2018-2019学年高中新创新一轮复习理数通用版:课时达标检测(四十六) 曲线与方程 含解析-
- 格式:doc
- 大小:123.50 KB
- 文档页数:6
课时跟踪检测(四十六)1.如图所示,在长方体ABCD-A′B′C′D′中,AB=λAD=λAA′(λ>0),E,F分别是A′C′和AD的中点,且EF⊥平面A′BCD′.(1)求λ的值;(2)求二面角C-A′B-E的余弦值.解:以D为原点,DA,DC,DD′所在直线分别为x轴、y轴、z 轴建立如图所示空间直角坐标系,设AA′=AD=2,则AB=2λ,D(0,0,0),A′(2,0,2),D′(0,0,2),B(2,2λ,0),C(0,2λ,0),E(1,λ,2),F(1,0,0).(1)错误!=(0,-λ,-2),错误!=(2,0,0),错误!=(0,2λ,-2),∵EF⊥D′A′,EF⊥A′B,∴错误!·错误!=0,错误!·错误!=0,即-2λ2+4=0,∴λ=错误!。
(2)设平面EA′B的一个法向量为m=(1,y,z),则错误!∵错误!=(0,2错误!,-2),错误!=(-1,错误!,0),∴错误!∴y=错误!,z=1,∴m=错误!.由已知得错误!为平面A′BC的一个法向量,又错误!=(0,-错误!,-2),∴cos〈m,错误!〉=错误!=错误!=-错误!。
又二面角C-A′B-E为锐二面角,故二面角C-A′B-E的余弦值为错误!。
2.如图所示的几何体,四边形ABCD中,有AB∥CD,∠BAC=30°,AB=2CD=2,CB=1,点E在平面ABCD内的射影是点C,EF∥AC,且AC=2EF.(1)求证:平面BCE⊥平面ACEF;(2)若二面角D-AF-C的平面角为60°,求CE的长.(1)证明:在△ABC中,BC2=AB2+AC2-2AB·AC cos 30°,解得AC=错误!,所以AB2=AC2+BC2,由勾股定理知∠ACB=90°,所以BC⊥AC.又EC⊥平面ABCD,BC⊂平面ABCD,所以BC⊥EC.又AC∩EC=C,所以BC⊥平面ACEF,所以平面BCE⊥平面ACEF.(2)解:因为EC⊥平面ABCD,又由(1)知BC⊥AC,所以可以以C为原点,建立如图所示的空间直角坐标系C-xyz。
课时达标检测(五十二)排列、组合[小题对点练——点点落实]对点练(一)两个计数原理1.集合P={x,1},Q={y,1,2},其中x,y∈{1,2,3,…,9},且P⊆Q.把满足上述条件的一个有序整数对(x,y)作为一个点的坐标,则这样的点的个数是()A.9B.14C.15 D.21解析:选B当x=2时,x≠y,点的个数为1×7=7个.当x≠2时,由P⊆Q,∴x=y,∴x可从3,4,5,6,7,8,9中取,有7种方法,因此满足条件的点的个数是7+7=14.2.(2018·云南调研)设集合A={-1,0,1},集合B={0,1,2,3},定义A*B={(x,y)|x∈A∩B,y∈A∪B},则A*B中元素的个数是()A.7 B.10C.25D.52解析:选B因为集合A={-1,0,1},集合B={0,1,2,3},所以A∩B={0,1},A∪B={-1,0,1,2,3},所以x有2种取法,y有5种取法,所以根据分步乘法计数原理得有2×5=10(个).3.某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友一本,则不同的赠送方法共有()A.4种B.10种C.18种D.20种解析:选B赠送1本画册,3本集邮册.需从4人中选取1人赠送画册,其余赠送集邮册,有4种方法.赠送2本画册,2本集邮册,只需从4人中选出2人赠送画册,其余2人赠送集邮册,有6种方法.由分类加法计数原理,不同的赠送方法有4+6=10(种).4.(2018·绍兴模拟)用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为() A.243 B.252C.261 D.279解析:选B0,1,2,…,9共能组成9×10×10=900个三位数,其中无重复数字的三位数有9×9×8=648个,∴有重复数字的三位数的个数为900-648=252.5.有4件不同颜色的衬衣,3件不同花样的裙子,另有2套不同样式的连衣裙.需选择一套服装参加“五一”节歌舞演出,则不同的选择方式种数为()A.24 B.14C.10 D.9解析:选B第一类:一件衬衣,一件裙子搭配一套服装有4×3=12种方式;第二类:选2套连衣裙中的一套服装有2种选法,由分类加法计数原理,共有12+2=14种选择方式.6.如图所示,将一个四棱锥的每一个顶点染上一种颜色,并使同一条棱上的两端异色,如果只有5种颜色可供使用,则不同的染色方法总数为________.解析:先染顶点S,有5种染法,再染顶点A有4种染法,染顶点B有3种染法,顶点C的染法有两类:若C与A同色,则顶点D有3种染法;若C与A不同色,则C有2种染法,D有2种染法,所以共有5×4×3×3+5×4×3×2×2=420种染色方法.答案:420对点练(二)排列、组合问题1.(2018·福建漳州八校联考)有六人排成一排,其中甲只能在排头或排尾,乙、丙两人必须相邻,则满足要求的排法有()A.34种B.48种C.96种D.144种解析:选C特殊元素优先安排,先让甲从头、尾中选取一个位置,有C12种选法,乙、丙相邻,捆绑在一起看作一个元素,与其余三个元素全排列,最后乙、丙可以换位,故共有C12·A44·A22=96种排法,故选C.2.将5名学生分配到甲、乙两个宿舍,每个宿舍至少安排2名学生,那么互不相同的安排方法的种数为()A.10 B.20C.30 D.40解析:选B将5名学生分配到甲、乙两个宿舍,每个宿舍至少安排2名学生,那么必然是一个宿舍2名,而另一个宿舍3名,共有C35C22A22=20(种).3.“住房”“医疗”“教育”“养老”“就业”成为现今社会关注的五个焦点.小赵想利用国庆节假期调查一下社会对这些热点的关注度.若小赵准备按照顺序分别调查其中的4个热点,则“住房”作为其中的一个调查热点,但不作为第一个调查热点的种数为()A.13 B.24C.18 D.72解析:选D可分三步:第一步,先从“医疗”“教育”“养老”“就业”这4个热点中选出3个,有C34种不同的选法;第二步,在调查时,“住房”安排的顺序有A13种可能情况;第三步,其余3个热点调查的顺序有A33种排法.根据分步乘法计数原理可得,不同调查顺序的种数为C34A13A33=72.4.(2017·舟山二模)将甲、乙等5名交警分配到三个不同路口疏导交通,每个路口至少一人,且甲、乙在同一路口的分配方案共有()A.18种B.24种C.36种D.72种解析:选C1个路口3人,其余路口各1人的分配方法有C13A33种.1个路口1人,2个路口各2人的分配方法有C23A33种,由分类加法计数原理知,甲、乙在同一路口的分配方案为C13A33+C23A33=36(种).5.(2018·豫南九校联考)某医院拟派2名内科医生、3名外科医生和3名护士共8人组成两个医疗分队,平均分到甲、乙两个村进行义务巡诊,其中每个分队都必须有内科医生、外科医生和护士,则不同的分配方案有()A.72种B.36种C.24种D.18种解析:选B A12(C23C13+C13C23)=36(种).6.7位身高均不等的同学排成一排照相,要求中间最高,依次往两端身高逐渐降低,共有________种排法.解析:先排最中间位置有1种排法,再排左边3个位置,由于顺序一定,共有C36种排法,再排剩下右边三个位置,共1种排法,所以排法种数为C36=20.答案:207.把座位编号为1,2,3,4,5的五张电影票全部分给甲、乙、丙、丁四个人,每人至少一张,至多两张,且分得的两张票必须是连号,那么不同的分法种数为________(用数字作答).解析:先将票分为符合条件的4份,由题意,4人分5张票,且每人至少一张,至多两张,则三人每人一张,一人2张,且分得的票必须是连号,相当于将1,2,3,4,5这五个数用3个板子隔开,分为四部分且不存在三连号.在4个空位插3个板子,共有C34=4种情况,再对应到4个人,有A44=24种情况,则共有4×24=96种情况.答案:968.若把英语单调“good”的字母顺序写错了,则可能出现的错误种数共有________种.解析:把g,o,o,d 4个字母排一行,可分两步进行,第一步:排g和d,共有A24种排法;第二步:排两个o,共1种排法,所以总的排法种数为A24=12种.其中正确的有一种,所以错误的共A24-1=12-1=11(种).答案:11[大题综合练——迁移贯通]1.从4名男同学中选出2人,6名女同学中选出3人,并将选出的5人排成一排.(1)共有多少种不同的排法?(2)若选出的2名男同学不相邻,共有多少种不同的排法?(用数字表示)解:(1)从4名男生中选出2人,有C24种选法,从6名女生中选出3人,有C36种选法,根据分步乘法计数原理知选出5人,再把这5个人进行排列共有C24C36A55=14 400(种).(2)在选出的5个人中,若2名男生不相邻,则第一步先排3名女生,第二步再让男生插空,根据分步乘法计数原理知共有C24C36A33A24=8 640(种).2.有5个男生和3个女生,从中选出5人担任5门不同学科的科代表,求分别符合下列条件的选法数:(1)有女生但人数必须少于男生;(2)某女生一定担任语文科代表;(3)某男生必须包括在内,但不担任数学科代表;(4)某女生一定要担任语文科代表,某男生必须担任科代表,但不担任数学科代表.解:(1)先选后排,可以是2女3男,也可以是1女4男,先选有C35C23+C45C13种情况,后排有A55种情况,则符合条件的选法数为(C35C23+C45C13)·A55=5 400.(2)除去该女生后,先选后排,则符合条件的选法数为C47·A44=840.(3)先选后排,但先安排该男生,则符合条件的选法数为C47·C14·A44=3 360.(4)先从除去该男生该女生的6人中选3人有C36种情况,再安排该男生有C13种情况,选出的3人全排有A33种情况,则符合条件的选法数为C36·C13·A33=360.3.有编号分别为1,2,3,4的四个盒子和四个小球,把小球全部放入盒子.(1)共有多少种放法?(2)恰有一个空盒,有多少种放法?(3)恰有2个盒子内不放球,有多少种放法?解:(1)∵1号球可放入任意一个盒子内,有4种放法.同理,2,3,4号小球也各有4种放法,∴共有44=256种放法.(2)恰有一个空盒,则这4个盒子中只有3个盒子内有小球,且小球数只能是1,1,2. 先从4个小球中任选2个放在一起,有C 24种方法,然后与其余2个小球看成三组,分别放入4个盒子中的3个盒子中,有A 34种放法.∴由分步乘法计数原理知共有C 24A 34=144种不同的放法.(3)恰有2个盒子内不放球,也就是把4个小球只放入2个盒子内,有两类放法: ①一个盒子内放1个球,另一个盒子内放3个球.先把小球分为两组,一组1个,另一组3个,有C 14种分法,再放到2个盒子内,有A 24种放法,共有C 14A 24种放法;②把4个小球平均分成2组,每组2个,有C 242种分法,放入2个盒子内,有A 24种放法,共有12C 24A 24种放法. ∴由分类加法计数原理知共有C 14A 24+12C 24A 24=84种不同的放法.。
