ABC复习题新分解
- 格式:doc
- 大小:427.51 KB
- 文档页数:63
初中数学因式分解知识点复习一、选择题1.下列因式分解中:①32(2)x xy x x x y ++=+;②2244(2)x x x ++=+;③22()()x y x y y x -+=+-;④329(3)x x x x -=-,正确的个数为( )A .1个B .2个C .3个D .4个 【答案】B【解析】【分析】将各项分解得到结果,即可作出判断.【详解】①322(2+1)x xy x x x y ++=+,故①错误;②2244(2)x x x ++=+,故②正确;③2222()()x y y x x y y x -+=-=+-,故③正确;④39(+3)(3)x x x x x -=-故④错误.则正确的有2个.故选:B.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.2.多项式x 2y (a -b )-xy (b -a )+y (a -b )提公因式后,另一个因式为( ) A .21x x -+B .21x x ++C .21x x --D .21x x +-【答案】B【解析】解:x 2y (a -b )-xy (b -a )+y (a -b )= y (a -b )(x 2+x +1).故选B .3.已知4821-可以被在60~70之间的两个整数整除,则这两个数是( )A .61、63B .61、65C .61、67D .63、65 【答案】D【解析】【分析】由()()()()()()24242412686421212121221121=+-=+++--,多次利用平方差公式化简,可解得.【详解】解:原式()()24242121=+-,()()()()()()()()()24121224126624122121212121212163652121=++-=+++-=⨯⨯++ ∴这两个数是63,65.选D.【点睛】本题考查的是因式分解的应用,熟练掌握平方差公式是解题的关键.4.已知a ﹣b =2,则a 2﹣b 2﹣4b 的值为( )A .2B .4C .6D .8 【答案】B【解析】【分析】原式变形后,把已知等式代入计算即可求出值.【详解】∵a ﹣b =2,∴原式=(a +b )(a ﹣b )﹣4b =2(a +b )﹣4b =2a +2b ﹣4b =2(a ﹣b )=4.故选:B .【点睛】此题考查因式分解-运用公式法,熟练掌握完全平方公式是解题的关键.5.下列等式从左边到右边的变形,属于因式分解的是( )A .2ab(a-b)=2a 2b-2ab 2B .x 2+1=x(x+1x )C .x 2-4x+3=(x-2)2-1D .a 2-b 2=(a+b)(a-b)【答案】D【解析】【分析】把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个多项式因式分解(也叫作分解因式).分解因式与整式乘法为相反变形.【详解】解:A.不是因式分解,而是整式的运算B.不是因式分解,等式左边的x 是取任意实数,而等式右边的x ≠0C.不是因式分解,原式=(x -3)(x -1)D.是因式分解.故选D.故答案为:D.【点睛】因式分解没有普遍适用的法则,初中数学教材中主要介绍了提公因式法、公式法、分组分解法、十字相乘法、配方法、待定系数法、拆项法等方法.6.下列各式分解因式正确的是( )A .2112(12)(12)22a a a -=+-B .2224(2)x y x y +=+C .2239(3)x x x -+=-D .222()x y x y -=- 【答案】A【解析】【分析】根据因式分解的定义以及平方差公式,完全平方公式的结构就可以求解.【详解】 A. 2112(12)(12)22a a a -=+-,故本选项正确; B. 2222224(2)(2)=+44x y x y x y x xy y +≠+++,,故本选项错误;C. 222239(3)(3)=69x x x x x x -+≠---+,,故本选项错误;D. ()22()x y x y x y -=-+,故本选项错误. 故选A.【点睛】此题考查提公因式法与公式法的综合运用,解题关键在于掌握平方差公式,完全平方公式.7.下列各式从左到右的变形中,属于因式分解的是( )A .m (a +b )=ma +mbB .a 2+4a ﹣21=a (a +4)﹣21C .x 2﹣1=(x +1)(x ﹣1)D .x 2+16﹣y 2=(x +y )(x ﹣y )+16【答案】C【解析】【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】A 、是整式的乘法,故A 不符合题意;B 、没把一个多项式转化成几个整式积的形式,故B 不符合题意;C 、把一个多项式转化成几个整式积的形式,故C 符合题意;D 、没把一个多项式转化成几个整式积的形式,故D 不符合题意;故选C .【点睛】本题考查了因式分解的意义,判断因式分解的标准是把一个多项式转化成几个整式积的形式.8.把代数式2x 2﹣18分解因式,结果正确的是( )A .2(x 2﹣9)B .2(x ﹣3)2C .2(x +3)(x ﹣3)D .2(x +9)(x ﹣9)【答案】C【解析】 试题分析:首先提取公因式2,进而利用平方差公式分解因式得出即可.解:2x 2﹣18=2(x 2﹣9)=2(x+3)(x ﹣3).故选C .考点:提公因式法与公式法的综合运用.9.下列分解因式,正确的是( )A .()()2x 1x 1x 1+-=+B .()()29y 3y y 3-+=+- C .()2x 2x l x x 21++=++ D .()()22x 4y x 4y x 4y -=+- 【答案】B【解析】【分析】把一个多项式化为几个最简整式的积的形式,这种变形叫做把这个多项式因式分解,也叫作分解因式.据此作答.【详解】A. 和因式分解正好相反,故不是分解因式;B. 是分解因式;C. 结果中含有和的形式,故不是分解因式;D. x 2−4y 2=(x+2y)(x−2y),解答错误.故选B.【点睛】本题考查的知识点是因式分解定义和十字相乘法分解因式,解题关键是注意:(1)因式分解的是多项式,分解的结果是积的形式.(2)因式分解一定要彻底,直到不能再分解为止.10.若△ABC 三边分别是a 、b 、c ,且满足(b ﹣c )(a 2+b 2)=bc 2﹣c 3 , 则△ABC 是( )A .等边三角形B .等腰三角形C .直角三角形D .等腰或直角三角形【答案】D【解析】试题解析:∵(b ﹣c )(a 2+b 2)=bc 2﹣c 3,∴(b ﹣c )(a 2+b 2)﹣c 2(b ﹣c )=0,∴(b ﹣c )(a 2+b 2﹣c 2)=0,∴b ﹣c=0,a 2+b 2﹣c 2=0,∴b=c或a2+b2=c2,∴△ABC是等腰三角形或直角三角形.故选D.11.下列因式分解结果正确的是( ).A.10a3+5a2=5a(2a2+a)B.4x2-9=(4x+3)(4x-3)C.a2-2a-1=(a-1)2D.x2-5x-6=(x-6)(x+1)【答案】D【解析】【分析】A可以利用提公因式法分解因式(必须分解到不能再分解为止),可对A作出判断;而B符合平方差公式的结构特点,因此可对B作出判断;C不符合完全平方公式的结构特点,因此不能分解,而D可以利用十字相乘法分解因式,综上所述,即可得出答案.【详解】A、原式=5a2(2a+1),故A不符合题意;B、原式=(2x+3)(2x-3),故B不符合题意;C、a2-2a-1不能利用完全平方公式分解因式,故C不符合题意;D、原式=(x-6)(x+1),故D符合题意;故答案为D【点睛】此题主要考查了提取公因式法以及公式法和十字相乘法分解因式,正确掌握公式法分解因式是解题关键.12.某天数学课上,老师讲了提取公因式分解因式,放学后,小华回到家拿出课堂笔记,认真复习老师课上讲的内容,他突然发现一道题:-12xy2+6x2y+3xy=-3xy•(4y-______)横线空格的地方被钢笔水弄污了,你认为横线上应填写()A.2x B.-2x C.2x-1 D.-2x-l【答案】C【解析】【分析】根据题意,提取公因式-3xy,进行因式分解即可.【详解】解:原式=-3xy×(4y-2x-1),空格中填2x-1.故选:C.【点睛】本题考查用提公因式法和公式法进行因式分解的能力.一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止,同时要注意提取公因式后各项符号的变化.13.