊接区表面的氧化膜清除掉,这种现象称为阴极破碎(或称阴极雾化)现象。
图1-7 钨极惰性气体保护焊示意图1—喷嘴 2—钨极 3—电弧 4—焊缝 5—工件 6—熔池 7—填充焊丝 8—惰性气体钨极氩弧焊(GTAW )焊接方法简介1.原理钨极氩弧焊是用钨棒作为电极加上氩气进行保护的焊接方法,其方法构成如图1-7所示。
焊接时氩气从焊枪的喷嘴中连续喷出,在电弧周围形成气体保护层隔绝空气,以防止其对钨极、熔池及邻近热影响区的有害影响,从而获得优质的焊缝,焊接过程根据工件的具体要求可以加或不加填充焊丝。
2.分类这种焊接方法根据不同的分类方式大致有如下几种:1)按电流波形 直流氩弧焊 交流氩弧焊 脉冲氩弧焊 正弦波矩形波变脉宽 变极性 低频0.1~10Hz 中频10~1kHz 高频>15kHz2)按操作方式手工自动 焊枪移动是手工操作,填充焊丝送进可以是手工,也可以是机械送丝 焊枪安装在焊接小车上,小车的行走和焊丝送进均由机械完成3)按保护气体成分 氩弧焊氦弧焊混合气体保护焊上述几种钨极氩弧焊方法中手工操作应用最为广泛。
3.特点这种焊接方法由于电弧是在氩气中进行燃烧,因此具有如下优缺点:1)氩气具有极好的保护作用,能有效地隔绝周围空气;它本身不与金属起化学反应,也不溶于金属,使得焊接过程中熔池的冶金反应简单易控制,因此为获得高质量的焊缝提供良好条件。
2)钨极电弧非常稳定,即使在很小的电流情况下(<10A )仍可稳定燃烧,特别适合于薄板材料焊接。
3)热源和填充焊丝可分别控制,因而热输入容易调整,所以这种焊接方法可进行全位置焊接,也是实现单面焊双面成形的理想方法。
4)由于填充焊丝不通过电流,故不会产生飞溅,焊缝成形美观。
5)交流氩弧在焊接过程中有自动清除工件表面的氧化膜作用,因此,可成功的焊接一些化学活泼性强的有色金属,如铝、镁及其合金。
6)钨极承载电流能力较差,过大的电流会引起钨极的熔化和蒸发,其微粒有可能进入熔池而引起夹钨。
因此,熔敷速度小、熔深浅、生产率低。
7)采用的氩气较贵,熔敷率低,且氩弧焊机又复杂,和其他焊接方法(如焊条电弧焊、埋弧焊、CO 2气体保护焊)比较,生产成本较高。
钨极氩弧焊原理引言钨极氩弧焊是一种常用的金属焊接方法,它采用钨电极和氩气作为保护气体,通过电弧将工件加热至熔化状态,从而实现焊接。
本文将详细解释钨极氩弧焊的基本原理,并阐述其相关概念和过程。
1. 钨极氩弧焊的概述钨极氩弧焊(Tungsten Inert Gas Welding,TIG)是一种常用的电弧焊接方法,在工业生产中广泛应用于不锈钢、铝合金等材料的焊接。
它以稳定的直流或交流电源为能源,通过高温电弧将工件加热至熔化状态,在无任何填充材料情况下进行焊接。
2. 基本原理2.1 焊接设备钨极氩弧焊需要以下主要设备: - 电源:提供稳定的直流或交流电源; - 变压器/整流器:将输入电源转换为适合焊接的输出电压; - 焊枪:包含钨电极、喷嘴和氩气流量控制器; - 气源:提供高纯度的惰性气体(通常为氩气)作为保护气体。
2.2 工件准备在进行钨极氩弧焊之前,需要对待焊工件进行准备: - 清洁表面:确保工件表面没有油脂、污垢或氧化物,以免影响焊接质量; - 坡口处理:根据焊接要求对工件进行坡口处理,以便获得良好的焊缝质量。
2.3 焊接过程钨极氩弧焊的基本过程如下: 1. 钨电极放电:将钨电极与工件相连,并通过电源提供所需电流。
当钨电极靠近工件时,产生弧光放电。
2. 弧光加热:通过钨电极产生的电弧将工件加热至熔化温度。
此时,工件表面形成一个等离子体区域。
3. 氩气保护:在焊接过程中,通过喷嘴向焊缝区域喷射高纯度的惰性气体(通常是氩气),形成一个保护层。
这个保护层可以防止空气中的氧气和其他杂质进入焊接区域,从而减少氧化和污染。
4. 熔池形成:在加热过程中,工件表面的金属逐渐熔化,并形成一个熔池。
这个熔池是焊接的基础。
5. 焊缝形成:通过控制电弧和钨电极的位置,将熔池移动到需要焊接的位置。
随着熔池的移动,焊缝逐渐形成。
6. 冷却固化:当焊接完成后,停止电源供应,让焊缝冷却固化。
此时可将保护层去除,并对焊缝进行后续处理。
钨极氩弧焊一、焊接电源电流焊接电源;一种交流或直流电源,用于引弧、稳弧及正常焊接,电流5~1500A,电压10~35V。
常用手工焊机有S-160A、S-200A、S-250A等。
编称中的S为小类名称手工操作;A为额定电流安培数。
S-160A是小焊机,适合于厚度3mm以下的管道,S-200A适用于5mm 以下的管道焊接。
焊机具有电流自动衰减装置,保证焊缝的收尾质量适应环焊的需要。
有长焊、短焊转换装置,以适应长焊缝、间断焊和点焊。
焊接电流、电流衰减时间及气体保护滞后的时间全部采用无级调节,采用硅整流器作为焊接电源,维护简单、噪声小、效率高、体积小。
二、焊炬焊炬的作用是夹钨极、传导电流、向焊接区输送保护气和供水以冷却喷嘴。
对焊距的要求如下:1、保护气流具有良好的流动状态和造当的挺度,以获得可靠的保护。
2、有良好的导电性。
3、充分地冷却,以保证持久工作。
4、喷嘴与钨极间绝缘良好,以免喷嘴与工件接触时产生短路打弧。
5、质量小,结构紧凑,可达性好,拆装维修方便。
三、气体保护设备为了保护焊接熔池焊缝免受污染,GTAW需要一个保护气源,一个减压器以降低气源的压力,一个流量计以调节和控制气体流量,一个电磁阀,以电信号控制气流的通断。
1)、气瓶;气瓶是保护气气源,氩气瓶外涂以灰色,并标以“氩气”字样,以防止与其他气瓶混用。
瓶装氩气在20°C时,瓶装压力为15Mpa,容积40L、20L等。
使用瓶装氩气焊接完毕时,要把瓶嘴关闭严密以免漏气。
瓶装氩气将要用完时,瓶内要留有少量底气,不得全部用完,以免空气进入瓶内。
2)减压器和流量计;高压气瓶使用一个减压器和流量计或组合装置。
减压器由细螺纹拧到气瓶头上,单级减压器需要定期调节以维持工作压力,双级减压器有着更精确的调节作用,在气瓶压力降低时不用后果新调节。
3)电磁气阀;电磁气阀装在控制箱内,一般是接入36V的交流电,由延时继电器控制。
当切断电源时,电磁气阀处于关闭状态;接通电源时,芯子连同密封塞被吸上去,电磁气阀打开,气体进入焊炬。