课时达标检测(四十七) 直线与圆锥曲线[小题常考题点——准解快解]1.直线y =b a x +3与双曲线x 2a 2-y 2b 2=1的交点个数是( )A .1B .2C .1或2D .0解析:选A 因为直线y =b a x +3与双曲线的渐近线y =ba x 平行,所以它与双曲线只有1个交点.2.已知直线y =22(x -1)与抛物线C :y 2=4x 交于A ,B 两点,点M (-1,m ),若MA ―→MA ―→·MB ―→=0,则m =( )A. 2B.22C.12D .0解析:选B 由⎩⎨⎧y =22(x -1),y 2=4x ,得A (2,22),B ⎝⎛⎭⎫12,-2,又∵M (-1,m )且MA ―→·MB ―→=0,∴2m 2-22m +1=0,解得m =22. 3.斜率为1的直线l 与椭圆x 24+y 2=1相交于A ,B 两点,则|AB |的最大值为( )A .2 B.455 C.4105D.8105解析:选C 设A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2),直线l 的方程为y =x +t ,由⎩⎪⎨⎪⎧x 24+y 2=1,y =x +t消去y ,得5x 2+8tx +4(t 2-1)=0.则x 1+x 2=-85t ,x 1x 2=4(t 2-1)5.∴|AB |=1+k 2|x 1-x 2|=1+k 2·(x 1+x 2)2-4x 1x 2=2· ⎝⎛⎭⎫-85t 2-4×4(t 2-1)5=425·5-t 2,故当t =0时,|AB |max =4105. 4.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)上的一点到双曲线的左、右焦点的距离之差为4,若抛物线y =ax 2上的两点A (x 1,y 1),B (x 2,y 2)关于直线y =x +m 对称,且x 1x 2=-12,则m的值为( )A.32B.52 C .2D .3解析:选A 由双曲线的定义知2a =4,得a =2,所以抛物线的方程为y =2x 2.因为点A (x 1,y 1),B (x 2,y 2)在抛物线y =2x 2上,所以y 1=2x 21,y 2=2x 22,两式相减得y 1-y 2=2(x 1-x 2)(x 1+x 2),不妨设x 1<x 2,又A ,B 关于直线y =x +m 对称,所以y 1-y 2x 1-x 2=-1,故x 1+x 2=-12,而x 1x 2=-12,解得x 1=-1,x 2=12,设A (x 1,y 1),B (x 2,y 2)的中点为M (x 0,y 0),则x 0=x 1+x 22=-14,y 0=y 1+y 22=2x 21+2x 222=54,因为中点M 在直线y =x +m 上,所以54=-14+m ,解得m =32. 5.已知倾斜角为60°的直线l 通过抛物线x 2=4y 的焦点,且与抛物线相交于A ,B 两点,则弦AB 的长为________.解析:直线l 的方程为y =3x +1,由⎩⎨⎧y =3x +1,x 2=4y ,得y 2-14y +1=0.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=14,∴|AB |=y 1+y 2+p =14+2=16.答案:166.设双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线与抛物线y =x 2+1只有一个公共点,则双曲线的离心率为________.解析:双曲线x 2a 2-y 2b2=1的一条渐近线为y =ba x ,由方程组⎩⎪⎨⎪⎧y =b a x ,y =x 2+1,消去y ,得x 2-b a x +1=0有唯一解,所以Δ=⎝⎛⎭⎫b a 2-4=0,b a =2,所以e =c a =a 2+b 2a = 1+⎝⎛⎭⎫b a 2= 5.答案: 57.已知抛物线C :y 2=8x 与点M (-2,2),过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若MA ―→·MB ―→=0,则k =________.解析:如图所示,设F 为焦点,易知F (2,0),取AB 的中点P ,过A ,B 分别作准线的垂线,垂足分别为G ,H ,连接MF ,MP ,由MA ―→·MB ―→=0,知MA ⊥MB ,则|MP |=12|AB |=12(|AF |+|BF |)=12(|AG |+|BH |),所以MP 为直角梯形BHGA 的中位线,所以MP ∥AG ∥BH ,由|MP |=|AP |,得∠GAM =∠AMP =∠MAP ,又|AG |=|AF |,AM 为公共边,所以△AMG ≌△AMF ,所以∠AFM =∠AGM =90°,则MF ⊥AB ,所以k =-1k MF=2.答案:2[大题常考题点——稳解全解]1.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的两个焦点分别为F 1(-2,0),F 2(2,0),离心率为63.过点F 2的直线l (斜率不为0)与椭圆C 交于A ,B 两点,线段AB 的中点为D ,O 为坐标原点,直线OD 交椭圆于M ,N 两点.(1)求椭圆C 的方程;(2)当四边形MF 1NF 2为矩形时,求直线l 的方程. 解:(1)由题意可知⎩⎪⎨⎪⎧c =2,c a =63,a 2=b 2+c 2,解得a =6,b = 2.故椭圆C 的方程为x 26+y 22=1.(2)由题意可知直线l 的斜率存在.设其方程为y =k (x -2),点A (x 1,y 1),B (x 2,y 2),M (x 3,y 3),N (-x 3,-y 3),由⎩⎪⎨⎪⎧x 26+y 22=1,y =k (x -2)得(1+3k 2)x 2-12k 2x +12k 2-6=0,所以x 1+x 2=12k 21+3k 2,则y 1+y 2=k (x 1+x 2-4)=-4k 1+3k 2,所以AB 的中点D 的坐标为⎝ ⎛⎭⎪⎫6k 21+3k 2,-2k 1+3k 2,因此直线OD 的方程为x +3ky =0(k ≠0).由⎩⎪⎨⎪⎧x +3ky =0,x 26+y 22=1解得y 23=21+3k 2,x 3=-3ky 3.因为四边形MF 1NF 2为矩形,所以F 2M ―→·F 2N ―→=0,即(x 3-2,y 3)·(-x 3-2,-y 3)=0,所以4-x 23-y 23=0.所以4-2(9k 2+1)1+3k2=0.解得k =±33.故直线l 的方程为3x -3y -23=0或3x +3y -23=0.2.已知中心在原点,焦点在x 轴上的椭圆C 的离心率为12,其一个顶点是抛物线x 2=-43y 的焦点.(1)求椭圆C 的标准方程;(2)若过点P (2,1)的直线l 与椭圆C 在第一象限相切于点M ,求直线l 的方程和点M 的坐标.解:(1)设椭圆C 的方程为x 2a 2+y 2b2=1(a >b >0),由题意得b =3,c a =12,解得a =2,c =1.故椭圆C 的标准方程为x 24+y 23=1.(2)因为过点P (2,1)的直线l 与椭圆C 在第一象限相切,所以直线l 的斜率存在,故可设直线l 的方程为y =k (x -2)+1(k ≠0).由⎩⎪⎨⎪⎧x 24+y 23=1,y =k (x -2)+1,得(3+4k 2)x 2-8k (2k -1)x +16k 2-16k -8=0.① 因为直线l 与椭圆C 相切,所以Δ=[-8k (2k -1)]2-4(3+4k 2)(16k 2-16k -8)=0, 整理,得96(2k +1)=0,解得k =-12.所以直线l 的方程为y =-12(x -2)+1=-12x +2.将k =-12代入①式,可以解得M 点的横坐标为1,故切点M 的坐标为⎝⎛⎭⎫1,32. 3.已知过点(2,0)的直线l 1交抛物线C :y 2=2px (p >0)于A ,B 两点,直线l 2:x =-2交x 轴于点Q .(1)设直线QA ,QB 的斜率分别为k 1,k 2,求k 1+k 2的值;(2)点P 为抛物线C 上异于A ,B 的任意一点,直线PA ,PB 交直线l 2于M ,N 两点,OM ―→·ON ―→=2,求抛物线C 的方程.解:(1)设直线l 1的方程为x =my +2,点A (x 1,y 1),B (x 2,y 2).联立方程⎩⎪⎨⎪⎧x =my +2,y 2=2px ,得y 2-2pmy -4p =0,则y 1+y 2=2pm ,y 1y 2=-4p . k 1+k 2=y 1x 1+2+y 2x 2+2=y 1my 1+4+y 2my 2+4=2my 1y 2+4(y 1+y 2)(my 1+4)(my 2+4)=-8mp +8mp(my 1+4)(my 2+4)=0.(2)设点P (x 0,y 0),直线PA :y -y 1=y 1-y 0x 1-x 0(x -x 1),当x =-2时,y M =-4p +y 1y 0y 1+y 0,同理y N =-4p +y 2y 0y 2+y 0.因为OM ―→·ON ―→=2,所以4+y N y M =2,即-4p +y 2y 0y 2+y 0·-4p +y 1y 0y 1+y 0=16p 2-4py 0(y 2+y 1)+y 20y 1y 2y 2y 1+y 0(y 2+y 1)+y 20=16p 2-8p 2my 0-4py 20-4p +2pmy 0+y 20=-4p (-4p +2pmy 0+y 20)-4p +2pmy 0+y 20=-2,故p =12,所以抛物线C 的方程为y 2=x .4.如图,已知椭圆x 2a 2+y 2b 2=1(a >b >0)经过点(0,3),离心率为12,左、右焦点分别为F 1(-c,0),F 2(c,0).(1)求椭圆的方程;(2)若直线l :y =-12x +m 与椭圆交于A ,B 两点,与以F 1F 2为直径的圆交于C ,D 两点,且满足|AB ||CD |=534,求直线l 的方程. 解:(1)由题设知⎩⎪⎨⎪⎧b =3,c a =12,b 2=a 2-c 2,解得⎩⎪⎨⎪⎧a =2,b =3,c =1,∴椭圆的方程为x 24+y 23=1.(2)由题设,以F 1F 2为直径的圆的方程为x 2+y 2=1, ∴圆心到直线l 的距离d =2|m |5.由d <1得|m |<52.(*) ∴|CD |=21-d 2=21-45m 2=255-4m 2. 设A (x 1,y 1),B (x 2,y 2),由⎩⎨⎧y =-12x +m ,x 24+y23=1,得x 2-mx +m 2-3=0,由根与系数的关系可得x 1+x 2=m ,x 1x 2=m 2-3. ∴|AB |= ⎣⎡⎦⎤1+⎝⎛⎭⎫-122[m 2-4(m 2-3)] =1524-m 2. 由|AB ||CD |=534得 4-m 25-4m 2=1,解得m =±33,均满足(*).12x+33或y=-12x-33.∴直线l的方程为y=-。
课时达标检测(五)函数的单调性与最值[小题对点练——点点落实]对点练(一)函数的单调性1.(2018·阜阳模拟)给定函数①y=x 12,②y=log12(x+1),③y=|x-1|,④y=2x+1.其中在区间(0,1)上单调递减的函数序号是() A.①②B.②③C.③④D.①④解析:选B①y=x 12在(0,1)上递增;②∵t=x+1在(0,1)上递增,且0<12<1,故y=log12(x+1)在(0,1)上递减;③结合图象可知y=|x-1|在(0,1)上递减;④∵u=x+1在(0,1)上递增,且2>1,故y=2x+1在(0,1)上递增.故在区间(0,1)上单调递减的函数序号是②③.2.(2018·天津模拟)若函数f(x)满足“对任意x1,x2∈(0,+∞),当x1<x2时,都有f(x1)>f(x2)”,则f(x)的解析式可以是()A.f(x)=(x-1)2B.f(x)=e xC.f(x)=1x D.f(x)=ln(x+1)解析:选C根据条件知,f(x)在(0,+∞)上单调递减.对于A,f(x)=(x-1)2在(1,+∞)上单调递增,排除A;对于B,f(x)=e x在(0,+∞)上单调递增,排除B;对于C,f(x)=1x在(0,+∞)上单调递减,C正确;对于D,f(x)=ln(x+1)在(0,+∞)上单调递增,排除D.3.(2018·宜春模拟)函数f(x)=log3(3-4x+x2)的单调递减区间为()A.(-∞,2) B.(-∞,1),(3,+∞)C.(-∞,1) D.(-∞,1),(2,+∞)解析:选C由3-4x+x2>0得x<1或x>3.易知函数y=3-4x+x2的单调递减区间为(-∞,2),函数y=log3x在其定义域上单调递增,由复合函数的单调性知,函数f(x)的单调递减区间为(-∞,1),故选C.4.(2018·贵阳模拟)下列四个函数中,在定义域上不是单调函数的是()A.y=-2x+1 B.y=1 xC.y=lg x D.y=x3解析:选B y =-2x +1在定义域上为单调递减函数;y =lg x 在定义域上为单调递增函数;y =x 3在定义域上为单调递增函数;y =1x 在(-∞,0)和(0,+∞)上均为单调递减函数,但在定义域上不是单调函数.故选B.5.若函数f (x )=8x 2-2kx -7在[1,5]上为单调函数,则实数k 的取值范围是( ) A .(-∞,8]B .[40,+∞)C .(-∞,8]∪[40,+∞)D .[8,40]解析:选C 由题意知函数f (x )=8x 2-2kx -7的图象的对称轴为x =k8,因为函数f (x )=8x 2-2kx -7在[1,5]上为单调函数,所以k 8≤1或k8≥5,解得k ≤8或k ≥40,所以实数k的取值范围是(-∞,8]∪[40,+∞).故选C.6.定义运算⎪⎪⎪⎪⎪⎪ab cd =ad -bc ,若函数f (x )=⎪⎪⎪⎪⎪⎪x -1 2-x x +3在(-∞,m )上单调递减,则实数m 的取值范围是( )A .(-2,+∞)B .[-2,+∞)C .(-∞,-2)D .(-∞,-2]解析:选D ∵⎪⎪⎪⎪⎪⎪a b c d =ad -bc ,∴f (x )=⎪⎪⎪⎪⎪⎪⎪⎪x -1 2-x x +3=(x -1)(x +3)-2×(-x )=x 2+4x -3=(x +2)2-7,∴f (x )的单调递减区间为(-∞,-2), ∵函数f (x )在(-∞,m )上单调递减,∴(-∞,m )⊆(-∞,-2),即m ≤-2.故选D. 对点练(二) 函数的最值1.已知a >0,设函数f (x )=2 018x +1+2 0162 018x +1(x ∈[-a ,a ])的最大值为M ,最小值为N ,那么M +N =( )A .2 016B .2 018C .4 032D .4 034解析:选D 由题意得f (x )=2 018x +1+2 0162 018x +1=2 018-22 018x+1.