下列各因式分解的结果正确的是( )A .()321a a a a -=-B .2()b ab b b b a ++=+C .2212(1)x x x -+=-D .22()()x y x y x y +=+-【答案】C【解析】【分析】将多项式写成整式乘积的形式即是因式分解,且分解到不能再分解为止,根据定义依次判断即可.【详解】 ()321a a a a -=-=a (a+1)(a-1),故A 错误; 2(1)b ab b b b a ++=++,故B 错误;2212(1)x x x -+=-,故C 正确;22x y +不能分解因式,故D 错误,故选:C .【点睛】此题考查因式分解的定义,熟记定义并掌握因式分解的方法及分解的要求是解题的关键.14.已知a b >,a c >,若2M a ac =-,N ab bc =-,则M 与N 的大小关系是( ) A .M N <B .M N =C .M N >D .不能确定 【答案】C【解析】【分析】计算M-N 的值,与0比较即可得答案.【详解】∵2M a ac =-,N ab bc =-,∴M-N=a(a-c)-b(a-c)=(a-b)(a-c),∵a b >,a c >,∴a-b >0,a-c >0,∴(a-b)(a-c)>0,∴M >N ,故选:C .【点睛】本题考查整式的运算,熟练掌握运算法则并灵活运用“作差法”比较两式大小是解题关键.15.将下列多项式因式分解,结果中不含有因式(a+1)的是( )A .a 2-1B .a 2+aC .a 2+a-2D .(a+2)2-2(a+2)+1【答案】C【解析】试题分析:先把四个选项中的各个多项式分解因式,即a 2﹣1=(a+1)(a ﹣1),a 2+a=a (a+1),a 2+a ﹣2=(a+2)(a ﹣1),(a+2)2﹣2(a+2)+1=(a+2﹣1)2=(a+1)2,观察结果可得四个选项中不含有因式a+1的是选项C ;故答案选C .考点:因式分解.16.已知三个实数a ,b ,c 满足a ﹣2b +c <0,a +2b +c =0,则( )A .b >0,b 2﹣ac ≤0B .b <0,b 2﹣ac ≤0C .b >0,b 2﹣ac ≥0D .b <0,b 2﹣ac ≥0【答案】C【解析】【分析】根据a ﹣2b +c <0,a +2b +c =0,可以得到b 与a 、c 的关系,从而可以判断b 的正负和b 2﹣ac 的正负情况.【详解】∵a ﹣2b +c <0,a +2b +c =0,∴a +c =﹣2b ,∴a ﹣2b +c =(a +c )﹣2b =﹣4b <0,∴b >0,∴b 2﹣ac =222222a c a ac c ac +++⎛⎫-= ⎪⎝⎭=2222042a ac c a c -+-⎛⎫= ⎪⎝⎭…, 即b >0,b 2﹣ac ≥0,故选:C .【点睛】 此题考查不等式的性质以及因式分解的应用,解题的关键是明确题意,判断出b 和b 2-ac 的正负情况.17.已知a 、b 、c 为ABC ∆的三边长,且满足222244a c b c a b -=-,则ABC ∆是( )A .直角三角形B .等腰三角形或直角三角形C .等腰三角形D .等腰直角三角形【答案】B【解析】【分析】移项并分解因式,然后解方程求出a、b、c的关系,再确定出△ABC的形状即可得解.【详解】移项得,a2c2−b2c2−a4+b4=0,c2(a2−b2)−(a2+b2)(a2−b2)=0,(a2−b2)(c2−a2−b2)=0,所以,a2−b2=0或c2−a2−b2=0,即a=b或a2+b2=c2,因此,△ABC等腰三角形或直角三角形.故选B.【点睛】本题考查了因式分解的应用,提取公因式并利用平方差公式分解因式得到a、b、c的关系式是解题的关键.18.把x2-y2-2y-1分解因式结果正确的是().A.(x+y+1)(x-y-1) B.(x+y-1)(x-y-1)C.(x+y-1)(x+y+1) D.(x-y+1)(x+y+1)【答案】A【解析】【分析】由于后三项符合完全平方公式,应考虑三一分组,然后再用平方差公式进行二次分解.【详解】解:原式=x2-(y2+2y+1),=x2-(y+1)2,=(x+y+1)(x-y-1).故选A.19.下列从左到右的变形属于因式分解的是()A.(x+1)(x-1)=x2-1 B.m2-2m-3=m(m-2)-3C.2x2+1=x(2x+1x) D.x2-5x+6=(x-2)(x-3)【答案】D 【解析】【分析】根据因式分解的定义,因式分解是把多项式写出几个整式积的形式,对各选项分析判断后利用排除法求解.【详解】解:A 、(x+1)(x-1)=x 2-1不是因式分解,是多项式的乘法,故本选项错误; B 、右边不全是整式积的形式,还有减法,故本选项错误;C 、右边不是整式积的形式,分母中含有字母,故本选项错误;D 、x 2-5x +6=(x -2)(x -3)符合因式分解的定义,故本选项正确.故选:D .【点睛】本题主要考查了因式分解的定义,因式分解与整式的乘法是互为逆运算,要注意区分.20.多项式2mx m -与多项式221x x -+的公因式是( )A .1x -B .1x +C .21x -D .()21x - 【答案】A【解析】试题分析:把多项式分别进行因式分解,多项式2mx m -=m (x+1)(x-1),多项式221x x -+=()21x -,因此可以求得它们的公因式为(x-1).故选A考点:因式分解。
第二章第一节《分解因式》复习题编者:李老师姓名:2010年2月8日一.填空、连线题1.把一个-------------------化成几个-------------------------------的形式,这种变形叫把这个多项式因式分解;ab-2b2=b(a-2b)的变形属于---------------,而(m+n)(m-n)=m2-n2的运算属于--------------------------.2.连一连①9-x2;②x2(x-1);③x3-x2;④(x-1)2;⑤x2-2x+1;⑥(-3-x)(-3+x);________________.3.(-2)2004+22003分解因式后化简为----------------------.4.分解因式a2-2a=--------------------.5.分解因式5x+10y=-------------------.6.m2-16=-------------------;ma+mb+mc=------------------------;a3-a=---------------------;x2+6x+9=------------------.7.若多项式ax2+bx+c可以被分解为(x-3)(3x+5),则a=-------,b=-------,c=--------.8.若(x+2)(x+m)=x2-4,则m=---------.二.选择题1.下列各式中,从左边到右边的变形是分解因式的是( )2.下列各式中,从左边到右边的变形是分解因式的是( )A.12a2b=3a·4abB.(x+2)(x-2)=x2-4C.4x2-8x-1=4x(x-2)-1D.2ax-2ay=2a(x-y)3.下列由左到右是分解因式并且正确的是( )4.下列由左到右是分解因式的是( )A.(x+1)(x-1)=x2-1B.(a-b)(m-n)=(b-a)(n-m)C.ab-a-b+1=(a-1)(b-1)D.m2-2m-3=m(m-2-3/m)5.分解因式后结果含有因式(2x-1)的一个多项式为( )A.4x2-1B.2x2-1C.4x2-8xD.4x2-2x+16.20032-2003不能被下列哪个数整除( )A.2003B.2002C.2001D.10017.如果多项式x2-mx-35分解因式为(x-5)(x+7),则m的值为( )A.-2B.2C.12D.-128.外圆半径为R,内圆半径为r的圆环面积表示错误的是( )A.πR2-πr2B.π(R2-r2)C.π(R-r)(R+r)D.R2-r2三.解答题9.a、b、c是△ABC的三边,满足a2+b2-8a-6b+25=0,求△ABC 最小边c的取值范围.10.分解因式a2x n+2-abx n+1+acx n-adx n-1.结果为________________________________.11.如图1示,在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把余下的部分拼成一个矩形如图1.通过计算两个阴影部分的面积,验证一个恒等式.12.利用因式分解说明:对于任意正整数n,n2-n必是偶数.13.若n为正整数,3n+2-3n能被24整除吗?14(1)若x2-8x+15分解因式后有一项为x-3,求x2-8x+15分解因式的结果.(2)若x2-5x+6分解因式后有一项为(x-2),求分解因式结果的另一项.(3)若2x2+11x-6分解因式后有一项为(2x-1),求2x2+11x-6分解因式后的结果.(4)若(mx+ny)2展开后的结果为4x2+16xy+16y2,求m和n的值.15.已知关于x的多项式3x2+mx+8分解因式后有一个因式为(3x-2).(1)求m的值;(2)将多项式分解因式.16.将下列各式配方求值:(1)已知:a2+b2+c2-2(a+b+c)+3=0,试求a3+b3+c3-3abc的值.(2)已知:3x2-18x+2y2-12y+45=0,求x+y的值.四.附加题16.已知xy-y2-3=0,且x、y为正整数,求2x-3y的值.。
