平行线的判定
- 格式:pdf
- 大小:1.96 MB
- 文档页数:21
平行线与平行线的性质及判定方法平行线是指在同一平面内永远不会相交的两条直线。
在数学中,平行线有着许多独特的性质和判定方法,对于几何学的研究和实际应用都具有重要意义。
一、平行线的性质1. 平行线上的两个点到另一直线的距离相等:如果两条直线L₁和L₂平行,那么这两条线上的任意两个点A和B到第三条直线L的距离都是相等的。
2. 平行线的内角和为180度:当一条直线与两条平行线相交时,两对内角之和是180度。
这可以通过数学证明得出。
3. 平行线的外角相等:当两条平行线被一条横截线相交时,这两条平行线的对应外角是相等的。
4. 平行线的平行线仍然平行:如果两条直线L₁和L₂平行,而L₃与L₁平行,那么L₃也与L₂平行。
二、平行线的判定方法1. 直角判定法:如果两条直线上的任意一对相邻内角之一是直角,那么这两条直线是平行线。
这种判定方法是由两条直线的垂直性质推导出来的。
2. 三角形内角和判定法:如果一条直线与一条平行线相交,那么直线上的一对内角与平行线上的一对内角之和为180度时,这两条直线是平行线。
3. 平行线定理:如果两条直线分别与第三条直线相交,并且两对同位角分别相等,那么这两条直线是平行线。
这个定理也被称为同位角定理。
4. 夹角判定法:如果两条直线分别与第三条直线相交,而且同位角相等或互补,则这两条直线是平行线。
5. 平行线公理(欧几里德公理):如果直线上的一点和直线外一点,有且只有一条通过这两个点的平行线。
这个公理是建立在欧几里德几何的基础上的。
以上是常见的一些关于平行线性质的说明和判定方法,通过这些性质和方法,我们可以在几何学中更好地理解和应用平行线。
在实际生活中,平行线也有着广泛的应用,例如建筑设计、道路规划、制图等领域都需要运用到平行线的概念和性质。
总结:在数学中,平行线是指在同一平面内永远不会相交的两条直线。
平行线有许多独特的性质,如平行线上的两个点到另一直线的距离相等、平行线的内角和为180度等等。
平行线的六个判定平行线是高中数学中的一个重要概念,也是几何学的基本定理之一。
平行线的概念最早由古希腊数学家欧几里得提出,并在《几何原本》一书中给出了平行线的六个判定。
六个判定分别是:同位角、内错角、同旁内角、同旁外角、平行线错角定理以及平行线夹角定理。
首先,同位角判定,其原理是:如果两条直线被一条横截线所切,且同位角之和为180°,则这两条直线是平行线。
也就是说,如果有一个横截线切过两条直线,使得这两条直线上的同位角之和为180°,那么这两条直线就是平行的。
这个判定可以通过实际的图形来演示和证明。
其次,内错角判定,其原理是:如果两条直线被一条横截线所切,且内错角互补,则这两条直线是平行线。
也就是说,如果有一个横截线切过两条直线,使得这两条直线上的内错角(一个在两直线之间,一个在两直线之外)互为补角,那么这两条直线就是平行的。
这个判定同样可以通过实际的图形来演示和证明。
接下来是同旁内角判定,其原理是:如果两条直线被一条横截线所切,且同旁内角之和为180°,则这两条直线是平行线。
也就是说,如果有一个横截线切过两条直线,使得这两条直线上的同旁内角之和为180°,那么这两条直线就是平行的。
同样地,这个判定可以通过实际的图形来演示和证明。
然后是同旁外角判定,其原理是:如果两条直线被一条横截线所切,且同旁外角互补,则这两条直线是平行线。
也就是说,如果有一个横截线切过两条直线,使得这两条直线上的同旁外角(一个在两直线之外,一个在两直线之间)互为补角,那么这两条直线就是平行的。
同样地,这个判定可以通过实际的图形来演示和证明。
接下来是平行线错角定理,其原理是:如果两条直线被一条横截线所切,且错角互补,则这两条直线是平行线。
也就是说,如果有一个横截线切过两条直线,使得这两条直线上的错角(一个在两直线之间,一个在两直线之外)互为补角,那么这两条直线就是平行的。