∵y =2 018x +1在[-a ,a ]上是单调递增的,∴f (x )=2 018-22 018x +1在[-a ,a ]上是单调递增的,∴M =f (a ),N =f (-a ),∴M +N =f (a )+f (-a )=4 036-22 018a +1-22 018-a +1=4 034.2.已知函数f (x )=x 2-2ax +a 在区间(-∞,1)上有最小值,则函数g (x )=f (x )x在区间(1,+∞)上一定( )A .有最小值B .有最大值C .是减函数D .是增函数解析:选D 由题意知a <1,又函数g (x )=x +ax -2a 在[|a |,+∞)上为增函数,故选D.3.(2018·湖南雅礼中学月考)若函数f (x )=⎩⎪⎨⎪⎧-x +6,x ≤2,3+log a x ,x >2(a >0且a ≠1)的值域是[4,+∞),则实数a 的取值范围是( )A .(1,2]B .(0,2]C .[2,+∞)D .(1,2 2 ]解析:选A 当x ≤2时,-x +6≥4.当x >2时,⎩⎪⎨⎪⎧3+log a x ≥4,a >1,∴a ∈(1,2],故选A.4.(2018·安徽合肥模拟)已知函数f (x )=(x 2-2x )·sin(x -1)+x +1在[-1,3]上的最大值为M ,最小值为m ,则M +m =( )A .4B .2C .1D .0解析:选A 设t =x -1,则y =(x 2-2x )sin(x -1)+x +1=(t 2-1)sin t +t +2,t ∈[-2,2].记g (t )=(t 2-1)sin t +t +2,则函数y =g (t )-2=(t 2-1)sin t +t 是奇函数.由已知得y =g (t )-2的最大值为M -2,最小值为m -2,所以M -2+(m -2)=0,即M +m =4.故选A.5.已知函数f (x )=⎩⎪⎨⎪⎧x +2x -3,x ≥1,lg (x 2+1),x <1,则f (x )的最小值是________.解析:当x ≥1时,x +2x -3≥2x ·2x -3=22-3,当且仅当x =2x ,即x =2时等号成立,此时f (x )min =22-3<0;当x <1时,lg(x 2+1)≥lg(02+1)=0,此时f (x )min =0.所以f (x )的最小值为22-3.答案:22-36.(2018·益阳模拟)已知函数f (x )的值域为⎣⎡⎦⎤38,49,则函数g (x )=f (x )+1-2f (x )的值域为________.解析:∵38≤f (x )≤49,∴13≤1-2f (x )≤12.令t =1-2f (x ),则f (x )=12(1-t 2)⎝⎛⎭⎫13≤t ≤12,令y =g (x ),则y =12(1-t 2)+t ,即y =-12(t -1)2+1⎣⎡⎦⎤13≤t ≤12.∴当t =13时,y 有最小值79;当t =12时,y 有最大值78.∴g (x )的值域为⎣⎡⎦⎤79,78. 答案:⎣⎡⎦⎤79,78[大题综合练——迁移贯通]1.已知函数f (x )=ax +1a (1-x )(a >0),且f (x )在[0,1]上的最小值为g (a ),求g (a )的最大值.解:f (x )=⎝⎛⎭⎫a -1a x +1a ,当a >1时,a -1a >0,此时f (x )在[0,1]上为增函数,∴g (a )=f (0)=1a ;当0<a <1时,a -1a <0,此时f (x )在[0,1]上为减函数,∴g (a )=f (1)=a ;当a =1时,f (x )=1,此时g (a )=1.∴g (a )=⎩⎪⎨⎪⎧a ,0<a <1,1a ,a ≥1,∴g (a )在(0,1)上为增函数,在[1,+∞)上为减函数,又a =1时,有a =1a =1,∴当a =1时,g (a )取最大值1.2.(2018·衡阳联考)已知函数f (x )对于任意x ,y ∈R ,总有f (x )+f (y )=f (x +y ),且当x >0时,f (x )<0,f (1)=-23.(1)求证:f (x )在R 上是减函数;(2)求f (x )在[-3,3]上的最大值和最小值.解:(1)证明:设x 1>x 2,则f (x 1)-f (x 2)=f (x 1-x 2+x 2)-f (x 2)=f (x 1-x 2)+f (x 2)-f (x 2)=f (x 1-x 2).又∵x >0时,f (x )<0,而x 1-x 2>0,∴f (x 1-x 2)<0,即f (x 1)<f (x 2),∴f (x )在R 上为减函数.(2)∵f (x )在R 上是减函数,∴f (x )在[-3,3]上也是减函数,∴f (x )在[-3,3]上的最大值和最小值分别为f (-3)与f (3).而f (3)=3f (1)=-2,且f (0)+f (0)=f (0),∴f (0)=0,又f (-3)+f (3)=f (-3+3)=0,∴f (-3)=-f (3)=2.∴f (x )在[-3,3]上的最大值为2,最小值为-2.3.已知f (x )=xx -a(x ≠a ). (1)若a =-2,试证明f (x )在(-∞,-2)内单调递增; (2)若a >0且f (x )在(1,+∞)上单调递减,求a 的取值范围.解:(1)证明:任设x 1<x 2<-2,则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=2(x 1-x 2)(x 1+2)(x 2+2).∵(x 1+2)(x 2+2)>0,x 1-x 2<0,∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),∴f (x )在(-∞,-2)上单调递增.(2)任设1<x 1<x 2,则f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a =a (x 2-x 1)(x 1-a )(x 2-a ).∵a >0,x 2-x 1>0,∴要使f (x 1)-f (x 2)>0,只需(x 1-a )(x 2-a )>0在(1,+∞)上恒成立,∴a ≤1.综上所述知a 的取值范围是(0,1].。
课时达标检测(四十三) 椭 圆[小题对点练——点点落实]对点练(一) 椭圆的定义和标准方程1.若直线x -2y +2=0经过椭圆的一个焦点和一个顶点,则该椭圆的标准方程为( ) A.x 25+y 2=1 B.x 24+y 25=1 C.x 25+y 2=1或x 24+y 25=1 D .以上答案都不对解析:选C 直线与坐标轴的交点为(0,1),(-2,0),由题意知当焦点在x 轴上时,c =2,b =1,∴a 2=5,所求椭圆的标准方程为x 25+y 2=1.当焦点在y 轴上时,b =2,c =1,∴a 2=5,所求椭圆的标准方程为y 25+x 24=1.2.已知椭圆C :x 24+y 23=1,M ,N 是坐标平面内的两点,且M 与C 的焦点不重合.若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则|AN |+|BN |=( )A .4B .8C .12D .16解析:选B 设MN 的中点为D ,椭圆C 的左、右焦点分别为F1,F 2,如图,连接DF 1,DF 2,因为F 1是MA 的中点,D 是MN 的中点,所以F 1D 是△MAN 的中位线,则|DF 1|=12|AN |,同理|DF 2|=12|BN |,所以|AN |+|BN |=2(|DF 1|+|DF 2|),因为D 在椭圆上,所以根据椭圆的定义知|DF 1|+|DF 2|=4,所以|AN |+|BN |=8.3.已知三点P (5,2),F 1(-6,0),F 2(6,0),那么以F 1,F 2为焦点且经过点P 的椭圆的短轴长为( )A .3B .6C .9D .12解析:选B 因为点P (5,2)在椭圆上,所以|PF 1|+|PF 2|=2a ,|PF 2|=5,|PF 1|=55,所以2a =65,即a =35,c =6,则b =3,故椭圆的短轴长为6,故选B.4.如图,已知椭圆C 的中心为原点O ,F (-25,0)为C 的左焦点,P 为C 上一点,满足|OP |=|OF |,且|PF |=4,则椭圆C 的方程为( )A.x 225+y 25=1 B.x 236+y 216=1C.x 230+y210=1 D.x 245+y225=1 解析:选B 设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0),焦距为2c ,右焦点为F ′,连接PF ′,如图所示.因为F (-25,0)为C 的左焦点,所以c =2 5.由|OP |=|OF |=|OF ′|知,∠FPF ′=90°,即FP ⊥PF ′.在R t △PFF ′中,由勾股定理,得|PF ′|=|FF ′|2-|PF |2=(45)2-42=8.由椭圆定义,得|PF |+|PF ′|=2a =4+8=12,所以a =6,a 2=36,于是b 2=a 2-c 2=36-(25)2=16,所以椭圆C 的方程为x 236+y 216=1.5.已知点M (3,0),椭圆x 24+y 2=1与直线y =k (x +3)交于点A ,B ,则△ABM 的周长为________.解析:M (3,0)与F (-3,0)是椭圆的焦点,则直线AB 过椭圆的左焦点F (-3,0),且|AB |=|AF |+|BF |,△ABM 的周长等于|AB |+|AM |+|BM |=(|AF |+|AM |)+(|BF |+|BM |)=4a =8.答案:86.若方程x 2|a |-1+y 2a +3=1表示焦点在x 轴上的椭圆,则实数a 的取值范围是________.解析:因为方程x 2|a |-1+y 2a +3=1表示焦点在x 轴上的椭圆,所以|a |-1>a +3>0,解得-3<a <-2.答案:(-3,-2)对点练(二) 椭圆的几何性质1.如图所示,已知椭圆x 2a 2+y 2b 2=1(a >b >0),以O 为圆心,短半轴长为半径作圆O ,过椭圆长轴的一端点P 作圆O 的两条切线,切点分别为A ,B ,若四边形PAOB 为正方形,则椭圆的离心率为( )A.32B.22C.53D.33解析:选B 由题意知|OA |=|AP |=b ,|OP |=a ,OA ⊥AP ,所以2b 2=a 2,即b 2a 2=12,故e =1-b 2a 2=22,故选B. 2.已知F 1,F 2为椭圆C :x 29+y 28=1的左、右焦点,点E 是椭圆C 上的动点,EF 1―→·EF 2―→的最大值、最小值分别为( )A .9,7B .8,7C .9,8D .17,8解析:选B 由题意知F 1(-1,0),F 2(1,0),设E (x ,y ),则EF 1―→=(-1-x ,-y ),EF 2―→=(1-x ,-y ),所以EF 1―→·EF 2―→=x 2-1+y 2=x 2-1+8-89x 2=19x 2+7(-3≤x ≤3),所以当x =0时,EF 1―→·EF 2―→有最小值7;当x =±3时,EF 1―→·EF 2―→有最大值8.故选B.3.焦点在x 轴上的椭圆方程为x 2a 2+y 2b 2=1(a >b >0),短轴的一个端点和两个焦点相连构成一个三角形,该三角形内切圆的半径为b3,则该椭圆的离心率为( )A.14B.13C.12D.23解析:选C 短轴的一个端点和两个焦点相连构成一个三角形的面积S =12×2c ×b =12×(2a +2c )×b 3,整理得a =2c ,即e =c a =12.故选C.4.已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F ,短轴的一个端点为M ,直线l :3x-4y =0交椭圆E 于A ,B 两点.若|AF |+|BF |=4,点M 到直线l 的距离不小于45,则椭圆E 的离心率的取值范围是( )A.⎝⎛⎦⎤0,32B.⎝⎛⎦⎤0,34C.⎣⎡⎭⎫32,1D.⎣⎡⎭⎫34,1解析:选A 根据椭圆的对称性及椭圆的定义可得A ,B 两点到椭圆左、右焦点的距离和为4a =2(|AF |+|BF |)=8,所以a =2.又d =|3×0-4×b |32+(-4)2≥45,所以1≤b <2,而e =c a =1-b 2a2= 1-b 24,所以0<e ≤32.5.已知椭圆x 24+y 2b 2=1(0<b <2)与y 轴交于A ,B 两点,点F 为椭圆的一个焦点,则△ABF面积的最大值为________.解析:由题意可知b 2+c 2=4,则△ABF 的面积为12×2bc =bc ≤b 2+c 22=2,当且仅当b=c =2时取等号.答案:26.已知椭圆方程为x 2a 2+y 2b 2=1(a >b >0),A ,B 分别是椭圆长轴的两个端点,M ,N 是椭圆上关于x 轴对称的两点,直线AM ,BN 的斜率分别为k 1,k 2,若|k 1·k 2|=14,则椭圆的离心率为________.解析:设M (x 0,y 0),则N (x 0,-y 0),|k 1·k 2|=⎪⎪⎪⎪y 0x 0+a ·y 0a -x 0=y 20a 2-x 20=b 2⎝⎛⎭⎫1-x 20a 2a 2-x 20=b 2a 2=14, 从而e = 1-b 2a 2=32. 