北师大版数学八下第四章分解因式---解答题一.解答题1.(2018秋•西城区期末)(1)分解因式x(x﹣a)+y(a﹣x)(2)分解因式x3y﹣10x2y+25xy2.(2018秋•双阳区校级期中)因式分解:﹣24m2x﹣16n2x.3.(2018秋•如皋市期中)因式分解:(1)x2﹣10x(2)﹣8ax2+16axy﹣8ay24.(2018秋•宁阳县期中)把下列各式分解因式:(1)2a(x﹣y)﹣6b(y﹣x)(2)(a2﹣2a+1)﹣b(a﹣1)(3)2x(y﹣x)+(x+y)(x﹣y)5.(2018秋•句容市期中)如图,图①、图②分别由两个长方形拼成,其中a>b.(1)用含a、b的代数式表示它们的面积,则S①=,S②=;(2)S①与S②之间有怎样的大小关系?请你解释其中的道理;(3)请你利用上述发现的结论计算式子:20182﹣20172.6.(2018秋•松江区期中)因式分解:x4﹣16y4.7.(2018春•工业园区期末)分解因式:x4﹣2x2+1.8.(2018秋•江门期末)分解因式:﹣2a3+12a2﹣18a9.(2018秋•荔湾区期末)分解因式:(1)mn2﹣2mn+m(2)x2﹣2x+(x﹣2)10.(2018秋•安岳县期末)将下列各式分解因式:(1)﹣25ax2+10ax﹣a(2)4x2(a﹣b)+y2(b﹣a)11.(2018春•定边县期末)因式分解(1)﹣4a3b3+6a2b﹣2ab(2)(x+1)(x+2)+.12.(2018秋•海淀区期末)已知2a﹣b=﹣2,求代数式3(2ab2﹣4a+b)﹣2(3ab2﹣2a)+b的值.13.(2018秋•宽城区期末)已知a、b、c分别是△ABC的三边.(1)分别将多项式a2c2﹣b2c2,a4﹣b4进行因式分解,(2)若a2c2﹣b2c2=a4﹣b4,试判断△ABC的形状,并说明理由.14.(2018秋•思明区校级期中)定义:任意两个数a,b,按规则c=ab+a+b扩充得到一个新数c,称所得的新数c为“如意数”.(1)若a=,b=1,直接写出a,b的“如意数”c;(2)如果a=m﹣4,b=﹣m,证明“如意数”c≤0.15.(2018秋•思明区校级期中)已知a(a+1)﹣(a2+2b)=1,求a2﹣4ab+4b2﹣2a+4b的值.16.(2018秋•延边州期末)如图,边长为a,b的矩形,它的周长为14,面积为10,求下列各式的值:(1)a2b+ab2;(2)a2+b2+ab.17.(2018秋•宽城区月考)给你若干个长方形和正方形的卡片,如图所示,请你运用拼图的方法,选取相应种类和数量的卡片,拼成一个大长方形,使它的面积等于a2+3ab+2b2,并根据你拼成的图形分解因式:a2+3ab+2b2.18.(2018秋•海门市期中)如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:4=22﹣02,12=42﹣22,20=62﹣42,因此4,12,20都是“神秘数”.(1)试分析28是否为“神秘数”;(2)2019是“神秘数”吗?为什么?(3)说明两个连续偶数2k+2和2k(其中k取非负整数)构造的“神秘数”是4的倍数.(4)设两个连续奇数为2k+1和2k﹣1,两个连续奇数的平方差(k取正整数)是“神秘数”吗?为什么?19.(2018秋•延庆区期中)定义:任意两个数a,b,按规则c=﹣a+b得到一个新数c,称所得的新数c为数a,b的“机智数”.(1)若a=1,b=2,直接写出a,b的“机智数”c;(2)如果,a=m2+2m+1,b=m2+m,求a,b的“机智数”c;(3)若(2)中的c值为一个整数,则m的整数值是多少?20.(2018秋•万州区期中)如果一个整数,将其末三位截去,这个末三位数与余下的数的7倍的差能被19整除,则这个数能被19整除,否则不能被19整除,能被19整除的我们称之为“灵异数”.如46379,由379﹣7×46=57,∵57能被19整除,∴46379能被19整除,是“灵异数”.(1)请用上述规则判断52478和9115是否为“灵异数”;(2)有一个首位数字是1的五位正整数,它的个位数字不为0且是千位数字的2倍,十位和百位上的数字之和为8,若这个数恰好是“灵异数”,请求出这个数.21.(2018秋•南关区期中)如图,有若干个长方形和正方形卡片,请你选取相应种类和数量的卡片,拼成一个新长方形,使它的面积等于2a2+3ab+b2(1)则需要A类卡片张,B类卡片张,C类卡片张;(2)画出你所拼成的图形,并且请你用不同于2a2+3ab+b2的形式表示出所拼图形的面积;(3)根据你拼成的图形把多项式2a2+3ab+b2分解因式.22.(2018春•宁波期中)如果一个正整数能表示为两个不相等正整数的平方差,那么称这个正整数为“奇妙数”.例如:5=32﹣22,16=52﹣32,则5,16都是奇妙数.(1)15和40是奇妙数吗?为什么?(2)如果两个连续奇数的平方差为奇特奇妙数,问奇特奇妙数是8的倍数吗?为什么?(3)如果把所有的“奇妙数”从小到大排列后,请直接写出第12个奇妙数.23.(2018春•凤阳县期中)发现:任意五个连续整数的平方和是5的倍数.验证:(1)(﹣1)2+02+12+22+32的结果是5的几倍?(2)设五个连续整数的中间一个为n,写出它们的平方和,并说明是5的倍数.延伸:任意三个连续整数的平方和能被3整除吗?如果不能,余数是几呢?请给出结论并写出理由.24.(2018春•东明县期中)如果一个正整数能表示为两个连续偶数的平方差,那么我们称这个正整数为“和谐数”,如:4=22﹣02,12=42﹣22,20=62﹣42,因此4,12,20这三个数都是“和谐数”(1)28和2020这两个数是“和谐数”吗?为什么?(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构成的“和谐数”是4的倍数吗?为什么?25.(2018春•沙坪坝区校级月考)我们把形如:,,,的正整数叫“轴对称数”,例如:22,131,2332,40604…(1)写出一个最小的五位“轴对称数”.(2)设任意一个n(n≥3)位的“轴对称数”为,其中首位和末位数字为A,去掉首尾数字后的(n﹣2)位数表示为B,求证:该“轴对称数”与它个位数字的11倍的差能被10整除.(3)若一个三位“轴对称数”(个位数字小于或等于4)与整数k(0≤k≤5)的和能同时被5和9整除,求出所有满足条件的三位“轴对称数”.26.(2018春•巴南区期中)任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,那么称p×q是n的最佳分解,并规定:F(n)=p+q+pq.例如12可以分解成1×12、2×6或3×4,因为12﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F(12)=3+4+12=19.(1)计算:F(18),F(24)(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y是自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为27,那么我们称这个数t为“吉祥数”.求所有“吉祥数”中F(t)的最大值.27.(2018•九龙坡区校级模拟)在任意n(n>1且为整数)位正整数K的首位后添加6得到的新数叫做K的“顺数”,在K的末位前添加6得到的新数叫做K的“逆数”.若K的“顺数”与“逆数”之差能被17整除,称K是“最佳拍档数”.