同样地,这个判定可以通过实际的图形来演示和证明。
平行线与垂直线的判定平行线和垂直线是几何学中重要的概念,它们的判定方法对于解决各种几何问题至关重要。
本文将介绍判定平行线和垂直线的几种常见方法,帮助读者更好地理解和应用这些概念。
一、平行线的判定方法1. 两条直线的斜率相等:对于直线上任意两点A(x1, y1)和B(x2, y2),如果直线AB的斜率等于另一条直线CD的斜率,即(y2 - y1)/(x2 -x1)=(y4 - y3)/(x4 - x3),那么直线AB与直线CD平行。
2. 直线的方程:对于直线的方程y = mx + b,如果两条直线的斜率相等,且截距b也相等,即m1 = m2且b1 = b2,那么这两条直线是平行的。
3. 平行向量的判定:如果两条直线的向量方向相同或相反,那么这两条直线是平行的。
设两条直线的向量分别为a(x1, y1)和b(x2,y2),如果a = λb(λ为常数),那么两条直线平行。
二、垂直线的判定方法1. 两条直线的斜率乘积为-1:对于直线上任意两点A(x1, y1)和B(x2, y2),如果直线AB的斜率与另一条直线CD的斜率之乘积为-1,即(y2 - y1)/(x2 - x1)*(y4 - y3)/(x4 - x3)= -1,那么直线AB与直线CD垂直。
2. 垂直向量的判定:如果两条直线的向量垂直,即两条向量的点积等于0,那么这两条直线是垂直的。
设两条直线的向量分别为a(x1, y1)和b(x2, y2),如果 a · b = 0,那么两条直线垂直。
三、实际问题中的应用平行线和垂直线的判定方法在实际问题中有广泛的应用。
以下是一些典型的例子:1. 建筑设计:在建筑设计中,需要确保墙壁、地板、天花板等构件之间的相互关系。
使用平行线和垂直线的判定方法可以帮助设计师正确布局,确保建筑结构的稳定性和美观性。
2. 道路规划:在道路规划中,需要确保道路的平行与垂直关系,以提供交通的便利性和安全性。
通过使用平行线和垂直线的判定方法,可以辅助道路设计师进行合理规划,避免交通拥堵和事故发生。
平行线的特征平行线在几何学中具有重要的作用,它们是指在同一个平面上,永远不会相交的直线。
本文将探讨平行线的特征,以及与平行线相关的性质和定理。
一、平行线的定义平行线的定义是两条直线在同一个平面上,并且永远不会相交。
这意味着两条平行线之间的距离始终相等。
二、平行线的特征1. 方向相同:平行线在平面上具有相同的方向,它们始终在相同的方向上延伸。
2. 永不相交:平行线永远不会相交。
无论延长多远,它们仍然保持平行的形状。
3. 距离相等:平行线之间的任意两点到两条平行线的距离始终相等。
这是平行线的一个重要性质。
4. 平行四边形的对边平行性:在平行四边形中,对边是平行的。
这是平行线特征的一个重要应用。
三、平行线的判定1. 同位角判定:如果两条直线被一条截线所切,并且同位角相等,那么这两条直线平行。
2. 转换判定:如果一条线与两条平行线分别相交,形成相等的内错角或外错角,那么这条线与这两条平行线平行。
3. 斜率判定:如果两条直线的斜率相等,那么这两条直线平行。
斜率是直线在坐标系中的倾斜度量。
四、平行线的应用1. 平行线与横向交错线条:在道路规划和交通设计中,平行线经常用于构建车道和交通流线的布局。
2. 平行线与角度构造:在建筑设计中,平行线被广泛应用于角度构造。
通过平行线的布局,可以创建出各种角度和形状。
3. 平行线与等距关系:平行线之间的距离相等,这一性质在几何学和测量中具有重要的应用。
五、平行线的定理1. 交替内角定理:如果两条平行线被一条截线所切,那么两条平行线上的交替内角是相等的。
2. 内错角定理:如果两条平行线被一条截线所切,那么两条平行线上的内错角是补角。
3. 锐角和钝角定理:如果两条平行线被一条截线所切,那么两条平行线上的锐角和钝角的和是180度。