答案:327.已知椭圆x 24+y 2=1的左、右焦点分别为F 1,F 2,以原点为圆心,椭圆的短轴为直径作圆.若点P 是圆O 上的动点,则|PF 1|2+|PF 2|2的值是________.解析:由椭圆方程可知a 2=4,b 2=1,∴c 2=4-1=3,∴c =3,a =2,b =1.∴F 1(-3,0),F 2(3,0).圆O 的方程为x 2+y 2=1.设P (x 0,y 0),则x 20+y 20=1.∴|PF 1|2+|PF 2|2=[(x 0+3)2+y 20]+[(x 0-3)2+y 20]=2(x 20+y 20)+6=8.答案:88.如图,椭圆的中心在坐标原点O ,顶点分别是A 1,A 2,B 1,B 2,焦点分别为F 1,F 2,延长B 1F 2与A 2B 2交于P 点,若∠B 1PA 2为钝角,则此椭圆的离心率的取值范围为________.解析:设椭圆的方程为x 2a 2+y 2b2=1(a >b >0),∠B 1PA 2为钝角可转化为B 2A 2―→,F 2B 1―→所夹的角为钝角,则(a ,-b )·(-c ,-b )<0,即b 2<ac ,则a 2-c 2<ac ,故⎝⎛⎭⎫c a 2+c a -1>0,即e 2+e -1>0,e >5-12或e <-5-12,又0<e <1,所以5-12<e <1.答案:⎝ ⎛⎭⎪⎫5-12,1[大题综合练——迁移贯通]1.已知椭圆x 2a 2+y 2b 2=1(a >b >0),F 1,F 2分别为椭圆的左、右焦点,A 为椭圆的上顶点,直线AF 2交椭圆于另一点B .(1)若∠F 1AB =90°,求椭圆的离心率;(2)若AF 2―→=2F 2B ―→, AF 1―→·AB ―→=32,求椭圆的方程.解:(1)若∠F 1AB =90°,则△AOF 2为等腰直角三角形,所以有OA =OF 2,即b =c . 所以a =2c ,e =c a =22.(2)由题知A (0,b ),F 1(-c,0),F 2(c,0),其中c =a 2-b 2,设B (x ,y ). 由AF 2―→=2F 2B ―→,得(c ,-b )=2(x -c ,y ), 解得x =3c 2,y =-b2,即B ⎝⎛⎭⎫3c 2,-b 2. 将B 点坐标代入x 2a 2+y 2b 2=1,得94c 2a 2+b 24b 2=1,即9c 24a 2+14=1,解得a 2=3c 2.① 又由AF 1―→·AB ―→=(-c ,-b )·⎝⎛⎭⎫3c 2,-3b 2=32, 得b 2-c 2=1,即有a 2-2c 2=1.② 由①②解得c 2=1,a 2=3,从而有b 2=2. 所以椭圆的方程为x 23+y 22=1.2.设F 1,F 2分别是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,M 是C 在第一象限上一点且MF 2与x 轴垂直,直线MF 1与C 的另一个交点为N .(1)若直线MN 的斜率为34,求C 的离心率;(2)若直线MN 在y 轴上的截距为2,且|MN |=5|F 1N |,求a ,b .解:(1)根据c =a 2-b 2及题设知M ⎝⎛⎭⎫c ,b 2a ,由k MN =kMF 1=34,得b 2a -0c -(-c )=34,即2b 2=3ac .将b 2=a 2-c 2代入,解得c a =12,ca =-2(舍去).故C 的离心率为12.(2)由题意,原点O 为F 1F 2的中点,MF 2∥y 轴,所以直线MF 1与y 轴的交点D (0,2)是线段MF 1的中点,故b 2a =4,即b 2=4a .① 由|MN |=5|F 1N |,得|DF 1|=2|F 1N |.设N (x 1,y 1),由题意知y 1<0,则⎩⎪⎨⎪⎧2(-c -x 1)=c ,-2y 1=2,即⎩⎪⎨⎪⎧x 1=-32c ,y 1=-1.代入C 的方程,得9c 24a 2+1b2=1.②将①及c =a 2-b 2代入②得9(a 2-4a )4a 2+14a=1,解得a =7,b 2=4a =28, 故a =7,b =27.3.设F 1,F 2分别是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,过F 1且斜率为1的直线l 与E 相交于A ,B 两点,且|AF 2|,|AB |,|BF 2|成等差数列.(1)求E 的离心率;(2)设点P (0,-1)满足|PA |=|PB |,求E 的方程. 解:(1)由椭圆定义知|AF 2|+|BF 2|+|AB |=4a , 又2|AB |=|AF 2|+|BF 2|,得|AB |=43a ,设直线l 的方程为y =x +c ,其中c =a 2-b 2. 设A (x 1,y 1),B (x 2,y 2),则A ,B 两点的坐标满足方程组⎩⎪⎨⎪⎧y =x +c ,x 2a 2+y 2b 2=1,消去y ,化简得(a 2+b 2)x 2+2a 2cx +a 2(c 2-b 2)=0, 则x 1+x 2=-2a 2ca 2+b 2,x 1x 2=a 2(c 2-b 2)a 2+b 2.因为直线AB 的斜率为1,所以|AB |=2|x 2-x 1|=2[(x 1+x 2)2-4x 1x 2], 即43a =4ab 2a 2+b 2,故a 2=2b 2, 所以E 的离心率e =c a =1-b 2a2= 1-12=22. (2)设AB 的中点为N (x 0,y 0), 由(1)知x 0=x 1+x 22=-a 2c a 2+b2=-2c3,y0=x0+c=c 3.由|PA|=|PB|,得k PN=-1,即y0+1x0=-1,得c=3,从而a=32,b=3.故椭圆E的方程为x218+y29=1.。
课时达标检测(十六)导数与函数的综合问题[一般难度题——全员必做]1.(2017·全国卷Ⅱ)设函数f(x)=(1-x2)e x.(1)讨论f(x)的单调性;(2)当x≥0时,f(x)≤ax+1,求a的取值范围.解:(1)f′(x)=(1-2x-x2)e x.令f′(x)=0,得x=-1-2或x=-1+ 2.当x∈(-∞,-1-2)时,f′(x)<0;当x∈(-1-2,-1+2)时,f′(x)>0;当x∈(-1+2,+∞)时,f′(x)<0.所以f(x)在(-∞,-1-2),(-1+2,+∞)上单调递减,在(-1-2,-1+2)上单调递增.(2)f(x)=(1+x)(1-x)e x.①当a≥1时,设函数h(x)=(1-x)e x,则h′(x)=-x e x<0(x>0).因此h(x)在[0,+∞)上单调递减,又h(0)=1,故h(x)≤1,所以f(x)=(x+1)h(x)≤x+1≤ax+1.②当0<a<1时,设函数g(x)=e x-x-1,则g′(x)=e x-1>0(x>0),所以g(x)在[0,+∞)上单调递增,而g(0)=0,故e x≥x+1.当0<x<1时,f(x)>(1-x)(1+x)2,(1-x)(1+x)2-ax-1=x(1-a-x-x2),取x0=5-4a-12,则x0∈(0,1),(1-x0)(1+x0)2-ax0-1=0,故f(x0)>ax0+1.当a≤0时,取x0=5-1 2,则x0∈(0,1),f(x0)>(1-x0)(1+x0)2=1≥ax0+1.综上,a的取值范围是[1,+∞).2.(2018·沈阳监测)已知函数f(x)=a ln x(a>0),e为自然对数的底数.(1)若过点A(2,f(2))的切线斜率为2,求实数a的值;(2)当x >0时,求证f (x )≥a ⎝⎛⎭⎫1-1x ; (3)若在区间(1,e)上e x a-e 1ax <0恒成立,求实数a 的取值范围. 解:(1)由题意得f ′(x )=ax ,∴f ′(2)=a2=2,∴a =4.(2)证明:令g (x )=a ⎝⎛⎭⎫ln x -1+1x (x >0), 则g ′(x )=a ⎝⎛⎭⎫1x -1x 2.令g ′(x )>0,即a ⎝⎛⎭⎫1x -1x 2>0,解得x >1, 令g ′(x )<0,解得0<x <1;∴g (x )在(0,1)上单调递减,在(1,+∞)上单调递增. ∴g (x )的最小值为g (1)=0,∴f (x )≥a ⎝⎛⎭⎫1-1x . (3)由题意可知e x a<e 1a x ,化简得x -1a <ln x , 又x ∈(1,e),∴a >x -1ln x.令h (x )=x -1ln x,则h ′(x )=ln x -1+1x (ln x )2,由(2)知,当x ∈(1,e)时,ln x -1+1x >0, ∴h ′(x )>0,即h (x )在(1,e)上单调递增, ∴h (x )<h (e)=e -1.∴a ≥e -1. 故实数a 的取值范围为[e -1,+∞).3.(2018·海南校级联考)已知函数f (x )=1x +k ln x ,k ≠0.(1)当k =2时,求函数f (x )的图象的切线斜率中的最大值; (2)若关于x 的方程f (x )=k 有解,求实数k 的取值范围. 解:(1)函数f (x )=1x +k ln x 的定义域为(0,+∞),f ′(x )=-1x2+kx (x >0).当k =2时,f ′(x )=-1x 2+2x =-⎝⎛⎭⎫1x -12+1≤1,当且仅当x =1时,等号成立. 所以函数f (x )的图象的切线斜率中的最大值为1.(2)因为关于x 的方程f (x )=k 有解,令g (x )=f (x )-k =1x +k ln x -k ,则问题等价于函数g (x )存在零点.g ′(x )=-1x 2+k x =kx -1x 2.当k <0时,g ′(x )<0在(0,+∞)上恒成立,所以函数g (x )在(0,+∞)上单调递减.因为g (1)=1-k >0,g (e1-1k )=1e1-1k +k ⎝⎛⎭⎫1-1k -k =1e1-1k -1<1e -1<0,所以函数g (x )存在零点.当k >0时,令g ′(x )=0,得x =1k .g ′(x ),g (x )随x 的变化情况如下表:所以g ⎝⎛⎭⎫1k =k -k +k ln 1k =-k ln k 为函数g (x )的最小值,当g ⎝⎛⎭1k >0,即0<k <1时,函数g (x )没有零点,当g ⎝⎛⎭⎫1k ≤0,即k ≥1时,注意到g (e)=1e +k -k >0,所以函数g (x )存在零点.综上,当k <0或k ≥1时,关于x 的方程f (x )=k 有解.[中档难度题——学优生做]1.(2018·广东珠海期末)已知函数f (x )=x -ln(x +a )的最小值为0,其中a >0,设g (x )=ln x +m x .(1)求a 的值; (2)对任意x 1>x 2>0,g (x 1)-g (x 2)x 1-x 2<1恒成立,求实数m 的取值范围;(3)讨论方程g (x )=f (x )+ln(x +1)在[1,+∞)上根的个数. 解:(1)f (x )的定义域为(-a ,+∞),f ′(x )=1-1x +a =x +a -1x +a. 由f ′(x )=0,解得x =1-a >-a .当x 变化时,f ′(x ),f (x )的变化情况如下表:因此,f 故由题意f (1-a )=1-a =0,所以a =1. (2)由g (x 1)-g (x 2)x 1-x 2<1知g (x 1)-x 1<g (x 2)-x 2对任意x 1>x 2>0恒成立,即h (x )=g (x )-x =ln x -x +mx 在(0,+∞)上为减函数. h ′(x )=1x -1-m x 2≤0在(0,+∞)上恒成立,所以m ≥x -x 2在(0,+∞)上恒成立, 而(x -x 2)max =14,则m ≥14,即实数m 的取值范围为⎣⎡⎭⎫14,+∞.(3)由题意知方程可化为ln x +mx =x ,即m =x 2-x ln x (x ≥1).设m (x )=x 2-x ln x ,则m ′(x )=2x -ln x -1(x ≥1).设h (x )=2x -ln x -1(x ≥1),则h ′(x )=2-1x >0,因此h (x )在[1,+∞)上单调递增,h (x )min =h (1)=1.所以m (x )=x 2-x ln x 在[1,+∞)上单调递增.因此当x ≥1时,m (x )≥m (1)=1.所以当m ≥1时方程有一个根,当m <1时方程无根.2.(2017·广西陆川二模)已知函数f (x )=ln x -mx +m . (1)求函数f (x )的单调区间;(2)若f (x )≤0在(0,+∞)上恒成立,求实数m 的取值范围; (3)在(2)的条件下,对任意的0<a <b ,求证:f (b )-f (a )b -a <1a (a +1).解:(1)f ′(x )=1x -m =1-mx x,x ∈(0,+∞),当m ≤0时,f ′(x )>0恒成立,则函数f (x )在(0,+∞)上单调递增,无单调递减区间; 当m >0时,由f ′(x )=1-mx x>0,得x ∈⎝⎛⎭⎫0,1m , 由f ′(x )=1-mx x<0,得x ∈⎝⎛⎭⎫1m ,+∞, 此时f (x )的单调递增区间为⎝⎛⎭⎫0,1m ,单调递减区间为⎝⎛⎭⎫1m ,+∞. 