比如1324的“顺数”为16324,1324的“逆数”为13264,1324的“顺数”与“逆数”之差为16324﹣13264=3060,3060÷17=180,所以1324是“最佳拍档数”.(1)请根据以上方法判断31568(填“是”或“不是”)“最佳拍档数”;若一个首位是5的四位“最佳拍档数”N,其个位数字与十位数字之和为8,且百位数字不小于十位数字,求所有符合条件的N的值.(2)证明:任意三位或三位以上的正整数K的“顺数”与“逆数”之差一定能被30整除.北师大版数学八下第四章分解因式---解答题参考答案与试题解析一.解答题1.(2018秋•西城区期末)(1)分解因式x(x﹣a)+y(a﹣x)(2)分解因式x3y﹣10x2y+25xy【分析】(1)直接提取公因式(x﹣a)分解因式即可.(2)先提取公因式xy,然后利用完全平方公式进一步进行因式分解.【解答】(1)解:x(x﹣a)+y(a﹣x)=x(x﹣a)﹣y(x﹣a)=(x﹣a)(x﹣y);(2)解:x3y﹣10x2y+25xy=xy(x2﹣10x+25)=xy(x﹣5)2.2.(2018秋•双阳区校级期中)因式分解:﹣24m2x﹣16n2x.【分析】直接找出公因式﹣8x,进而提取公因式得出答案.【解答】解:原式=﹣8x(3m2+2n2).3.(2018秋•如皋市期中)因式分解:(1)x2﹣10x(2)﹣8ax2+16axy﹣8ay2【分析】(1)直接提取公因式x,进而分解因式即可;(2)直接提取公因式﹣8a,进而利用完全平方公式分解因式即可.【解答】解:(1)x2﹣10x=x(x﹣10);(2)﹣8ax2+16axy﹣8ay2=﹣8a(x2﹣2xy+y2)=﹣8a(x﹣y)2.4.(2018秋•宁阳县期中)把下列各式分解因式:(1)2a(x﹣y)﹣6b(y﹣x)(2)(a2﹣2a+1)﹣b(a﹣1)(3)2x(y﹣x)+(x+y)(x﹣y)【分析】根据分解因式的方法﹣提公因式法分解因式即可.【解答】解:(1)2a(x﹣y)﹣6b(y﹣x)=2(x﹣y)(a+3b);(2)(a2﹣2a+1)﹣b(a﹣1)=(a﹣1)(a﹣b﹣1);(3)2x(y﹣x)+(x+y)(x﹣y)=(y﹣x)(2x﹣x﹣y)=﹣(x﹣y)2.5.(2018秋•句容市期中)如图,图①、图②分别由两个长方形拼成,其中a>b.(1)用含a、b的代数式表示它们的面积,则S①=a2﹣b2,S②=(a+b)(a﹣b);(2)S①与S②之间有怎样的大小关系?请你解释其中的道理;(3)请你利用上述发现的结论计算式子:20182﹣20172.【分析】(1)根据长方形和正方形的面积公式列代数式即可;(2)根据(1)得出的结果即可直接得出答案;(3)根据(2)的公式进行计算即可.【解答】解:(1)图①的面积是a2﹣b2;图②的面积是(a+b)(a﹣b);故答案为:a2﹣b2;(a+b)(a﹣b),(2)根据(1)可得:(a+b)(a﹣b)=a2﹣b2;相同的两个长方形拼成的两个图形的面积相等,即都等于这两个长方形面积的和;(3)20182﹣20172=(2018+2017)(2018﹣2017)=4035×1=4035.6.(2018秋•松江区期中)因式分解:x4﹣16y4.【分析】直接利用平方差公式分解因式得出答案.【解答】解:x4﹣16y4=(x2+4y2)(x2﹣4y2)=(x2+4y2)(x+2y)(x﹣2y).7.(2018春•工业园区期末)分解因式:x4﹣2x2+1.【分析】直接利用完全平方公式以及平方差公式分解因式得出答案.【解答】解:x4﹣2x2+1=(x2﹣1)2=(x+1)2(x﹣1)2.8.(2018秋•江门期末)分解因式:﹣2a3+12a2﹣18a【分析】先提取公因式﹣2a,再根据完全平方公式进行二次分解.完全平方公式:a2±2ab+b2=(a ±b)2.【解答】解:原式=﹣2a(a2﹣6a+9)=﹣2a(a﹣3)2.9.(2018秋•荔湾区期末)分解因式:(1)mn2﹣2mn+m(2)x2﹣2x+(x﹣2)【分析】(1)原式提取公因式,再利用完全平方公式分解即可;(2)原式变形后,提取公因式即可得到结果.【解答】解:(1)原式=m(n2﹣2n+1)=m(n﹣1)2;(2)原式=x(x﹣2)+(x﹣2)=(x﹣2)(x+1).10.(2018秋•安岳县期末)将下列各式分解因式:(1)﹣25ax2+10ax﹣a(2)4x2(a﹣b)+y2(b﹣a)【分析】(1)原式提取公因式,再利用完全平方公式分解即可;(2)原式变形后,提取公因式,再利用平方差公式分解即可.【解答】解:(1)原式=﹣a(25x2﹣10x+1)=﹣a(5x﹣1)2;(2)原式=4x2(a﹣b)﹣y2(a﹣b)=(a﹣b)(2x+y)(2x﹣y).11.(2018春•定边县期末)因式分解(1)﹣4a3b3+6a2b﹣2ab(2)(x+1)(x+2)+.【分析】(1)提公因式分解因式即可;(2)先根据多项式乘法法则将式子展开,再根据完全平方公式分解因式即可.【解答】解:(1)﹣4a3b3+6a2b﹣2ab=﹣2ab(2a2b2﹣3a+1)(2)(x+1)(x+2)+=x2+3x+2+=x2+3x+=(x+)2.12.(2018秋•海淀区期末)已知2a﹣b=﹣2,求代数式3(2ab2﹣4a+b)﹣2(3ab2﹣2a)+b的值.【分析】利用去括号法则和合并同类项的方法先对所求式子进行化简,然后根据2a﹣b的值,即可求得所求式子的值,本题得以解决.【解答】解:3(2ab2﹣4a+b)﹣2(3ab2﹣2a)+b=6ab2﹣12a+3b﹣6ab2+4a+b=﹣8a+4b,∵2a﹣b=﹣2,∴原式=﹣8a+4b=﹣4(2a﹣b)=﹣4×(﹣2)=8.13.(2018秋•宽城区期末)已知a、b、c分别是△ABC的三边.(1)分别将多项式a2c2﹣b2c2,a4﹣b4进行因式分解,(2)若a2c2﹣b2c2=a4﹣b4,试判断△ABC的形状,并说明理由.【分析】(1)利用平方差公式分解因式;(2)利用(1)中分解的结果得到c2(a+b)(a﹣b)﹣(a﹣b)(a+b)(a2+b2)=0,再提公因式得到(a+b)(a﹣b)(c2﹣a2﹣b2)=0,于是a﹣b=0或c2﹣a2﹣b2=0,然后判断三角形的形状.【解答】解:(1)a2c2﹣b2c2=c2(a2﹣b2)=c2(a+b)(a﹣b);a4﹣b4=(a2﹣b2)(a2+b2)=(a﹣b)(a+b)(a2+b2);(2)∵a2c2﹣b2c2=a4﹣b4,∴c2(a+b)(a﹣b)=(a﹣b)(a+b)(a2+b2);∴c2(a+b)(a﹣b)﹣(a﹣b)(a+b)(a2+b2)=0;∴(a+b)(a﹣b)(c2﹣a2﹣b2)=0,∵a、b、c分别是△ABC的三边.∴a﹣b=0或c2﹣a2﹣b2=0,∴a=b或c2=a2+b2,∴△ABC为等腰三角形或直角三角形.14.(2018秋•思明区校级期中)定义:任意两个数a,b,按规则c=ab+a+b扩充得到一个新数c,称所得的新数c为“如意数”.(1)若a=,b=1,直接写出a,b的“如意数”c;(2)如果a=m﹣4,b=﹣m,证明“如意数”c≤0.【分析】(1)c=ab+a+b=++1=2+1;(2)c=ab+a+b=(m﹣4)(﹣m)+m﹣4+(﹣m)=4m﹣m2﹣4=﹣(m﹣2)2≤0.【解答】解:(1)c=ab+a+b=++1=2+1;(2)c=ab+a+b=(m﹣4)(﹣m)+m﹣4+(﹣m)=4m﹣m2﹣4,=﹣(m﹣2)2≤0,即:c≤0.15.(2018秋•思明区校级期中)已知a(a+1)﹣(a2+2b)=1,求a2﹣4ab+4b2﹣2a+4b的值.【分析】先将已知化简得:a﹣2b=1,再把所求的式子进行因式分解,最后代入计算.【解答】解:a(a+1)﹣(a2+2b)=1,a2+a﹣a2﹣2b﹣1=0,a﹣2b=1,a2﹣4ab+4b2﹣2a+4b,=(a﹣2b)2﹣2(a﹣2b),=12﹣2×1,=﹣1.16.(2018秋•延边州期末)如图,边长为a,b的矩形,它的周长为14,面积为10,求下列各式的值:(1)a2b+ab2;(2)a2+b2+ab.【分析】(1)应把所给式子进行因式分解,整理为与所给周长和面积相关的式子,代入求值即可.(2)先根据a+b=7,ab=10求出a2+b2的值,即可求出a2+b2+ab的值.【解答】解:(1)∵a+b=7,ab=10,∴a2b+ab2=ab(a+b)=70.(2)a2+b2=(a+b)2﹣2ab=72﹣2×10=29,∴a2+b2+ab=29+10=39.17.