六、平行线的重要性平行线的研究对几何学和应用数学具有重要意义。
它们为解决实际问题提供了基础,而且在建筑、工程、地图制作等领域也有广泛的应用。
综上所述,平行线作为几何学中的一个重要概念,具有方向相同、永不相交和距离相等等特征。
平行线与垂直线的判定在几何学中,平行线和垂直线是基本的概念。
它们在解决几何问题时具有重要的作用。
在本文中,我们将探讨如何判断两条线是否平行或垂直,并介绍几种常用的方法。
一、平行线的判定1. 通过斜率判断我们知道,直线的斜率是通过直线上两个点的纵坐标差除以横坐标差得到的。
如果两条直线的斜率相等,那么它们就是平行线。
设直线l1的斜率为k1,直线l2的斜率为k2,如果k1=k2,则l1和l2为平行线。
2. 通过角度判断另一种判定平行线的方法是通过角度判断。
如果两条直线的倾斜角度相等,那么它们就是平行线。
可以通过绘制两条直线并测量它们的角度来判断是否平行。
3. 通过向量判断平行线还可以通过向量判断。
如果两条直线的方向向量平行,则它们是平行线。
设直线l1的方向向量为v1,直线l2的方向向量为v2,如果v1与v2平行,则l1和l2为平行线。
二、垂直线的判定1. 通过斜率判断垂直线的一个特点是,两条直线的斜率的乘积等于-1。
设直线l1的斜率为k1,直线l2的斜率为k2,如果k1*k2=-1,则l1和l2为垂直线。
2. 通过角度判断另一种判定垂直线的方法是,如果两条直线的倾斜角度之和等于90度或π/2弧度,那么它们是垂直线。
可以通过绘制两条直线并测量它们的角度来判断是否垂直。
3. 通过向量判断垂直线也可以通过向量判断。
如果两条直线的方向向量垂直,则它们是垂直线。
设直线l1的方向向量为v1,直线l2的方向向量为v2,如果v1与v2垂直,则l1和l2为垂直线。
总结判定平行线和垂直线的方法有很多种,我们可以根据具体情况选择合适的方法。
通过斜率、角度或向量判断都是常用的方法,而且它们互相印证,可以增加结果的准确性。
在几何学问题中,正确判断平行线和垂直线的关系对于解题至关重要,希望本文的讨论能为读者提供一些帮助。
注意:以上所介绍的方法仅适用于直线。
对于曲线或其他特殊情况,判定平行线和垂直线的方法可能略有不同。
在实际问题中,应根据实际情况选择合适的方法进行判断。
平行线的判定方法→ 斜线的判定方法
平行线和斜线是几何学中非常重要的概念。
平行线是指在同一个平面内不相交的两条直线,斜线则是指倾斜的直线。
在判定线条的性质时,我们可以使用一些简单的方法。
平行线的判定方法
如果需要确定两条线是否平行,我们可以使用以下判定方法:
1. 角度判定法:如果两条线之间的对应角度相等(即对应角相等),那么这两条线是平行线。
2. 平行线定理:如果一条直线与两条平行线相交,那么这两条平行线的对应角相等。
3. 距离判定法:如果两条线之间的距离在平行线上保持不变,那么这两条线是平行线。
4. 推论判定法:如果两条直线与一条相交直线的对应角相等,
那么这两条直线是平行线。
斜线的判定方法
如果需要确定一条直线是斜线,我们可以使用以下判定方法:
1. 角度判定法:如果直线与另一条直线夹角不为90度(直角),那么这条直线是斜线。
2. 斜率判定法:如果直线的斜率不为零,那么这条直线是斜线。
3. 坐标判定法:如果直线上的点的x坐标和y坐标不成比例关系,那么这条直线是斜线。
这些方法可以帮助我们快速确定线条的性质,从而解决与线条
相关的几何问题。