综上,当m ≤0时,函数f (x )的单调递增区间是(0,+∞),无单调递减区间; 当m >0时,函数f (x )的单调递增区间是⎝⎛⎭⎫0,1m ,单调递减区间是⎝⎛⎭⎫1m ,+∞. (2)由(1)知:当m ≤0时,f (x )在(0,+∞)上单调递增,f (1)=0,显然不符合题意; 当m >0时,f (x )max =f ⎝⎛⎭⎫1m =ln 1m -1+m =m -ln m -1, 只需m -ln m -1≤0即可.令g (x )=x -ln x -1,则g ′(x )=1-1x =x -1x ,x ∈(0,+∞), ∴g (x )在(0,1)上单调递减,在(1,+∞)上单调递增.∴g (x )min =g (1)=0.∴g (x )≥0对x ∈(0,+∞)恒成立,也就是m -ln m -1≥0对m ∈(0,+∞)恒成立, 由m -ln m -1=0,解得m =1.∴若f (x )≤0在(0,+∞)上恒成立,则m =1.(3)证明:f (b )-f (a )b -a =ln b -ln a +a -b b -a =ln b -ln ab -a-1=lnb a b a -1·1a -1. 由(2)得f (x )≤0在(0,+∞)上恒成立,即ln x ≤x -1,当且仅当x =1时取等号. 又由0<a <b 得b a >1,∴0<ln b a <ba -1,即lnb aba -1<1.则lnb a b a -1·1a -1<1a -1=1-a a =1-a 2a (1+a )<1a (1+a ). [较高难度题——学霸做]1.(2017·天津高考)设a ∈Z ,已知定义在R 上的函数f (x )=2x 4+3x 3-3x 2-6x +a 在区间(1,2)内有一个零点x 0,g (x )为f (x )的导函数.(1)求g (x )的单调区间;(2)设m ∈[1,x 0)∪(x 0,2],函数h (x )=g (x )(m -x 0)-f (m ),求证:h (m )h (x 0)<0; (3)求证:存在大于0的常数A ,使得对于任意的正整数p ,q ,且pq ∈[1,x 0)∪(x 0,2],满足⎪⎪⎪⎪p q -x 0≥1Aq4. 解:(1)由f (x )=2x 4+3x 3-3x 2-6x +a ,可得g (x )=f ′(x )=8x 3+9x 2-6x -6,进而可得g ′(x )=24x 2+18x -6.令g ′(x )=0,解得x =-1或x =14.当x 变化时,g ′(x ),g (x )的变化情况如下表:所以g (x )的单调递增区间是(-∞,-1),⎝⎛⎭⎫14,+∞,单调递减区间是⎝⎛⎭⎫-1,14. (2)证明:由h (x )=g (x )(m -x 0)-f (m ), 得h (m )=g (m )(m -x 0)-f (m ),h (x 0)=g (x 0)(m -x 0)-f (m ). 令函数H 1(x )=g (x )(x -x 0)-f (x ), 则H 1′(x )=g ′(x )(x -x 0). 由(1)知,当x ∈[1,2]时,g ′(x )>0,故当x ∈[1,x 0)时,H 1′(x )<0,H 1(x )单调递减; 当x ∈(x 0,2]时,H 1′(x )>0,H 1(x )单调递增.因此,当x ∈[1,x 0)∪(x 0,2]时,H 1(x )>H 1(x 0)=-f (x 0)=0,可得H 1(m )>0,即h (m )>0. 令函数H 2(x )=g (x 0)(x -x 0)-f (x ), 则H 2′(x )=g (x 0)-g (x ). 由(1)知g (x )在[1,2]上单调递增,故当x ∈[1,x 0)时,H 2′(x )>0,H 2(x )单调递增; 当x ∈(x 0,2]时,H 2′(x )<0,H 2(x )单调递减.因此,当x ∈[1,x 0)∪(x 0,2]时,H 2(x )<H 2(x 0)=0,可得H 2(m )<0,即h (x 0)<0.所以h (m )h (x 0)<0.(3)证明:对于任意的正整数p ,q ,且pq ∈[1,x 0)∪(x 0,2], 令m =pq ,函数h (x )=g (x )(m -x 0)-f (m ).由(2)知,当m ∈[1,x 0)时,h (x )在区间(m ,x 0)内有零点;当m ∈(x 0,2]时,h (x )在区间(x 0,m )内有零点.所以h (x )在(1,2)内至少有一个零点,不妨设为x 1, 则h (x 1)=g (x 1)⎝⎛⎭⎫p q -x 0-f ⎝⎛⎭⎫p q =0. 由(1)知g (x )在[1,2]上单调递增, 故0<g (1)<g (x 1)<g (2), 于是⎪⎪⎪⎪p q -x 0=⎪⎪⎪⎪⎪⎪⎪⎪f ⎝⎛⎭⎫p q g (x 1)≥⎪⎪⎪⎪f ⎝⎛⎭⎫p q g (2) =|2p 4+3p 3q -3p 2q 2-6pq 3+aq 4|g (2)q 4.因为当x ∈[1,2]时,g (x )>0,故f (x )在[1,2]上单调递增,所以f (x )在区间[1,2]上除x 0外没有其他的零点,而pq ≠x 0,故f ⎝⎛⎭⎫p q ≠0.又因为p ,q ,a 均为整数,所以|2p 4+3p 3q -3p 2q 2-6pq 3+aq 4|是正整数,从而|2p 4+3p 3q -3p 2q 2-6pq 3+aq 4|≥1.所以⎪⎪⎪⎪p q -x 0≥1g (2)q 4.所以只要取A =g (2),就有⎪⎪⎪⎪p q -x 0≥1Aq4. 2.(2017·江苏高考)已知函数f (x )=x 3+ax 2+bx +1(a >0,b ∈R )有极值,且导函数f ′(x )的极值点是f (x )的零点.(极值点是指函数取极值时对应的自变量的值)(1)求b 关于a 的函数关系式,并写出定义域; (2)证明:b 2>3a ;(3)若f (x ),f ′(x )这两个函数的所有极值之和不小于-72,求a 的取值范围.解:(1)由f (x )=x 3+ax 2+bx +1, 得f ′(x )=3x 2+2ax +b =3⎝⎛⎭⎫x +a 32+b -a 23. 当x =-a 3时,f ′(x )有极小值b -a 23.因为f ′(x )的极值点是f (x )的零点, 所以f ⎝⎛⎭⎫-a 3=-a 327+a 39-ab3+1=0, 又a >0,故b =2a 29+3a .因为f (x )有极值, 故f ′(x )=0有实根,从而b -a 23=19a (27-a 3)≤0,即a ≥3.当a =3时,f ′(x )>0(x ≠-1), 故f (x )在R 上是增函数,f (x )没有极值; 当a >3时,f ′(x )=0有两个相异的实根 x 1=-a -a 2-3b 3,x 2=-a +a 2-3b 3.当x 变化时,f ′(x ),f (x )的变化情况如下表:故f (x )的极值点是x 1,x 2.从而a >3. 因此b =2a 29+3a ,定义域为(3,+∞).(2)证明:由(1)知,b a =2a a 9+3a a .设g (t )=2t 9+3t ,则g ′(t )=29-3t 2=2t 2-279t 2.当t ∈⎝⎛⎭⎫362,+∞时,g ′(t )>0, 从而g (t )在⎝⎛⎭⎫362,+∞上单调递增.因为a >3,所以a a >33, 故g (a a )>g (33)=3,即ba> 3.因此b 2>3a . (3)由(1)知,f (x )的极值点是x 1,x 2,且x 1+x 2=-23a ,x 21+x 22=4a 2-6b 9.从而f (x 1)+f (x 2)=x 31+ax 21+bx 1+1+x 32+ax 22+bx 2+1=x 13(3x 21+2ax 1+b )+x 23(3x 22+2ax 2+b )+13a (x 21+x 22)+23b (x 1+x 2)+2 =4a 3-6ab 27-4ab 9+2=0.记f (x ),f ′(x )所有极值之和为h (a ), 因为f ′(x )的极值为b -a 23=-19a 2+3a ,所以h (a )=-19a 2+3a ,a >3.因为h ′(a )=-29a -3a 2<0,于是h (a )在(3,+∞)上单调递减. 因为h (6)=-72,于是h (a )≥h (6),故a ≤6.因此a 的取值范围为(3,6].。
课时达标检测(四)1.设集合A={1,2,3},B={4,5},M={x|x=a+b,a∈A,b∈B},则M中元素的个数为________.解析:依题意可得,M={5,6,7,8},所以集合M中共有4个元素.答案:42.(2018·苏北四市联考)设全集U={0,1,2,3,4,5},集合A={x∈Z|0<x<2.5},B={x∈Z|(x-1)(x-4)<0},则∁U(A∪B)=____________.解析:∵A={x∈Z|0<x<2.5}={1,2},B={x∈Z|1<x<4}={2,3},∴A∪B={1,2,3},∵全集U={0,1,2,3,4,5},∴∁U(A∪B)={0,4,5}.答案:{0,4,5}3.(2018·甘肃会宁一中月考)已知命题p:∀x>0,总有(x+1)e x>1,则綈p为________________.解析:命题p:∀x>0,总有(x+1)e x>1的否定为∃x>0,使得(x+1)e x≤1.答案:∃x>0,使得(x+1)e x≤14.(2018·盐城中学月考)若命题p:“x<1”,命题q:“log2x<0”,则p是q的____________条件.(选填“充分不必要”“必要不充分”“充要”“既不充分又不必要”) 解析:由log2x<0得0<x<1,则p是q的必要不充分条件.答案:必要不充分5.(2018·湖北百所重点学校联考)已知命题p:∀x∈(0,+∞),log4x<log8x,命题q:∃x∈R,使得tan x=1-3x,则下列命题为真命题的序号是________.①p∧q;②綈p∧綈q;③p∧綈q;④綈p∧q.解析:对于命题p:当x=1时,log4x=log8x=0,所以命题p是假命题;对于命题q:当x=0时,tan x=1-3x=0,所以命题q是真命题.由于綈p是真命题,所以綈p∧q是真命题.答案:④6.设集合A={x|y=ln(x-a)},集合B={-1,1,2},若A∪B=A,则实数a的取值范围是________.解析:因为A={x|y=ln(x-a)},所以A={x|x>a},因为A∪B=A,所以B⊆A,因为B={-1,1,2},所以a<-1,所以实数a的取值范围是(-∞,-1).答案:(-∞,-1)7.已知命题p:x2+4x-5>0;命题q:x<a,且綈q的一个充分不必要条件是綈p,则a的取值范围是________.解析:由x2+4x-5>0,得x<-5或x>1,由綈q的一个充分不必要条件是綈p,可知綈p是綈q的充分不必要条件,等价于q是p的充分不必要条件.故a≤-5.答案:(-∞,-5]8.(2018·南通模拟)设集合A={n|n=3k-1,k∈Z},B={x||x-1|>3},则A∩(∁R B)=____________.解析:∵B ={x |x >4或x <-2},∴∁R B ={x |-2≤x ≤4},∴A ∩(∁R B )={-1,2}.答案:{-1,2}9.(2018·南京调研)下列说法中正确的序号是________.①命题“若x 2=1,则x =1”的否命题是“若x 2=1,则x ≠1”;②“x =-1”是“x 2-x -2=0”的必要不充分条件;③命题“若x =y ,则sin x =sin y ”的逆否命题是真命题;④“tan x =3”是“x =π3”的充分不必要条件. 解析:由原命题与否命题的关系知,原命题的否命题是“若x 2≠1,则x ≠1”,即①不正确;因为x 2-x -2=0,所以x =-1或x =2,所以由“x =-1”能推出“x 2-x -2=0”,反之,由“x 2-x -2=0”推不出“x =-1”,所以“x =-1”是“x 2-x -2=0”的充分不必要条件,即②不正确;因为由x =y 能推得sin x =sin y ,即原命题是真命题,所以它的逆否命题是真命题,故③正确;由x =π3能推出tan x =3,但由tan x =3推不出x =π3,所以“tan x =3”是“x =π3”的必要不充分条件,即④不正确. 答案:③10.(2018·如东中学月考)“p ∨q 是真命题”是“綈p 为真命题”的______________条件.解析:若“p ∨q 是真命题”成立,则p 、q 中至少一个为真,“綈p 为真命题”不一定成立;若“綈p 为真命题”成立,则命题p 为假命题,所以“p ∨q 是真命题”不一定成立;所以“p ∨q 是真命题”是“綈p 为真命题”的既不充分又不必要条件.答案:既不充分又不必要11.(2018·江苏如皋中学月考)若“数列a n =-n 2+2λn (n ∈N *)是递减数列”为假命题,则λ的取值范围是________.解析:若数列a n =-n 2+2λn (n ∈N *)为递减数列,则有a n +1-a n <0,即2λ< 2n +1对任意的n ∈N *都成立,于是可得2λ<3,即λ<32,故所求λ的取值范围是⎣⎡⎭⎫32,+∞. 