(2018秋•宽城区月考)给你若干个长方形和正方形的卡片,如图所示,请你运用拼图的方法,选取相应种类和数量的卡片,拼成一个大长方形,使它的面积等于a2+3ab+2b2,并根据你拼成的图形分解因式:a2+3ab+2b2.【分析】用6张卡片(边长为a的正方形卡片1张,边长为b的正方形卡片2张,边长为a、b的矩形卡片3张)拼成一个大长方形,可判断矩形ABCD的面积为a2+3ab+2b2,从而得到因式分解得结果.【解答】解:如图,矩形ABCD的面积为a2+3ab+2b2,a2+3ab+2b2可分解为(a+b)(a+2b).18.(2018秋•海门市期中)如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:4=22﹣02,12=42﹣22,20=62﹣42,因此4,12,20都是“神秘数”.(1)试分析28是否为“神秘数”;(2)2019是“神秘数”吗?为什么?(3)说明两个连续偶数2k+2和2k(其中k取非负整数)构造的“神秘数”是4的倍数.(4)设两个连续奇数为2k+1和2k﹣1,两个连续奇数的平方差(k取正整数)是“神秘数”吗?为什么?【分析】(1)根据“神秘数”定义可判断;(2)把2019写成平方差的形式,解方程即可判断是否是神秘数;(3)由(2k+2)2﹣(2k)2=(2k+2﹣2k)(2k+2+2k)=4(2k+1),可判断构造的“神秘数”是4的倍数;(4)设两个连续奇数为2k+1和2k﹣1,则(2k+1)2﹣(2k﹣1)2=8k=4×2k,即可判断两个连续奇数的平方差不是神秘数.【解答】解:(1)∵28=82﹣62=64﹣36∴28是“神秘数”(2)2019不是“神秘数”设2 019是由y和y﹣2两数的平方差得到的,则y2﹣(y﹣2)2=2 019,解得:y=505.75,不是偶数,∴2 019不是“神秘数”.(3)(2k+2)2﹣(2k)2=(2k+2﹣2k)(2k+2+2k)=4(2k+1),∴由2k+2和2k构造的“神秘数”是4的倍数,且是奇数倍(4)(2k+1)2﹣(2k﹣1)2=8k,是8的倍数,但不是4的倍数,根据定义得出结论,不是“神秘数”.19.(2018秋•延庆区期中)定义:任意两个数a,b,按规则c=﹣a+b得到一个新数c,称所得的新数c为数a,b的“机智数”.(1)若a=1,b=2,直接写出a,b的“机智数”c;(2)如果,a=m2+2m+1,b=m2+m,求a,b的“机智数”c;(3)若(2)中的c值为一个整数,则m的整数值是多少?【分析】(1)根据题意和a、b的值可以求得“机智数”c;(2)根据题意,可以求得a=m2+2m+1,b=m2+m时的“机智数”c;(3)根据(2)中的结论和分式有意义的条件可以求得m的值.【解答】解:(1)∵a=1,b=2,c=,∴c==,即a,b的“机智数”c是;(2)∵a=m2+2m+1,b=m2+m,c=,∴c=﹣(m2+2m+1)+(m2+m)=﹣m;(3)∵c=﹣(m2+2m+1)+(m2+m)=﹣m,c=﹣m为一个整数,∴m=1或m=﹣1(舍去),即m的整数值是1.20.(2018秋•万州区期中)如果一个整数,将其末三位截去,这个末三位数与余下的数的7倍的差能被19整除,则这个数能被19整除,否则不能被19整除,能被19整除的我们称之为“灵异数”.如46379,由379﹣7×46=57,∵57能被19整除,∴46379能被19整除,是“灵异数”.(1)请用上述规则判断52478和9115是否为“灵异数”;(2)有一个首位数字是1的五位正整数,它的个位数字不为0且是千位数字的2倍,十位和百位上的数字之和为8,若这个数恰好是“灵异数”,请求出这个数.【分析】(1)根据题意可以判断52478和9115是否能被19整除,从而判断是否为灵异数;(2)根据题意.写出相应的式子,从而可以解答本题.【解答】解:(1)∵478﹣7×52=114,114÷19=6,∴52478能被19整除,是“灵异数”;∵115﹣7×9=52,52÷19=2…14,∴9115不能被19整除,不是“灵异数”;(2)设这个五位数的千位为a,则个位为2a,十位为b,则百位为8﹣b,∵[100(8﹣b)+10b+2a]﹣7×(10×1+a)=730﹣90b﹣5a,这个数恰好是灵异数,即能被19整除,a为正整数、b为非负整数,∴730﹣90b﹣5a能被19整除,解得,,,∴这个数为:11172或12084.21.(2018秋•南关区期中)如图,有若干个长方形和正方形卡片,请你选取相应种类和数量的卡片,拼成一个新长方形,使它的面积等于2a2+3ab+b2(1)则需要A类卡片2张,B类卡片3张,C类卡片1张;(2)画出你所拼成的图形,并且请你用不同于2a2+3ab+b2的形式表示出所拼图形的面积;(3)根据你拼成的图形把多项式2a2+3ab+b2分解因式.(2)由图形可得;(3)由图形面积的两种表达形式可把多项式2a2+3ab+b2分解因式.【解答】解:(1)∵面积等于2a2+3ab+b2∴需要A类卡片2张,B类卡片3张,C类卡片1张;故答案为:2,3,1(2)如图:图形的面积=(2a+b)(a+b)(3)2a2+3ab+b2=(2a+b)(a+b)22.(2018春•宁波期中)如果一个正整数能表示为两个不相等正整数的平方差,那么称这个正整数为“奇妙数”.例如:5=32﹣22,16=52﹣32,则5,16都是奇妙数.(1)15和40是奇妙数吗?为什么?(2)如果两个连续奇数的平方差为奇特奇妙数,问奇特奇妙数是8的倍数吗?为什么?(3)如果把所有的“奇妙数”从小到大排列后,请直接写出第12个奇妙数.【分析】(1)根据题意可判断;(2)利用平方差公式可证;(3)将“奇妙数”从小到大排列后,可求第12个奇妙数.【解答】解:(1)15和40是奇妙数,理由:15=42﹣12,40=72﹣32.(2)设这两个数为2n﹣1,2n+1∵(2n+1)2﹣(2n﹣1)2=8n∴是8的倍数.(3)“奇妙数”从小到大排列为:3,5,7,8,9,11,12,13,15,16,17,19∴第12个奇妙数为1923.(2018春•凤阳县期中)发现:任意五个连续整数的平方和是5的倍数.验证:(1)(﹣1)2+02+12+22+32的结果是5的几倍?(2)设五个连续整数的中间一个为n,写出它们的平方和,并说明是5的倍数.延伸:任意三个连续整数的平方和能被3整除吗?如果不能,余数是几呢?请给出结论并写出理由.(2)通过完全平方公式可求平方和,即可证平方和是5的倍数;延伸:通过完全平方公式可求平方和,即可判断平方和是否被3整除.【解答】解:(1)∵(﹣1)2+02+12+22+32=1+0+1+4+9=15=5×3∴结果是5的3倍.(2)设五个连续整数的中间一个为n,则另四个整数为:n﹣2,n﹣1,n+1,n+2∴它们的平方和为(n﹣2)2+(n﹣1)2+n2+(n+1)2+(n+2)2∵(n﹣2)2+(n﹣1)2+n2+(n+1)2+(n+2)2=5n2+10=5(n2+2)∴它们的平方和是5的倍数延伸:不能被3整除,余数为2设中间的整数为n,∵(n﹣1)2+n2+(n+1)2=3n2+2∴不能被3整除,余数为224.(2018春•东明县期中)如果一个正整数能表示为两个连续偶数的平方差,那么我们称这个正整数为“和谐数”,如:4=22﹣02,12=42﹣22,20=62﹣42,因此4,12,20这三个数都是“和谐数”(1)28和2020这两个数是“和谐数”吗?为什么?(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构成的“和谐数”是4的倍数吗?为什么?【分析】按照新概念的定义,进行验证即可.【解答】解:(1)∵28=82﹣62,2020=5062﹣5042,∴28和2020是“和谐数”;(2)∵(2k+2)2﹣(2k)2=4(2k+1),∴两个连续偶数构成的“和谐数”是4的倍数.25.(2018春•沙坪坝区校级月考)我们把形如:,,,的正整数叫“轴对称数”,例如:22,131,2332,40604…(1)写出一个最小的五位“轴对称数”.(2)设任意一个n(n≥3)位的“轴对称数”为,其中首位和末位数字为A,去掉首尾数字后的(n﹣2)位数表示为B,求证:该“轴对称数”与它个位数字的11倍的差能被10整除.(3)若一个三位“轴对称数”(个位数字小于或等于4)与整数k(0≤k≤5)的和能同时被5和9整除,求出所有满足条件的三位“轴对称数”.