平行线的判定根据平行线的定义,如果平面内的两条直线不相交,就可以判断这两条直线平行,但是,由于直线无限延伸,检验它们是否相交有困难,所以难以直接根据定义来判断两条直线是否平行,这就需要更简单易行的判定方法来判定两直线平行.判定方法l:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简称:同位角相等,两直线平行.判定方法2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简称:内错角相等,两直线平行,判定方法3:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简称:同旁内角互补,两直线平行,如上图:若已知∠1=∠2,则AB∥CD(同位角相等,两直线平行);若已知∠1=∠3,则AB∥CD(内错角相等,两直线平行);若已知∠1+ ∠4= 180°,则AB∥CD(同旁内角互补,两直线平行).另有平行公理推论也能证明两直线平行:平行公理推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行平行线的判定(提高)知识讲解【学习目标】1.熟练掌握平行线的画法;2.掌握平行公理及其推论;3.掌握平行线的判定方法,并能运用“平行线的判定方法”,判定两条直线是否平行. 【要点梳理】要点一、平行线的画法及平行公理1.平行线的画法用直尺和三角板作平行线的步骤:①落:用三角板的一条斜边与已知直线重合.②靠:用直尺紧靠三角板一条直角边.③推:沿着直尺平移三角板,使与已知直线重合的斜边通过已知点.④画:沿着这条斜边画一条直线,所画直线与已知直线平行.2.平行公理及推论平行公理:经过直线外一点,有且只有一条直线与这条直线平行.推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.要点诠释:(1)平行公理特别强调“经过直线外一点”,而非直线上的点,要区别于垂线的第一性质.(2)公理中“有”说明存在;“只有”说明唯一.(3)“平行公理的推论”也叫平行线的传递性.要点二、平行线的判定判定方法1:同位角相等,两直线平行.如上图,几何语言:∵∠3=∠2∴AB∥CD(同位角相等,两直线平行)判定方法2:内错角相等,两直线平行.如上图,几何语言:∵∠1=∠2∴AB∥CD(内错角相等,两直线平行)判定方法3:同旁内角互补,两直线平行.如上图,几何语言:∵∠4+∠2=180°∴AB∥CD(同旁内角互补,两直线平行)要点诠释:平行线的判定是由角相等或互补,得出平行,即由数推形.【典型例题】类型一、平行公理及推论1.在同一平面内,下列说法:(1)过两点有且只有一条直线;(2)两条直线有且只有一个公共点;(3)过一点有且只有一条直线与已知直线垂直;(4)过一点有且只有一条直线与已知直线平行. 其中正确的个数为:( ) .A.1个B.2个C.3个D.4个【答案】B【解析】正确的是:(1)(3).【总结升华】对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意区分不同表述之间的联系和区别.举一反三:【变式】下列说法正确的个数是() .(1)直线a、b、c、d,如果a∥b、c∥b、c∥d,则a∥d.(2)两条直线被第三条直线所截,同旁内角的平分线互相垂直.(3)两条直线被第三条直线所截,同位角相等.(4)在同一平面内,如果两直线都垂直于同一条直线,那么这两直线平行.A.1个 B .2个C.3个D.4个【答案】B2.证明:平行于同一直线的两条直线平行.【答案与解析】已知:如图,a//c,b//c.求证:a//b.证明:假设直线a与直线b不平行,则直线a与直线b相交,设交点为A,如图.Q,a//c,b//c则过直线c外一点A有两条直线a、b与直线c平行,这与平行公理矛盾,所以假设不成立..a//b【总结升华】本题采用的是“反证法”的证明方法,反证法证题的一般步骤:第一步,反设:作出与求证结论相反的假设;第二步,归谬:将反设作为条件,并由此通过一系列的正确推理导出矛盾;第三步,结论:说明反设不成立,从而肯定原命题成立.类型二、平行线的判定3.(2015春•荣昌县校级期中)如图,∠ABC=∠ACB,BD平分∠ABC,CE平分∠ACB,∠DBF=∠F.试说明:EC∥DF.