答案:⎣⎡⎭⎫32,+∞ 12.已知集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ y =1-x 2+4x -3,B ={y |y =4x -1,x ≥0},则A ∩B =______. 解析:由题意得,集合A ={x |-x 2+4x -3>0}={x |x 2-4x +3<0}={x |1<x <3},集合B ={y |y ≥0},所以A ∩B ={x |1<x <3}.答案:{x |1<x <3}13.(2018·北京海淀区期中考试)已知非空集合A ,B 满足以下两个条件:(ⅰ)A ∪B ={1,2,3,4,5,6},A ∩B =∅;(ⅱ)A 的元素个数不是A 中的元素,B 的元素个数不是B 中的元素.则有序集合对(A ,B )的个数为________.解析:由题意得:①若A 中只有1个元素,B 中5个元素,所以5∈A,1∈B ,则A ={5},B ={1,2,3,4,6},1对;②若A 中有2个元素,B 中4个元素,所以4∈A,2∈B ,此时有序集合对(A ,B )有4对,即({1,4},{2,3,5,6}),({3,4},{1,2,5,6}),({5,4},{1,2,3,6}),({6,4},{1,2,3,5});③若A 中有3个元素,B 中3个元素,所以3∉A,3∉B ,与条件A ∪B ={1,2,3,4,5,6}矛盾;④若A 中有4个元素,B 中2个元素,所以2∈A,4∈B ,此时有序集合对(A ,B )有4对,即({2,3,5,6},{1,4}),({1,2,5,6},{3,4}),({1,2,3,6},{5,4}),({1,2,3,5},{6,4});⑤若A 中有5个元素,B 中只有1个元素,所以5∈B,1∈A ,则A ={1,2,3,4,6},B ={5},1对;综上有序集合对(A ,B )的个数为10.答案:1014.已知命题p :f (x )=1-2m x 2在区间(0,+∞)上是减函数;命题q :不等式x 2-2x >m -1的解集为R .若命题“p ∨q ”为真,“p ∧q ”为假,则实数m 的取值范围是________.解析:对于命题p ,由f (x )=1-2m x 2在区间(0,+∞)上是减函数,得1-2m >0,解得m <12;对于命题q ,不等式x 2-2x >m -1的解集为R 等价于不等式(x -1)2>m 的解集为R ,因为(x -1)2≥0恒成立,所以m <0,因为命题“p ∨q ”为真,“p ∧q ”为假,所以命题p和命题q 一真一假.当命题p 为真,命题q 为假时,⎩⎪⎨⎪⎧ m <12,m ≥0,得0≤m <12;当命题p 为假,命题q 为真时,⎩⎪⎨⎪⎧m ≥12,m <0,此时m 不存在,故实数m 的取值范围是⎣⎡⎭⎫0,12. 答案:⎣⎡⎭⎫0,12。
=2.课时达标检测(四十八) 圆锥曲线中的最值、范围、证明 问题[一般难度题一一全员必做]1 •已知椭圆E :拿+ 斧1(a>b>0)的一个焦点为F 2(1,0) ,且该椭圆过定点 M 1,三2 .(1) 求椭圆E 的标准方程;■ ■ ------------------------------------ ----------⑵设点Q(2,0),过点F 2作直线I 与椭圆E 交于A , B 两点,且F 2A = AF 2B ,氏[—2, —1],以QA , QB 为邻边作平行四边形QACB ,求对角线QC 长度的最小值.1 1解:(1)由题易知c = 1, ~2+2= 1,a 2b 又 a 2= b 2+c 2, 解得 b 2= 1, a 2= 2,x 2故椭圆E 的标准方程为耸+ y 2= 1.x = ky + 1,(2) 设直线 I : x = ky + 1,由 x 2 2y +y 2= 1得(k 2+ 2)y 2 + 2ky — 1 = 0, △= 4k 2+ 4(k 2+ 2)= 8(k 2+ 1)>0. 设 A(x1, y 1), B(X2, y 2),E r r ”口 一 2k 一 1 则可得 y 1+ y 2= k 2+ 2, y 1y 2= k 2+ 2. - > --- > ---- >QC = QA + QB =(X 1 + x 2 — 4,4 k 2+ 1 — 2kk 2+ 2 , k 2^ ,关.由 F 2A = ?F 2B 可得 y 1=入?,= £,:=彳卜1丫2工 0). 1 y 1 y 2 y 1+ y 2 2 — 2y 1y 2— 6k 2— 4从而入 +)=二+二==i 2丄入 y 2 y 1 y 1y 2k 2+ 21 5 5 — 6k 2— 4 2由入€ [ — 2, — 1]得 心~入€ — 2,一 2,从而一 ~k ?+ 2三一2,解得O W k < 令 t = k ^++2,则 t € 176, 2 , •••1商=8t 2— 28t + 16= 8 t — 4 2— 1,二当 t = 2时,|QC|miny 1+ y 2)•- |QC |2= |QA + QI B |2= 16—皋 + 疋+亍由此可知,l -®2的大小与k 2的取值有2. (2018河南洛阳统考)已知抛物线 C : x 2= 2py(p>0),过焦点F 的直线交C 于A , B 两点,D 是抛物线的准线I 与y 轴的交点.(1) 若AB // I ,且△ ABD 的面积为1,求抛物线的方程;(2) 设M 为AB 的中点,过 M 作I 的垂线,垂足为 N.证明:直线 AN 与抛物线相切. 解:(1) •/ AB // I , •••|FD| = p , |AB|= 2p.「. S ^ ABD = p 2= 1. ••• p = 1,故抛物线C 的方程为x 2= 2y.px 2x 2(2)证明:显然直线 AB 的斜率存在,设其方程为 y = kx + ;, A x 1,命,B x 2,命.y = kx + p ,由 2消去y 整理得,x 2— 2kpx — p 2= 0.x 2= 2py2…X 1 + X 2= 2kp , X 1X 2=— p . • M(kp , k 2p + 2), N kp , — p .又 x 2= 2py ,「. y = x .p•抛物线x 2= 2py 在点A 处的切线斜率k =—.p •直线AN 与抛物线相切.(1)求椭圆C 的方程;⑵若直线y = kx + 1与曲线C 交于A , B 两点,求△ OAB 面积的取值范围.一y 2 x 2解:(1)设椭圆的标准方程为 十+ ~2= 1(a>b>0),a b2a = 4,由条件知, e = C =呼,解得a = 2, c =, 3, b = 1,a 2a 2=b 2 +c 2,故椭圆C 的方程为+ x 2= 1.4 (2)设 A(x 1, y 1), B(X2, y 2),2x. + p2p 2 kAN =』-= X 1 — kp坯+ p 2p 2 X 1 + X 2 X 1 — — x 2+ p 2pX 1 — X 22X 2— X 1X 2 2p X 1 — X 2~2~X 13. (2018合肥模拟)已知中心在原点,焦点在y 轴上的椭圆C ,其上一点P 到两个焦点F 1, F 2的距离之和为 4,离心率为_3 2 .'=1 , 4得(k 2+ 4)x 2+ 2kx — 3= 0,故 X 1+ X 2=—皋,X 1X 2=—皋,设厶OAB 的面积为S ,(1)求椭圆C 的方程;⑵若1W 冶2,求厶ABT解: (1)••飞="22 , c = 1, 即椭圆C 的方程为£ + y 2= 1.(2)①当直线的斜率为0时,显然不成立. ②设直线 I : x = my + 1, A(X i , y i ), B(x 2, y 2),X 2 + 2y 2— 2= 0, 联立得(m 2+ 2)y 2+ 2my — 1 = 0,x = my + 1 “ —2m — 1则 y1+V 2=齐2, V1V 2=,x 2+ 由y = kx + 1由 X1X 2=— R2+ 4<0,知 S = 1X |X 1 — x 2| =X 1+ X 2 — 4X 1X 2= 2k 2+ 3 k 2 + 4 令 k 2+ 3 = t ,知 t > 3,••• S = 21对函数 y = t + -(t > 3),知 y ' 1 t 2— 1 =1 —孑=-j^>0 ,• y = t +1 在 t € [3, + m )上单调递增,• t + ~》10,t t 3 •。
课时达标检测(十) 函数的图象及其应用[小题对点练——点点落实]对点练(一) 函数的图象1.(2018·陕西汉中教学质量检测)函数f (x )=⎝⎛⎭⎫x -1x sin x 的图象大致是( )解析:选D 令f (x )=0可得x =±1,或x =k π(k ≠0,k ∈Z),又f (-x )=⎝⎛⎭⎫-x +1x sin(-x )=⎝⎛⎭⎫x -1x sin x =f (x ),即函数f (x )=⎝⎛⎭⎫x -1x sin x 是偶函数,且经过点(1,0),(π,0),(2π,0),(3π,0),…,故选D. 2.(2018·甘肃南裕固族自治县一中月考)已知函数f (x )=-x 2+2,g (x )=log 2|x |,则函数F (x )=f (x )·g (x )的图象大致为( )解析:选B f (x ),g (x )均为偶函数,则F (x )也为偶函数,由此排除A ,D.当x >2时,-x 2+2<0,log 2|x |>0,所以F (x )<0,排除C ,故选B.3.(2018·安徽蚌埠二中等四校联考)如图所示的图象对应的函数解析式可能是( )A .y =2x -x 2-1B .y =2x sin x4x +1C .y =x ln xD .y =(x 2-2x )e x解析:选D A 中,y =2x -x 2-1,当x 趋于-∞时,函数y =2x 的值趋于0,y =x 2+1的值趋于+∞,所以函数y =2x-x 2-1的值小于0,故A 中的函数不满足.B 中,y =sin x 是周期函数,所以函数y =2x sin x4x +1的图象是以x 轴为中心的波浪线,故B 中的函数不满足.C 中,函数y =xln x 的定义域为(0,1)∪(1,+∞),故C 中的函数不满足.D 中,y =x 2-2x ,当x <0或x >2时,y >0,当0<x <2时,y <0,且y =e x >0恒成立,所以y =(x 2-2x )e x 的图象在x 趋于+∞时,y 趋于+∞,故D 中的函数满足.4.(2018·昆明模拟)如图所示的图形是由一个半径为2的圆和两个半径为1的半圆组成的,它们的圆心分别是O ,O 1,O 2,动点P 从A 点出发沿着圆弧按A →O →B →C →A →D →B 的路线运动(其中A ,O ,O 1,O 2,B 五点共线),记点P 运动的路程为x ,设y =|O 1P |2,y 与x 的函数关系式为y =f (x ),则y =f (x )的大致图象是( )解析:选A 当x ∈[0,π]时,y =1.当x ∈(π,2π)时, O 1P ―→=O 2P ―→-O 2O 1―→,设O 2P ―→与O 2O 1―→的夹角为θ,因为|O 2P ―→|=1,|O 2O 1―→|=2,θ=x -π,所以y =|O 1P ―→|2=(O 2P ―→-O 2O 1―→)2=5-4cos θ=5+4cos x ,x ∈(π,2π),此时函数y =f (x )的图象是曲线,且单调递增,排除C ,D.当x ∈[2π,4π)时,因为O 1P ―→=OP ―→-OO 1―→,设OP ―→,OO 1―→的夹角为α,因为|OP ―→|=2,|OO 1―→|=1,α=2π-12x ,所以y =|O 1P ―→|2=(OP ―→-OO 1―→)2=5-4cos α=5-4cos 12x ,x ∈[2π,4π),此时函数y =f (x )的图象是曲线,且单调递减,排除B.故选A.对点练(二) 函数图象的应用问题1.(2018·福建厦门双十中学期中)已知函数f (x )=x 2+e x -12(x <0)与g (x )=x 2+ln(x +a )的图象上存在关于y轴对称的点,则实数a 的取值范围是( )A.⎝⎛⎭⎫-∞,1e B .(-∞, e) C.⎝⎛⎭⎫1e ,+∞ D .( e ,+∞)解析:选B 原命题等价于在x <0时,f (x )与g (-x )的图象有交点,即方程e x -12-ln(-x +a )=0在(-∞,0)上有解,令m (x )=e x -12-ln(-x +a ),显然m (x )在(-∞,0)上为增函数.当a >0时,只需m (0)=e 0-12-ln a >0,解得0<a <e ;当a ≤0时,x 趋于-∞,m (x )<0,x 趋于a ,m (x )>0,即m (x )=0在(-∞,a )上有解.综上,实数a 的取值范围是(-∞,e).2.若函数f (x )=ax -2x -1的图象关于点(1,1)对称,则实数a =________. 解析:函数f (x )=ax -2x -1=a +a -2x -1(x ≠1),当a =2时,f (x )=2,函数f (x )的图象不关于点(1,1)对称,故a ≠2,其图象的对称中心为(1,a ),即a =1.