【分析】(1)写出最小的五位“轴对称数”,即首位数字和个位数字为1,其它为0的数;(2)先表示这个任意的n(n≥3)位“轴对称数”:=A×10n+B×10+A,再表示“轴对称数”与它个位数字的11倍的差,合并同类项并提公因式,可得结论;(3)设这个三位“轴对称数”为(1≤a≤4,0≤b≤9),根据与k的和能同时被5和9整除,即能被45整除,设100a+10b+a+k=45c,化为90a+11a+10b+k=45c,所以11a+10b+k能同时被45整除,分情况计算可得结论.【解答】(1)解:最小的五位“轴对称数”是10001;(2)证明:由题意得:A×10n+B×10+A﹣11A=A×10n+10B﹣10A=10(A×10n﹣1+B﹣A),∴该“轴对称数”与它个位数字的11倍的差能被10整除;(3)解:设这个三位“轴对称数”为(1≤a≤4,0≤b≤9),∵与整数k(0≤k≤5)的和能同时被5和9整除,∴设100a+10b+a+k=45c,101a+10b+k=45c,90a+11a+10b+k=45c,∴因为101a+10b+k能同时被5和9整除,所以11a+10b+k能同时被5和9整除,即11a+10b+k的值为0或45或90或135,又1≤a≤4,0≤b≤9,∴当a=1,b=3,k=4时,这个三位“轴对称数”是131.当a=1,b=8,k=4时,这个三位“轴对称数”是131.当a=2,b=2,k=3时,这个三位“轴对称数”是222.当a=3,b=1,k=2时,这个三位“轴对称数”是313.当a=4,b=0,k=1时,这个三位“轴对称数”是404.当a=4,b=9,k=1时,这个三位“轴对称数”是494.所有满足条件的三位“轴对称数”为:131,222,313,404,494.26.(2018春•巴南区期中)任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,那么称p×q是n的最佳分解,并规定:F(n)=p+q+pq.例如12可以分解成1×12、2×6或3×4,因为12﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F(12)=3+4+12=19.(1)计算:F(18),F(24)(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y是自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为27,那么我们称这个数t为“吉祥数”.求所有“吉祥数”中F(t)的最大值.【分析】(1)把18因式分解为1×18,2×9,3×6,再由定义即可得F(18),把24因式分解为1×24,2×12,3×8,4×6,再由定义即可得F(24);(2)根据吉祥数的定义,求出两位数的吉祥数,再根据F(t)的概念计算即可.【解答】解:(1)∵18=1×18=2×9=3×6,其中3与6的差的绝对值最小;∴F(18)=3+6+18=27;∵24=1×24=2×12=3×8=4×6,其中4与6的差的绝对值最小,∴F(24)=4+6+24=34;(2)设t=10x+y,则新的两位是10y+x,∴(10y+x)﹣(10x+y)=27,即y﹣x=3,∵1≤x≤y≤9,x,y是自然数,∴t的值为14,25,36,47,58,69,∵F(14)=2+7+14=23,F(25)=5+5+25=35,F(36)=6+6+36=48,F(47)=1+47+47=95,F(58)=2+29+58=81,F(69)=3+23+69=94,∴吉祥数中F(t)的最大的值为95.27.(2018•九龙坡区校级模拟)在任意n(n>1且为整数)位正整数K的首位后添加6得到的新数叫做K的“顺数”,在K的末位前添加6得到的新数叫做K的“逆数”.若K的“顺数”与“逆数”之差能被17整除,称K是“最佳拍档数”.比如1324的“顺数”为16324,1324的“逆数”为13264,1324的“顺数”与“逆数”之差为16324﹣13264=3060,3060÷17=180,所以1324是“最佳拍档数”.(1)请根据以上方法判断31568是(填“是”或“不是”)“最佳拍档数”;若一个首位是5的四位“最佳拍档数”N,其个位数字与十位数字之和为8,且百位数字不小于十位数字,求所有符合条件的N的值.(2)证明:任意三位或三位以上的正整数K的“顺数”与“逆数”之差一定能被30整除.【分析】(1)根据定义表示31568的“顺数”与“逆数”,计算它们的差能否被17整除,可判断31568是“最佳拍档数”;根据定义设这个首位是5的四位“最佳拍档数”N,并表示出来,计算的它的“顺数”与“逆数”之差,根据“最佳拍档数”的定义,分情况讨论可得结论;(2)先证明三位的正整数K的“顺数”与“逆数”之差一定能被30整除,再证明四位的正整数K的“顺数”与“逆数”之差一定能被30整除,同理可得结论.【解答】(1)解:31568的“顺数”为361568,31568的“逆数”为315668,31568的“顺数”与“逆数”之差为361568﹣315668=45900,45900÷17=2700,所以31568是“最佳拍档数”;设“最佳拍档数”N的十位数字为x,百位数字为y,则个位数字为8﹣x,y≥x,N=5000+100y+10x+8﹣x=100y+9x+5008,∵N是四位“最佳拍档数”,∴50000+6000+100y+10x+8﹣x﹣[50000+1000y+100x+60+8﹣x],=6000+100y+9x+8﹣1000y﹣100x﹣68+x,=5940﹣90x﹣900y,=90(66﹣x﹣10y),∴66﹣x﹣10y能被17整除,①x=2,y=3时,66﹣x﹣10y=34,能被17整除,此时N为5326;②x=3,y=8时,66﹣x﹣10y=﹣17,能被17整除,此时N为5835;③x=5,y=1时,66﹣x﹣10y=51,能被17整除,但x>y,不符合题意;④x=6,y=6时,66﹣x﹣10y=0,能被17整除,此时N为5662;⑤x=8,y=3时,66﹣x﹣10y=28,不能被17整除,但x>y,不符合题意;⑥当x=9,y=4时,66﹣x﹣10y=17,能被17整除,但x>y,不符合题意;综上,所有符合条件的N的值为5326,5835,5662;故答案为:是;(2)证明:设三位正整数K的个位数字为x,十位数字为y,百位数字为z,它的“顺数”:1000z+600+10y+x,它的“逆数”:1000z+100y+60+x,∴(1000z+600+10y+x)﹣(1000z+100y+60+x)=540﹣90y=90(6﹣y),∴任意三位正整数K的“顺数”与“逆数”之差一定能被30整除,设四位正整数K的个位数字为x,十位数字为y,百位数字为z,千位数字为a,∴(10000a+6000+100z+10y+x)﹣(10000a+1000z+100y+60+x)=5940﹣900z﹣90y=90(66﹣10z﹣y),∴任意四位正整数K的“顺数”与“逆数”之差一定能被30整除,同理得:任意三位或三位以上的正整数K的“顺数”与“逆数”之差一定能被30整除.。
第一章因式分解复习题根底训练练习一、填空题:1、在〔x+y〕〔x—y〕=x2—y2中,从左向右的变形是。
从右向左的变形是。
2、分解因式2xy—xz= 。
3、m+n=5,mn= —14,那么m2n+mn2= 。
4. 分解因式:4x2—12xy+9 y2=5、分解因式:—5ab2+10a2b—15ab= 。
6、长方形的面积为4m2—25n2,其中一边长为2m—5n,那么另一条边长为。
7、x2— +9y2=〔x—〕2。
二、选择题:1.、以下从左到右的变形中,不属于因式分解的是〔〕:A、x5+x4=x4〔x+1〕;B、—2a2+4ab= —2a〔a—2b〕;C、mx+my+xy=m〔x+y〕+xy;D、a2—b2=〔a+b〕〔a—b〕;2.以下分解因式正确的选项是〔〕:A、2a2—3ab+a=a〔2a—3b〕;B、—x2—2x=—x〔x—2〕;C、2πR—2πr=π〔2R—2r〕;D、5m4+25m2=5m2〔m2+5〕3、多项式—6xyz+3xy2—9x2y的公因式是〔〕:A、—3x;B、3xz;C、3yz;D、—3xy。
4、方程x2—9=0的解正确的选项是〔〕:A、x=0或者x=9;B、x=3或者x=—3;C、x只能为3;D、x只能为—3;5、以下各因式分解中,错误的选项是〔 〕:A 、1—9x 2=〔1+3x 〕〔1—3x 〕;B 、a 2—a+14 =〔a —12 〕2;C 、—mx+my= —m 〔x —y 〕;D 、x 2+2xy+y 2=〔x+2y 〕2。