【思路点拨】根据BD平分∠ABC,CE平分∠ACB,得出∠DBF=∠ABC,∠ECB=∠ACB,∠DBF=∠ECB,再根据∠DBF=∠F,得出∠ECB=∠F,即可证出EC∥DF.【答案与解析】解:∵BD平分∠ABC,CE平分∠ACB,∴∠DBF=∠ABC,∠ECB=∠ACB,∵∠ABC=∠ACB,∴∠DBF=∠ECB,∵∠DBF=∠F,∴∠ECB=∠F,∴EC∥DF.【总结升华】此题考查了平行线的判定,用到的知识点是同位角相等,两直线平行,关键是证出∠ECB=∠F.举一反三:【变式】一个学员在广场上驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是( )A.第一次向左拐30°,第二次向右拐30°B.第一次向右拐50°,第二次向左拐130°C.第一次向右拐50°,第二次向右拐130°D.第一次向左拐50°,第二次向左拐130°【答案】A提示:“方向相同”有两层含义,即路线平行且方向相同,在此基础上准确画出示意图.图B显然不同向,因为路线不平行.图C中,∠1=180°-130°=50°,路线平行但不同向.图D中,∠1=180°-130°=50°,路线平行但不同向.只有图A路线平行且同向,故应选A.4.如图所示,已知∠B=25°,∠BCD=45°,∠CDE=30°,∠E=10°.试说明AB∥EF的理由.【思路点拨】利用辅助线把AB、EF联系起来.【答案与解析】解法1:如图所示,在∠BCD的内部作∠BCM=25°,在∠CDE的内部作∠EDN=10°.∵∠B=25°,∠E=10°(已知),∴∠B=∠BCM,∠E=∠EDN(等量代换).∴AB∥CM,EF∥DN(内错角相等,两直线平行).又∵∠BCD=45°,∠CDE=30°(已知),∴∠DCM=20°,∠CDN=20°(等式性质).∴∠DCM=∠CDN(等量代换).∴CM∥DN(内错角相等,两直线平行).∵AB∥CM,EF∥DN(已证),∴AB∥EF(平行线的传递性).解法2:如图所示,分别向两方延长线段CD交EF于M点、交AB于N点.∵∠BCD=45°,∴∠NCB=135°.∵∠B=25°,∴∠CNB=180°-∠NCB-∠B=20°(三角形的内角和等于180°).又∵∠CDE=30°,∴∠EDM=150°.又∵∠E=10°,∴∠EMD=180°-∠EDM-∠E=20°(三角形的内角和等于180°).∴∠CNB=∠EMD(等量代换).所以AB∥EF(内错角相等,两直线平行).【总结升华】判定两条直线平行的方法有四种,选择哪种方法要根据问题提供的条件来灵活选取.举一反三:【高清课堂:平行线及判定403102经典例题2】【变式】(2015秋•巨野县期末)如图,已知∠BED=∠B+∠D,求证:AB∥CD.【答案】证明:延长BE交CD于F.∵∠BED+∠DEF=180°,(平角的定义)∴∠DEF+∠D+∠EFD=180°(三角形的内角和等于180°),∴∠BED=∠D+∠EFD,(等量代换)又∠BED=∠B+∠D,∴∠B=∠EFD(等量代换),∴AB∥CD(内错角相等,两直线平行).平行线的判定(提高)巩固练习【巩固练习】一、选择题1.下列说法中正确的有() .①一条直线的平行线只有一条.②过一点与已知直线平行的直线只有一条.③因为a∥b,c∥d,所以a∥d.④经过直线外一点有且只有一条直线与已知直线平行.A.1个B.2个C.3个D.4个2.如果两个角的一边在同一直线上,另一边互相平行,则这两个角() .A.相等B.互补C.互余D.相等或互补3.(2015•黔南州)如图,下列说法错误的是()A.若a∥b,b∥c,则a∥c B.若∠1=∠2,则a∥cC.若∠3=∠2,则b∥c D.若∠3+∠5=180°,则a∥c4.一辆汽车在广阔的草原上行驶,两次拐弯后,行驶的方向与原来的方向相同,那么这两次拐弯的角度可能是().A.第一次向右拐40°,第二次向右拐140°.B.第一次向右拐40°,第二次向左拐40°.C.