答案:13.(2018·绵阳诊断)用min{a ,b ,c }表示a ,b ,c 中的最小值.设f (x )=min{2x ,x +2,10-x }(x ≥0),则f (x )的最大值为________.解析:f (x )=min{2x ,x +2,10-x }(x ≥0)的图象如图中实线所示.令x +2=10-x ,得x =4.故当x =4时,f (x )取最大值,又f (4)=6,所以f (x )的最大值为6.答案:62x -x 2,若直4.已知偶函数f (x )满足f (1-x )=f (1+x ),且当x ∈[0,1]时,f (x )=线kx -y +k =0(k >0)与函数f (x )的图象有且仅有三个交点,则k 的取值范围是________.解析:因为f (1-x )=f (1+x ).所以函数f (x )的图象关于直线x =1对称,又f (x )是偶函数,所以f (x -1)=f (1+x ),即f (2+x )=f (x ),所以f (x )是周期为2的函数.由当x ∈[0,1]时,y =f (x )=2x -x 2,得x 2-2x +y 2=0(y ≥0),即(x -1)2+y 2=1(y ≥0),画出函数f (x )的大致图象如图所示.若直线y =k (x +1)与曲线y =f (x )切于点A ,则|k -0+k |k 2+1=1,得k =33;若直线y =k (x +1)与曲线y =f (x )切于点B ,则|3k -0+k |k 2+1=1,得k =1515.因为直线kx-y +k =0(k >0)与函数f (x )的图象有且仅有三个交点,所以根据图象易知1515<k <33.答案:⎝⎛⎭⎫1515,335.已知f (x )是以2为周期的偶函数,当x ∈[0,1]时,f (x )=x ,且在[-1,3]内,关于x 的方程f (x )=kx +k +1(k ∈R ,k ≠-1)有四个根,则k 的取值范围是________.解析:由题意作出f (x )在[-1,3]上的示意图如图,记y =k (x +1)+1,∴函数y =k (x+1)+1的图象过定点A (-1,1).记B (2,0),由图象知,方程有四个根,即函数y =f (x )与y =kx +k +1的图象有四个交点,故k AB <k <0,k AB =0-12-(-1)=-13,∴-13<k <0. 答案:⎝⎛⎭⎫-13,06.如图,函数f (x )的图象为折线ACB ,则不等式f (x )≥log 2(x +1)的解集为________. 解析:令g (x )=y =log 2(x +1),作出函数g (x )图象如图.由⎩⎪⎨⎪⎧x +y =2,y =log 2(x +1),得 ⎩⎪⎨⎪⎧x =1,y =1.∴结合图象知不等式f (x )≥log 2(x +1)的解集为{x |-1<x ≤1}. 答案:{x |-1<x ≤1}[大题综合练——迁移贯通]1.设函数f (x )=⎪⎪⎪⎪1-1x (x >0). (1)作出函数f (x )的图象;(2)当0<a <b ,且f (a )=f (b )时,求1a +1b 的值;(3)若方程f (x )=m 有两个不相等的正根,求m 的取值范围. 解:(1)函数f (x )的图象如图所示.(2)∵f (x )=⎪⎪⎪⎪1-1x =⎩⎨⎧1x -1,x ∈(0,1],1-1x ,x ∈(1,+∞),故f (x )在(0,1]上是减函数,在(1,+∞)上是增函数, 由0<a <b 且f (a )=f (b )得0<a <1<b ,且1a -1=1-1b ,∴1a +1b =2.(3)由函数f (x )的图象可知,当0<m <1时,方程f (x )=m 有两个不相等的正根. 2.已知函数f (x )=x |m -x |(x ∈R),且f (4)=0. (1)求实数m 的值; (2)作出函数f (x )的图象;(3)根据图象指出f (x )的单调递减区间;(4)若方程f (x )=a 只有一个实数根,求a 的取值范围. 解:(1)∵f (4)=0,∴4|m -4|=0,即m =4.(2)f (x )=x |x -4|=⎩⎪⎨⎪⎧x (x -4)=(x -2)2-4,x ≥4,-x (x -4)=-(x -2)2+4,x <4.f (x )的图象如图所示.(3)f (x )的单调递减区间是[2,4].(4)从f (x )的图象可知,当a >4或a <0时,f (x )的图象与直线y =a 只有一个交点,即方程f (x )=a 只有一个实数根,所以a 的取值范围是(-∞,0)∪(4,+∞).3.已知函数f (x )=2x ,x ∈R.(1)当m 取何值时方程|f (x )-2|=m 有一个解?两个解?(2)若不等式f 2(x )+f (x )-m >0在R 上恒成立,求m 的取值范围. 解:(1)令F (x )=|f (x )-2|=|2x -2|,G (x )=m ,画出F (x )的图象如图所示.由图象看出,当m =0或m ≥2时,函数F (x )与G (x )的图象只有一个交点,原方程有一个解;当0<m <2时,函数F (x )与G (x )的图象有两个交点,原方程有两个解. (2)令f (x )=t (t >0),H (t )=t 2+t ,因为H (t )=⎝⎛⎭⎫t +122-14在区间(0,+∞)上是增函数, 所以H (t )>H (0)=0.因此要使t 2+t >m 在区间(0,+∞)上恒成立,应有m ≤0,即所求m 的取值范围为(-∞,0].。
课时达标检测(二) 命题及其关系、充分条件与必要条件[小题对点练——点点落实]对点练(一) 命题及其关系1.命题“若x ,y 都是偶数,则x +y 也是偶数”的逆否命题是( )A .若x +y 是偶数,则x 与y 不都是偶数B .若x +y 是偶数,则x 与y 都不是偶数C .若x +y 不是偶数,则x 与y 不都是偶数D .若x +y 不是偶数,则x 与y 都不是偶数解析:选C 由于“x ,y 都是偶数”的否定表达是“x ,y 不都是偶数”,“x +y 是偶数”的否定表达是“x +y 不是偶数”,故原命题的逆否命题为“若x +y 不是偶数,则x ,y 不都是偶数”,故选C.2.命题“若△ABC 有一内角为π3,则△ABC 的三内角成等差数列”的逆命题( ) A .与原命题同为假命题B .与原命题的否命题同为假命题C .与原命题的逆否命题同为假命题D .与原命题同为真命题解析:选D 原命题显然为真,原命题的逆命题为“若△ABC 的三内角成等差数列,则△ABC 有一内角为π3”,它是真命题. 3.在命题“若抛物线y =ax 2+bx +c 的开口向下,则{x |ax 2+bx +c <0}≠∅”的逆命题、否命题、逆否命题中结论成立的是( )A .都真B .都假C .否命题真D .逆否命题真解析:选D 对于原命题:“若抛物线y =ax 2+bx +c 的开口向下,则{x |ax 2+bx +c <0}≠∅”,这是一个真命题,所以其逆否命题也为真命题;但其逆命题:“若{x |ax 2+bx +c <0}≠∅,则抛物线y =ax 2+bx +c 的开口向下”是一个假命题,因为当不等式ax 2+bx +c <0的解集非空时,可以有a >0,即抛物线的开口可以向上,因此否命题也是假命题.故选D.4.(2018·德州一中模拟)下列命题中为真命题的序号是________.①若x ≠0,则x +1x ≥2;②命题:若x 2=1,则x =1或x =-1的逆否命题为:若x ≠1且x ≠-1,则x 2≠1;③“a =1”是“直线x -ay =0与直线x +ay =0互相垂直”的充要条件;④命题“若x <-1,则x 2-2x -3>0”的否命题为“若x ≥-1,则x 2-2x -3≤0”.解析:当x <0时,x +1x≤-2,故①是假命题;根据逆否命题的定义可知,②是真命题;“a =±1”是“直线x -ay =0与直线x +ay =0互相垂直”的充要条件,故③是假命题;根据否命题的定义知④是真命题.答案:②④5.“在△ABC 中,若∠C =90°,则∠A ,∠B 都是锐角”的否命题为:________________________________________________________________________.解析:原命题的条件:在△ABC 中,∠C =90°,结论:∠A ,∠B 都是锐角.否命题是否定条件和结论.即“在△ABC 中,若∠C ≠90°,则∠A ,∠B 不都是锐角”.答案:在△ABC 中,若∠C ≠90°,则∠A ,∠B 不都是锐角对点练(二) 充分条件与必要条件1.(2016·山东高考)已知直线a ,b 分别在两个不同的平面α,β内,则“直线a 和直线b 相交”是“平面α和平面β相交”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A 由题意知a ⊂α,b ⊂β,若a ,b 相交,则a ,b 有公共点,从而α,β有公共点,可得出α,β相交;反之,若α,β相交,则a ,b 的位置关系可能为平行、相交或异面.因此“直线a 和直线b 相交”是“平面α和平面β相交”的充分不必要条件.故选A.2.(2018·浙江名校联考)一次函数y =-m n x +1n 的图象同时经过第一、三、四象限的必要不充分条件是( )A .m >1,且n <1B .mn <0C .m >0,且n <0D .m <0,且n <0解析:选B 因为y =-m n x +1n 的图象经过第一、三、四象限,故-m n >0,1n <0,即m >0,n <0,但此为充要条件,因此,其必要不充分条件为mn <0.3.(2018·河南豫北名校联盟精英对抗赛)设a ,b ∈R ,则“log 2a >log 2b ”是“2a -b >1”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A log 2a >log 2b ⇔a >b >0,2a -b >1⇔a >b ,所以“log 2a >log 2b ”是“2a -b >1”的充分不必要条件.故选A.4.(2018·重庆第八中学调研)定义在R 上的可导函数f (x ),其导函数为f ′(x ),则“f ′(x )为偶函数”是“f (x )为奇函数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选B ∵f (x )为奇函数,∴f (-x )=-f (x ).∴[f (-x )]′=[-f (x )]′,∴f ′(-x )·(-x )′=-f ′(x ),∴f ′(-x )=f ′(x ),即f ′(x )为偶函数;反之,若f ′(x )为偶函数,如f ′(x )=3x 2,f (x )=x 3+1满足条件,但f (x )不是奇函数,所以“f ′(x )为偶函数”是“f (x )为奇函数”的必要不充分条件.故选B.5.(2018·山西怀仁一中期中)命题“∀x ∈[1,2),x 2-a ≤0”为真命题的一个充分不必要条件可以是( )A .a ≥4B .a >4C .a ≥1D .a >1解析:选B x 2-a ≤0⇔a ≥x 2.因为x 2∈[1,4),所以a ≥4.故a >4是已知命题的一个充分不必要条件.故选B.6.(2018·广东梅州质检)已知命题p :“方程x 2-4x +a =0有实根”,且綈p 为真命题的充分不必要条件为a >3m +1,则实数m 的取值范围是( )A .[1,+∞)B .(1,+∞)C .(-∞,1)D .(0,1)解析:选B 命题p :“方程x 2-4x +a =0有实根”为真时,Δ=16-4a ≥0,∴a ≤4.∴綈p 为真命题时,a >4.又∵綈p 为真命题的充分不必要条件为a >3m +1,∴(3m +1,+∞)是(4,+∞)的真子集,∴3m +1>4,解得m >1,故选B.7.(2018·福建闽侯二中期中)设命题p :|4x -3|≤1;命题q :x 2-(2a +1)x +a (a +1)≤0.若綈p 是綈q 的必要不充分条件,则实数a 的取值范围是________.解析:由|4x -3|≤1,得12≤x ≤1;由x 2-(2a +1)·x +a (a +1)≤0,得a ≤x ≤a +1.∵綈p 是綈q 的必要不充分条件,∴q 是p 的必要不充分条件,∴p 是q 的充分不必要条件.∴⎣⎡⎦⎤12,1[a ,a +1].∴a ≤12.且a +1≥1,两个等号不能同时成立,解得0≤a ≤12.∴实数a 的取值范围是⎣⎡⎦⎤0,12. 答案:⎣⎡⎦⎤0,12[大题综合练——迁移贯通]1.写出命题“已知a ,b ∈R ,若关于x 的不等式x 2+ax +b ≤0有非空解集,则a 2≥4b ”的逆命题、否命题、逆否命题,并判断它们的真假.解:(1)逆命题:已知a ,b ∈R ,若a 2≥4b ,则关于x 的不等式x 2+ax +b ≤0有非空解集,为真命题.(2)否命题:已知a ,b ∈R ,若关于x 的不等式x 2+ax +b ≤0没有非空解集,则a 2<4b ,为真命题.(3)逆否命题:已知a ,b ∈R ,若a 2<4b ,则关于x 的不等式x 2+ax +b ≤0没有非空解集,为真命题.2.已知集合A =⎩⎨⎧⎭⎬⎫y ⎪⎪y =x 2-32x +1,x ∈⎣⎡⎦⎤34,2,B ={x |x +m 2≥1}.若“x ∈A ”是“x ∈B ”的充分条件,求实数m 的取值范围.解:y =x 2-32x +1=⎝⎛⎭⎫x -342+716, ∵x ∈⎣⎡⎦⎤34,2,∴716≤y ≤2,∴A =⎩⎨⎧⎭⎬⎫y ⎪⎪716≤y ≤2. 由x +m 2≥1,得x ≥1-m 2,∴B ={x |x ≥1-m 2}.∵“x ∈A ”是“x ∈B ”的充分条件,∴A ⊆B ,∴1-m 2≤716,解得m ≥34或m ≤-34, 故实数m 的取值范围是⎝⎛⎦⎤-∞,-34∪⎣⎡⎭⎫34,+∞. 3.已知集合A ={x |x 2-6x +8<0},B ={x |(x -a )(x -3a )<0}.(1)若x ∈A 是x ∈B 的充分条件,求a 的取值范围.(2)若A ∩B =∅,求a 的取值范围.解:A ={x |x 2-6x +8<0}={x |2<x <4}, B ={x |(x -a )(x -3a )<0}.(1)当a =0时,B =∅,不合题意.当a >0时,B ={x |a <x <3a },要满足题意, 则⎩⎪⎨⎪⎧a ≤2,3a ≥4,解得43≤a ≤2. 当a <0时,B ={x |3a <x <a },要满足题意, 则⎩⎪⎨⎪⎧ 3a ≤2,a ≥4,无解. 综上,a 的取值范围为⎣⎡⎦⎤43,2.(2)要满足A ∩B =∅,当a >0时,B ={x |a <x <3a },则a ≥4或3a ≤2,即0<a ≤23或a ≥4. 当a <0时,B ={x |3a <x <a },则a ≤2或a ≥43,即a <0. 当a =0时,B =∅,A ∩B =∅.综上,a 的取值范围为⎝⎛⎦⎤-∞,23∪[4,+∞).。