6、以下代数式中,是完全平方式的有〔 〕:①2x 2—2x+1; ②x 2—xy+14 y 2;③4x 4+4x 2+1;④9x 2+16y 2—12xy ;A 、①②;B 、②③;C 、③④;D 、①④; 7、假设4x 2+kx+25是完全平方式,那么k 等于〔 〕: A 、±10; B 、20; C 、—20; D 、±20; 8、9x 2+4y 2=〔3x+2y 〕2+M ,那么M=〔 〕:A 、6xy ;B 、—6xy ;C 、12xy ;D 、—12xy ;9.以下各式不能用平方差公式分解因式的是〔 〕:A 、—x 2—y 2;B 、—36+25x 2;C 、116 —x 2;D 、149 a 4—b 2;三.解答题1.分解因式:3x 2y —9x 3y 22.分解因式:x 2—2x —33. 分解因式:ax 2+2ax —8a 4. 分解因式:3x —12x 35. 分解因式:a 4—1 6. 分解因式:2xy+x 3+xy 2四.利用因式分解解方程:1. x 2—16=0; 2 (x+2) 2—121=0进步训练练习一.填空题1.在6x2y—21xy2—18x4y4中,各项的公因式是。
abc复习计划
一、英语复习部分
1. 词汇:整理常用词汇表,重点学习。
每天学习20-30个词汇。
2. 语法:重温时态、语态、动词时态变化等重要语法知识点。
利用平时学习材料练习例题。
3. 阅读:每天阅读一篇短文,重点学习标点符号用法和原文学习新词汇。
4. 听力:利用线上英语学习,每天学习一小时强化听力能力。
二、数学复习部分
1. 数学知识点复习:重点复习几何定理、公式、数理解题等。
2. 题 :查找和练习不同类型的考题,消化难点。
3. 练习能力题:每天练习2-3道数学建模题或应用题,锻炼思路和解题能力。
三、其它学科
1. 语文:阅读文章学习词汇,掌握主旨大意。
背诵词汇与常考诗词。
2. 物理:重温公式和定律,重做过往试题。
3. 化学:借助导学学习重要反应与定律。
4. 生物:学习生命科学常识。
以上就是的复习计划大纲,根据自己的科目把握好每个部分的重点,目标明确,希望能在考试中取得理想成绩!。
第九章整式乘法与因式分解(提优)一.选择题(共8小题)1.已知a2(b+c)=b2(a+c)=2021,且a、b、c互不相等,则c2(a+b)﹣2020=()A.0B.1C.2020D.2021【分析】先通过已知等式,找到a,b,c的关系再求值.【解答】解:∵a2(b+c)=b2(a+c).∴a2b+a2c﹣ab2﹣b2c=0.∴ab(a﹣b)+c(a+b)(a﹣b)=0.∴(a﹣b)(ab+ac+bc)=0.∵a≠b.∵a2(b+c)=2021.∴a(ab+ac)=2021.∴a(﹣bc)=2021.∴﹣abc=2021.∴abc=﹣2021.∴原式=c(ac+bc)﹣2020=c(﹣ab)﹣2020=﹣abc﹣2020=2021﹣2020=1.故选:B.【点评】本题考查用因式分解求代数式的值,利用题中等式得到ab+bc+ac=0是求解本题的关键.2.若x2+2mx+16是完全平方式,则(m﹣1)2+2的值是()A.11B.3C.11或27D.3或11【分析】先根据完全平方式特征求m,再求代数式的值.【解答】解:∵x2+2mx+16是完全平方式.∴m2=16.∴m=±4.当m=4时,(m﹣1)2+2=9+2=11.当m=﹣4时(m﹣1)2+2=25+2=27.故答案为:C.故选:C.【点评】本题考查求代数式的值,根据完全平方式的特征求m的值是求解本题的关键.3.下列各数中,可以写成两个连续奇数的平方差的( )A .520B .502C .250D .205【分析】根据平方差公式,利用方程求解即可.【解答】解:设较小的奇数为m ,则与之相邻的较大的奇数为m +2,这两个奇数的平方差为:(m +2)2﹣m 2=4m +4,因此这两个奇数的平方差能被4整除,而520÷4=130,502÷4=125……2,250÷4=62……2,205÷4=51……1,故选:A .【点评】本题考查平方差公式的应用,掌握平方差公式的结构特征是正确应用的前提.4.已知a =2018x +2018,b =2018x +2019,c =2018x +2020,则a 2+b 2+c 2﹣ab ﹣ac ﹣bc 的值是( )A .0B .1C .2D .3【分析】根据题目中的式子,可以求得a ﹣b 、a ﹣c 、b ﹣c 的值,然后对所求式子变形,利用完全平方公式进行解答.【解答】解:∵a =2018x +2018,b =2018x +2019,c =2018x +2020,∴a ﹣b =﹣1,a ﹣c =﹣2,b ﹣c =﹣1,∴a 2+b 2+c 2﹣ab ﹣ac ﹣bc=2a 2+2b 2+2c 2−2ab−2ac−2bc 2=(a 2−2ab+b 2)+(a 2−2ac+c 2)+(b 2−2bc+c 2)2=(a−b)2+(a−c)2+(b−c)22=(−1)2+(−2)2+(−1)22 =3,故选:D .【点评】本题考查因式分解的应用,解答本题的关键是明确题意,应用完全平方公式进行解答.5.利用因式分解简便计算69×99+32×99﹣99正确的是( )A .99×(69+32)=99×101=9999B .99×(69+32﹣1)=99×100=9900C .99×(69+32+1)=99×102=10096D .99×(69+32﹣99)=99×2=198【分析】利用提公因式分法将99提公因式进行计算即可判断.【解答】解:69×99+32×99﹣99=99(69+32﹣1)=99×100=9900.故选:B.【点评】本题考查了因式分解的应用,解决本题的关键是掌握因式分解.6.如果一个正整数可以表示为两个连续奇数的立方差,则称这个正整数为“和谐数”.如:2=13﹣(﹣1)3,26=33﹣13,2和26均为“和谐数”.那么,不超过2016的正整数中,所有的“和谐数”之和为()A.6858B.6860C.9260D.9262【分析】根据“和谐数”的概念找出公式:(2k+1)3﹣(2k﹣1)3=2(12k2+1)(其中k 为非负整数),然后再分析计算即可.【解答】解:(2k+1)3﹣(2k﹣1)3=[(2k+1)﹣(2k﹣1)][(2k+1)2+(2k+1)(2k﹣1)+(2k﹣1)2]=2(12k2+1)(其中k为非负整数),由2(12k2+1)≤2016得,k≤√1007 12∴k=0,1,2,…,8,9,即得所有不超过2016的“和谐数”,它们的和为[13﹣(﹣1)3]+(33﹣13)+(53﹣33)+…+(173﹣153)+(193﹣173)=193+1=6860.故选:B.【点评】本题是一道概念型推理题目,有一定难度,重点是理解题意,找出其中规律是解题的关键所在.7.如图,4张边长分别为a、b的长方形纸片围成一个正方形,从中可以得到的等式是()A.(a+b)(a﹣b)=a2﹣b2B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.(a+b)2﹣(a﹣b)2=4ab【分析】假设大正方形的面积S1,小正方形的面积S2,则S1﹣S2=4个长方形面积.【解答】解:设大正方形的面积S1,小正方形的面积S2,大正方形的边长为a+b,则大正方形面积S1=(a+b)2,小正方形的边长为a﹣b,则小正方形面积S2=(a﹣b)2,四个长方形的面积为4ab,∵S1﹣S2=4ab,∴(a+b)2﹣(a﹣b)2=4ab,故选:D.【点评】本题主要考查通过正方形面积的计算,列出代数式,得出两个完全平方公式相减等于4ab的正确性.难点在于小正方形边长的求解:用一个长方形的长a,减去另一个长方形的宽b,即a﹣b.8.如图,在长方形ABCD中放入一个边长为8的大正方形ALMN和两个边长为6的小正方形(正方形DEFG和正方形HIJK).3个阴影部分的面积满足2S3+S1﹣S2=2,则长方形ABCD的面积为()A.100B.96C.90D.86【分析】设长方形ABCD的长为a,宽为b,则由已知及图形可得S1,S2,S3的长、宽及面积如何表示,根据2S3+S1﹣S2=2,可整体求得ab的值,即长方形ABCD的面积.【解答】解:设长方形ABCD的长为a,宽为b,则由已知及图形可得:S1的长为:8﹣6=2,宽为:b﹣8,故S1=2(b﹣8),S2的长为:,8+6﹣a=14﹣a,宽为:6+6﹣b=12﹣b,故S2=(14﹣a)(12﹣b),S3的长为:a﹣8,宽为:b﹣6,故S3=(a﹣8)(b﹣6),∵2S3+S1﹣S2=2,∴2(a﹣8)(b﹣6)+2(b﹣8)﹣(14﹣a)(12﹣b)=2,∴2(ab﹣6a﹣8b+48)+2b﹣16﹣(168﹣14b﹣12a+ab)=2,∴ab﹣88=2,∴ab=90.