第一次向左拐40°,第二次向右拐140°.D.第一次向右拐140°,第二次向左拐40°.5.如图所示,下列条件中,不能推出AB∥CE成立的条件是() .A.∠A=∠ACE B.∠B=∠ACE C.∠B=∠ECD D.∠B+∠BCE=180°6.(绍兴)学习了平行线后,小敏想出了过已知直线外一点画这条直线的平行线的新方法,她是通过折一张半透明的纸得到的(如图,(1)—(4)):从图中可知,小敏画平行线的依据有().①两直线平行,同位角相等.②两直线平行,内错角相等.③同位角相等,两直线平行.④内错角相等,两直线平行.A.①②B. ②③C. ③④D. ④①二、填空题7.(2015春•高密市月考)如图,在下列条件中:①∠DAC=∠ACB;②∠BAC=∠ACD;③∠BAD+∠ADC=180°;④∠BAD+∠ABC=180°.其中能使直线AB∥CD成立的是.(填序号)8.如图,DF平分∠CDE,∠CDF=55°,∠C=70°,则________∥________.9.规律探究:同一平面内有直线a1,a2,a3…,a100,若a1⊥a2,a2∥a3,a3⊥a4…,按此规律,a1和a100的位置是________.10.已知两个角的两边分别平行,其中一个角为40°,则另一个角的度数是11.直线l同侧有三点A、B、C,如果A、B两点确定的直线l'与B、C两点确定的直线l''都与l平行,则A、B、C三点,其依据是12.如图,AB⊥EF于点G,CD⊥EF于点H,GP平分∠EGB,HQ平分∠CHF,则图中互相平行的直线有.三、解答题13.(2015春•兴平市期末)如图,已知∠A=∠F,∠C=∠D,试说明BD∥CE.14.小敏有一块小画板(如图所示),她想知道它的上下边缘是否平行,而小敏身边只有一个量角器,你能帮助她解决这一问题吗?15.如图,把一张长方形纸条ABCD沿AF折叠,已知∠ADB=20°,那么∠BAF为多少度时,才能使AB′∥BD?16.如图所示,由∠1=∠2,BD平分∠ABC,可推出哪两条线段平行,写出推理过程,如果推出另两条线段平行,则应将以上两条件之一作如何改变?【答案与解析】一、选择题1. 【答案】A;【解析】只有④正确,其它均错.2. 【答案】D;3. 【答案】C;【解析】A、若a∥b,b∥c,则a∥c,利用了平行公理,正确;B、若∠1=∠2,则a∥c,利用了内错角相等,两直线平行,正确;C、∠3=∠2,不能判断b∥c,错误;D、若∠3+∠5=180°,则a∥c,利用同旁内角互补,两直线平行,正确;故选C.4. 【答案】B;5. 【答案】B;【解析】∠B和∠ACE不是两条直线被第三条直线所截所得到的角.6. 【答案】C;【解析】解决本题关键是理解折叠的过程,图中的虚线与已知的直线垂直,过点P的折痕与虚线垂直.二、填空题7. 【答案】②③;【解析】①∠DAC=∠ACB利用内错角相等两直线平行得到AD∥BC,错误;②∠BAC=∠ACD 利用内错角相等两直线平行得到AB∥CD,正确;③∠BAD+∠ADC=180°利用同旁内角互补得到AB∥CD,正确;④∠BAD+∠ABC=180°利用同旁内角互补得到AD∥BC,错误;故答案为:②③8. 【答案】BC,DE;【解析】∠CFD=180°-70°-55°=55°,而∠FDE=∠CDF=55°,所以∠CFD=∠FDE.9. 【答案】a1∥a100;【解析】为了方便,我们可以记为a1⊥a2∥a3⊥a4∥a5⊥a6∥a7⊥a8∥a9⊥a10…∥a97⊥a98∥a99⊥a100,因为a1⊥a2∥a3,所以a1⊥a3,而a3⊥a4,所以a1∥a4∥a5.同理得a5∥a8∥a9,a9∥a12∥a13,…,接着这样的规律可以得a1∥a97∥a100,所以a1∥a100.10.【答案】40°或140°;11.【答案】共线,平行公理;【解析】此题考查是平行公理,它是论证推理的基础,应熟练应用.12.