课时达标检测(四十六) 曲线与方程[小题常考题点——准解快解]1.方程(2x +3y -1)(x -3-1)=0表示的曲线是( ) A .两条直线 B .两条射线C .两条线段D .一条直线和一条射线解析:选D 原方程可化为⎩⎪⎨⎪⎧2x +3y -1=0,x -3≥0,或x -3-1=0,即2x +3y -1=0(x ≥3)或x =4,故原方程表示的曲线是一条直线和一条射线.2.已知A (-1,0),B (1,0)两点,过动点M 作x 轴的垂线,垂足为N ,若MN ―→2=λAN ―→·NB ―→,当λ<0时,动点M 的轨迹为( )A .圆B .椭圆C .双曲线D .抛物线解析:选C 设M (x ,y ),则N (x,0),所以MN ―→2=y 2,λAN ―→·NB ―→=λ(x +1,0)·(1-x,0)=λ(1-x 2),所以y 2=λ(1-x 2),即λx 2+y 2=λ,变形为x 2+y 2λ=1.又因为λ<0,所以动点M 的轨迹为双曲线.3.平面直角坐标系中,已知两点A (3,1),B (-1,3),若点C 满足OC ―→=λ1OA ―→+λ2OB ―→(O 为原点),其中λ1,λ2∈R ,且λ1+λ2=1,则点C 的轨迹是( )A .直线B .椭圆C .圆D .双曲线解析:选A 设C (x ,y ),则OC ―→=(x ,y ),OA ―→=(3,1),OB ―→=(-1,3).∵OC ―→=λ1OA ―→+λ2OB ―→,∴⎩⎪⎨⎪⎧x =3λ1-λ2,y =λ1+3λ2,又λ1+λ2=1,∴x +2y -5=0,表示一条直线.4.(2018·洛阳模拟)设过点P (x ,y )的直线分别与x 轴的正半轴和y 轴的正半轴交于A ,B 两点,点Q 与点P 关于y 轴对称,O 为坐标原点.若BP ―→=2PA ―→,且OQ ―→·AB ―→=1,则点P 的轨迹方程是( )A.32x 2+3y 2=1(x >0,y >0) B.32x 2-3y 2=1(x >0,y >0) C .3x 2-32y 2=1(x >0,y >0)D .3x 2+32y 2=1(x >0,y >0)解析:选A 设A (a,0),B (0,b ),a >0,b >0.由BP ―→=2PA ―→,得(x ,y -b )=2(a -x ,-y ),即a =32x >0,b=3y >0.点Q (-x ,y ),故由OQ ―→·AB ―→=1,得(-x ,y )·(-a ,b )=1,即ax +by =1.将a =32x ,b =3y 代入ax +by=1,得所求的轨迹方程为32x 2+3y 2=1(x >0,y >0).5.(2018·豫北名校联考)已知△ABC 的顶点B (0,0),C (5,0),AB 边上的中线长|CD |=3,则顶点A 的轨迹方程为________________.解析:设A (x ,y ),由题意可知D ⎝⎛⎭⎫x 2,y 2.又∵|CD |=3,∴⎝⎛⎭⎫x 2-52+⎝⎛⎭⎫y22=9,即(x -10)2+y 2=36,由于A ,B ,C 三点不共线,∴点A 不能落在x 轴上,即y ≠0,∴点A 的轨迹方程为(x -10)2+y 2=36(y ≠0).答案:(x -10)2+y 2=36(y ≠0)6.设F 1,F 2为椭圆x 24+y 23=1的左、右焦点,A 为椭圆上任意一点,过焦点F 1向∠F 1AF 2的外角平分线作垂线,垂足为D ,则点D 的轨迹方程是________________.解析:由题意,延长F 1D ,F 2A 并交于点B ,易证R t △ABD ≌R t △AF 1D ,则|F 1D |=而可知|DO |=12|F 2B ||BD |,|F 1A |=|AB |,又O 为F 1F 2的中点,连接OD ,则OD ∥F 2B ,从=12(|AF 1|+|AF 2|)=2,设点D 的坐标为(x ,y ),则x 2+y 2=4. 答案:x 2+y 2=4[大题常考题点——稳解全解]1.已知长为1+2的线段AB 的两个端点A ,B 分别在x 轴、y 轴上滑动,P 是AB 上一点,且AP ―→=22PB ―→,求点P 的轨迹C 的方程.解:设A (x 0,0),B (0,y 0),P (x ,y ),则AP ―→=(x -x 0,y ), PB ―→=(-x ,y 0-y ),因为AP ―→=22PB ―→,所以x -x 0=-22x ,y =22(y 0-y ), 得x 0=⎝⎛⎭⎫1+22x ,y 0=(1+2)y . 因为|AB |=1+2,即x 20+y 20=(1+2)2,所以⎣⎡⎦⎤⎝⎛⎭⎫1+22x 2+[(1+2)y ]2=(1+2)2,化简得x 22+y 2=1.所以点P 的轨迹方程为x 22+y 2=1.2.设圆x 2+y 2+2x -15=0的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E .(1)证明|EA |+|EB |为定值;(2)求点E 的轨迹方程,并求它的离心率. 解:(1)证明:因为|AD |=|AC |,EB ∥AC , 所以∠EBD =∠ACD =∠ADC ,所以|EB |=|ED |, 故|EA |+|EB |=|EA |+|ED |=|AD |.又圆A 的标准方程为(x +1)2+y 2=16,从而|AD |=4, 所以|EA |+|EB |=4.(2)由圆A 方程(x +1)2+y 2=16,知A (-1,0).又B (1,0), 因此|AB |=2,则|EA |+|EB |=4>|AB |.由椭圆定义,知点E 的轨迹是以A ,B 为焦点,长轴长为4的椭圆(不含与x 轴的交点), 所以a =2,c =1,则b 2=a 2-c 3=3. 所以点E 的轨迹方程为x 24+y 23=1(y ≠0).故曲线方程的离心率e =c a =12.D ,点M 满足DM ―→=123.如图,P 是圆x 2+y 2=4上的动点,P 点在x 轴上的射影是点DP ―→.(1)求动点M 的轨迹C 的方程,并说明轨迹是什么图形; (2)过点N (3,0)的直线l 与动点M 的轨迹C 交于不同的两点A ,B ,求以OA ,OB 为邻边的平行四边形OAEB 的顶点E 的轨迹方程.解:(1)设M (x ,y ),则D (x,0),由DM ―→=12DP ―→知P (x,2y ),∵点P 在圆x 2+y 2=4上,∴x 2+4y 2=4,故动点M 的轨迹C 的方程为x 24+y 2=1,轨迹C 为椭圆.(2)设E (x ,y ),由题意知l 的斜率存在且不为零,设l :y =k (x -3),代入x 24+y 2=1,得(1+4k 2)x 2-24k 2x +36k 2-4=0,由Δ=(-24k 2)2-4(1+4k 2)(36k 2-4)>0,得0<k 2<15,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=24k 21+4k 2,∴y 1+y 2=k (x 1-3)+k (x 2-3)=k (x 1+x 2)-6k =24k 31+4k 2-6k =-6k 1+4k 2.∵四边形OAEB 为平行四边形,∴OE ―→=OA ―→+OB ―→=(x 1+x 2,y 1+y 2)=⎝ ⎛⎭⎪⎫24k 21+4k 2,-6k 1+4k 2, 又OE ―→=(x ,y ),∴⎩⎪⎨⎪⎧x =24k 21+4k 2,y =-6k1+4k 2,消去k 得,x 2+4y 2-6x =0, ∵0<k 2<15,∴0<x <83.∴顶点E 的轨迹方程为x 2+4y 2-6x =0⎝⎛⎭⎫0<x <83. 4.(2018·河北“五个一名校联盟”模拟)已知抛物线C :y 2=4x 的焦点为F ,过F 的直线l 交C 于A ,B 两点,M 为线段AB 的中点,O 为坐标原点.AO ,BO 的延长线与直线x =-4分别交于P ,Q 两点.(1)求动点M 的轨迹方程;(2)连接OM ,求△OPQ 与△BOM 的面积比. 解:(1)设M (x ,y ),A (x 1,y 1),B (x 2,y 2), 由题知抛物线焦点F 的坐标为(1,0),当直线l 的斜率存在时,设直线l 的方程为y =k (x -1), 代入抛物线方程得k 2x 2-(2k 2+4)x +k 2=0,所以x 1+x 2=2+4k 2,所以中点M 的横坐标为x =1+2k 2,代入y =k (x -1),得y =2k ,即中点M 为⎝⎛⎭⎫1+2k 2,2k ,所以⎩⎨⎧x =1+2k 2,y =2k ,消去参数k ,得其方程为y 2=2x -2,当直线l 的斜率不存在时,线段AB 的中点为焦点F (1,0),满足此式, 故动点M 的轨迹方程为y 2=2x -2.(2)设AB :ky =x -1,代入y 2=4x ,得y 2-4ky -4=0, 设A (x 1,y 1),B (x 2,y 2), ∴y 1+y 2=4k ,y 1·y 2=-4,易得P ⎝⎛⎭⎫-4,-16y 1,Q ⎝⎛⎭⎫-4,-16y 2,|PQ |=4|y 1-y 2|, ∴S △OPQ =8|y 1-y 2|,又∵S △OMB =12S △OAB =12·12·|OF |·|y 2-y 1|=14|y 1-y 2|,故△OPQ 与△BOM 的面积比为32.5.已知圆C 1的圆心在坐标原点O ,且恰好与直线l 1:x -y -22=0相切. (1)求圆C 1的标准方程;(2)设点A 为圆上一动点,AN ⊥x 轴于点N ,若动点Q 满足OQ ―→=m OA ―→+(1-m ) ON ―→(其中m 为非零常数),试求动点Q 的轨迹方程;(3)在(2)的结论下,当m =32时,得到动点Q 的轨迹为曲线C ,与l 1垂直的直线l 与曲线C 交于B ,D 两点,求△OBD 面积的最大值.解:(1)设圆的半径为r ,圆心到直线l 1的距离为d , 则d =|-22|12+12=2.因为r =d =2,圆心为坐标原点O , 所以圆C 1的方程为x 2+y 2=4. (2)设动点Q (x ,y ),A (x 0,y 0), ∵AN ⊥x 轴于点N ,∴N (x 0,0),由题意知,(x ,y )=m (x 0,y 0)+(1-m )·(x 0,0),解得⎩⎪⎨⎪⎧x =x 0,y =my 0,即⎩⎪⎨⎪⎧x 0=x ,y 0=1m y .将点A ⎝⎛⎭⎫x ,1m y 代入圆C 1的方程x 2+y 2=4,得动点Q 的轨迹方程为x 24+y24m 2=1. (3)当m =32时,曲线C 的方程为x 24+y 23=1,设直线l 的方程为y =-x +b ,直线l 与椭圆x 24+y 23=1交点B (x 1,y 1),D (x 2,y 2),联立方程⎩⎪⎨⎪⎧y =-x +b ,3x 2+4y 2=12,得7x 2-8bx +4b 2-12=0. 因为Δ=48(7-b 2)>0,解得b 2<7,且x 1+x 2=8b 7,x 1x 2=4b 2-127.又因为点O 到直线l 的距离d 1=|b |2, |BD |=2·(x 1+x 2)2-4x 1x 2=4677-b 2.所以S △OBD =12·|b |2·4677-b 2=237b 2(7-b 2)≤3,当且仅当b 2=7-b 2, 即b 2=72<7时取到最大值.所以△OBD 面积的最大值为 3.。