【答案】AB∥CD,GP∥HQ;【解析】理由:∵AB⊥EF,CD⊥EF.∴∠AGE=∠CHG=90°.∴AB∥CD.∵AB⊥EF.∴∠EGB=∠2=90°.∴GP平分∠EGB.∴∠1=12EGB=45°.∴∠PGH=∠1+∠2=135°.同理∠GHQ=135°,∴∠PGH=∠GHQ.∴GP∥HQ.三、解答题13. 【解析】解:∵∠A=∠F(已知),∴AC∥DF(内错角相等,两直线平行),∴∠C=∠CEF(两直线平行,内错角相等),∵∠C=∠D(已知),∴∠D=∠CEF(等量代换),∴BD∥CE(同位角相等,两直线平行).14.【解析】解:如图所示,用量角器在两个边缘之间画一条线段MN,用量角器测得∠1=50°,∠2=50°,因为∠1=∠2,所以由内错角相等,两直线平行,可知画板的上下边缘是平行的.15. 【解析】解:要使AB′∥BD,只要∠B′AD=∠ADB=20°,∠B′AB=∠BAD+∠B′AD=90°+20°=110°.∴∠BAF=12∠B′AB=12×110°=55°.16.【解析】解:可推出AD∥BC.∵BD平分∠ABC(已知).∴∠1=∠DBC(角平分线定义).又∵∠1=∠2(已知),∴∠2=∠DBC(等量代换).∴AD∥BC(内错角相等,两直线平行).把∠1=∠2改成∠DBC=∠BDC.。
数学平行线的判定方法
数学中,平行线是指在同一平面中不相交且不会相交的两条直线。
判定两条直线是否平行可以通过以下几种方法:
1. 通过角度判定法:如果两条直线的倾斜角度相等,则这两条
直线是平行的。
2. 通过距离判定法:如果两条直线上任意一点到另一条直线的
距离都相等,则这两条直线是平行的。
3. 通过坐标判定法:设直线L1的解析式为y1=k1x+b1,直线L2的解析式为y2=k2x+b2,若k1=k2,则L1与L2平行。
4. 通过向量判定法:如果两条直线的方向向量相等,则这两条
直线是平行的。
以上是几种常见的数学平行线判定方法,可以根据题目的要求和条件进行选择。
- 1 -。
九年级数学平行线的判定与性质在九年级数学学习中,平行线的判定与性质是一个重要的知识点。
理解和掌握平行线的判定方法以及了解平行线的性质,对于解决与平行线相关的问题具有重要的意义。
本文将介绍平行线的判定方法和性质,帮助读者更好地理解和应用这一知识点。
一、平行线的判定方法在几何学中,有多种方法可以判定两条直线是否平行。
以下将介绍常用的三种判定方法。
1. 直线的斜率判定法设直线L1上两点A(x1, y1)和B(x2, y2),直线L2上两点C(x3, y3)和D(x4, y4)。
如果直线L1和直线L2的斜率相等,即m1 = (y2 - y1) / (x2 - x1)m2 = (y4 - y3) / (x4 - x3)那么L1和L2平行。
2. 直线的截距判定法设直线L1的方程为y = kx + b1,直线L2的方程为y = kx + b2。
如果直线L1和直线L2的斜率相等,即k1 = k2,且截距b1 = b2,那么L1和L2平行。
3. 直线的向量判定法设向量AB = (x2 - x1, y2 - y1),向量CD = (x4 - x3, y4 - y3)。
如果向量AB与向量CD平行(即满足比例关系),即(x2 - x1) / (x4 - x3) = (y2 - y1) / (y4 - y3)那么直线AB和CD平行。
二、平行线的性质1. 平行线之间的夹角平行线之间的夹角为零度。
即如果两条直线L1和L2平行,那么它们之间的夹角为零。
2. 平行线与横线的夹角平行线与横线的夹角为九十度。
即如果一条直线L与另一条直线L'平行,且L'是一条水平线或垂直线,那么L与L'的夹角为九十度。
3. 平行线与斜线的夹角平行线与斜线的夹角通常不为固定值。
具体的夹角取决于平行线的倾斜程度。
但是需要注意的是,如果一条直线L与另一条直线L'平行,且L'是一条斜线,那么L与L'的夹角一定小于一百八十度。