故选:C.【点评】本题考查借助几何图形,考查了整式的混合运算,根据所给图形,数形结合,正确表示出相关图形的长度和面积,是解题的关键.二.填空题(共8小题)9.若25x2﹣mxy+9y2是完全平方式,则m的值为±30.【分析】完全平方公式:(a±b)2=a2±2ab+b2.把所求式化成该形式就能求出m的值.【解答】解:由25x2﹣mxy+9y2=(5x±3y)2,解得m=±30.【点评】本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.此题解题的关键是利用平方项求乘积项.10.若(x2﹣x+m)(x﹣8)中不含x的一次项,则m的值为﹣8.【分析】首先利用多项式乘法法则计算出(x2﹣x+m)(x﹣8),再根据积不含x的一次项,可得含x的一次项的系数等于零,即可求出m的值.【解答】解:(x2﹣x+m)(x﹣8)=x3﹣8x2﹣x2+8x+mx﹣8m=x3﹣9x2+(8+m)x﹣8m,∵不含x的一次项,∴8+m=0,解得:m=﹣8.故答案为﹣8.【点评】本题主要考查多项式乘以多项式的法则,注意不含某一项就是说含此项的系数等于0.11.若m2=n+2021,n2=m+2021(m≠n),那么代数式m3﹣2mn+n3的值﹣2021.【分析】将两式m2=n+2021,n2=m+2021相减得出m+n=﹣1,将m2=n+2021两边乘以m,n2=m+2021两边乘以n再相加便可得出.【解答】解:将两式m2=n+2021,n2=m+2021相减,得m2﹣n2=n﹣m,(m+n)(m﹣n)=n﹣m,(因为m≠n,所以m﹣n≠0),m+n=﹣1,解法一:将m2=n+2021两边乘以m,得m³=mn+2021m①,将n2=m+2021两边乘以n,得n³=mn+2021n②,由①+②得:m³+n³=2mn+2021(m+n),m³+n³﹣2mn=2021(m+n),m³+n³﹣2mn=2021×(﹣1)=﹣2021.故答案为﹣2021.解法二:∵m 2=n +2021,n 2=m +2021(m ≠n ),∴m 2﹣n =2021,n 2﹣m =2021(m ≠n ),∴m 3﹣2mn +n 3=m 3﹣mn ﹣mn +n 3=m (m 2﹣n )+n (n 2﹣m )=2021m +2021n=2021(m +n )=﹣2021,故答案为﹣2021.【点评】本题考查因式分解的应用,代数式m 3﹣2mn +n 3的降次处理是解题关键.12.已知:x +1x =3,则x 2+1x 2= 7 . 【分析】根据完全平方公式解答即可.【解答】解:∵x +1x =3,∴(x +1x )2=x 2+2+1x 2=9, ∴x 2+1x 2=7, 故答案为:7.【点评】本题考查了完全平方公式,熟记完全平方公式是解题的关键.13.如图,AB =5,C 为线段AB 上一点(AC <BC ),分别以AC 、BC 为边向上作正方形ACDE 和正方形BCFG ,S △BEF ﹣S △AEC =52,则S △BEC = 3 .【分析】设正方形AEDC 的边长是a ,正方形BCFG 的边长是b ,根据正方形的性质得出AE =DE =DC =AC =a ,CF =FG =BG =BC =b ,根据S △BEF ﹣S △AEC =52得出S 正方形ACDE +S 正方形BCFG +S △DFE ﹣S △ABE ﹣S △BGF ﹣S △AEC =52,求出b ﹣a =1,再根据a +b =AB =5求出a 、b 的值,再根据三角形的面积公式求出答案即可.【解答】解:设正方形AEDC 的边长是a ,正方形BCFG 的边长是b ,则AE =DE =DC =AC =a ,CF =FG =BG =BC =b ,∵S △BEF =S 正方形ACDE +S 正方形BCFG +S △DFE ﹣S △ABE ﹣S △BGF ,∵S △BEF ﹣S △AEC =52,∴S 正方形ACDE +S 正方形BCFG +S △DFE ﹣S △ABE ﹣S △BGF ﹣S △AEC =52,∴12a 2+12b 2+12(b ﹣a )a −12×5×a −12b 2=52, 即52b −52a =52, ∴b ﹣a =1,∵AC +BC =AB =5,∴a +b =5,解得:a =2,b =3,即BC =3,AE =2,∴S △BEC =12×BC ×AE =12×3×2=3,故答案为:3.【点评】本题考查了整式的混合运算,正方形的性质,三角形的面积等知识点,能正确根据整式的运算法则进行计算是解此题的关键.14.如图是A 型卡片(边长为a 的正方形)、B 型卡片(长为a 、宽为b 的长方形)、C 型卡片(边长为b 的正方形).现有4张A 卡片,11张B 卡片,7张C 卡片,选用它们无缝隙、无重叠地拼正方形或长方形,下列说法正确的是 ①③④ .(只填序号)①可拼成边长为a +2b 的正方形;②可拼成边长为2a +3b 的正方形;③可拼成长、宽分别为2a +4b 、2a +b 的长方形;④用所有卡片可拼成一个大长方形.【分析】①②③利用完全平方公式和多项式乘多项式法则求出要拼成的图形的面积,各项系数即为各型号卡片的个数.④所有卡片面积和为4a 2+11ab +7b 2,将此多项式因式分解即可.【解答】①(a +2b )2=a 2+4ab +4b 2,要用A 型卡片1张,B 型卡片4张,C 型卡片4张, 所以可拼成边长为a +2b 的正方形.②(2a +3b )2=4a 2+12ab +9b 2,要用A 型卡片4张,B 型卡片12张,C 型卡片9张, 因为B 型卡片只有11张,C 型卡片只有7张,所以不能拼成边长为2a+3b的正方形.③(2a+4b)(2a+b)=4a2+2ab+8ab+4b2=4a2+10ab+4b2,可得A型卡片4张,B型卡片10张,C型卡片4张,所以可拼成长、宽分别为2a+4b、2a+b的长方形.④所有卡片面积和为4a2+11ab+7b2=(4a+7b)(a+b).所以所有卡片可拼长长为(4a+7b),宽为(a+b)的长方形.故答案为:①③④.【点评】本题主要考查了整式乘法、分解因式与几何图形之间的联系,解题时注意利用数形结合和熟记公式是解题的关键.15.三种不同类型的地砖的长、宽如图所示,若现有A型地砖4块,B型地砖4块,C型地砖2块,要拼成一个正方形,则应去掉1块地砖;这样的地砖拼法可以得到一个关于m,n的恒等式为(2m+n)2=4m2+4mn+n2.【分析】分别计算出4块A的面积和4块B的面积、2块C的面积,再计算这三种类型的砖的总面积,用完全平方公式化简后,即可得出多了哪种类型的地砖.【解答】解:4块A的面积为:4×m×m=4m2;4块B的面积为:4×m×n=4mn;2块C的面积为2×n×n=2n2;那么这三种类型的砖的总面积应该是:4m2+4mn+2n2=4m2+4mn+n2+n2=(2m+n)2+n2,因此,多出了一块C型地砖,去掉一块C型地砖,这两个数的平方为(2m+n)2.这样的地砖拼法可以得到一个关于m,n的恒等式为:4m2+4mn+n2=(2m+n)2故答案为:4m2+4mn+n2=(2m+n)2.【点评】本题考查了完全平方公式的几何意义,立意较新颖,注意面积的不同求解是解题的关键,对此类问题要深入理解.16.已知a,b,c是△ABC的三边,b2+2ab=c2+2ac,则△ABC的形状是等腰三角形.【分析】把给出的式子重新组合,分解因式,分析得出b=c,才能说明这个三角形是等腰三角形.【解答】解:b2+2ab=c2+2ac,a2+b2+2ab=a2+c2+2ac,(a+b)2=(a+c)2,a+b=a+c,b=c,所以此三角形是等腰三角形,故答案为:等腰三角形.【点评】此题主要考查了学生对等腰三角形的判定,即两边相等的三角形为等腰三角形,分类讨论思想的应用是解题关键.三.解答题(共9小题)17.(1)(﹣3a3)2•a3+6a12÷(﹣a3);(2)(﹣0.125)2019×22020×42018.【分析】(1)根据积的乘方、同底数幂的乘除法可以解答本题;(2)先将原式变形,然后根据积的乘方可以解答本题.【解答】解:(1)(﹣3a3)2•a3+6a12÷(﹣a3)=9a6•a3+6a12÷(﹣a3)=9a9+(﹣6a9)=3a9;(2)(﹣0.125)2019×22020×42018=(−18)2019×(22018×42018×22)=(−18)2019×(22018×42018×4)=(−18)2019×82018×4=(−18×8)2018×(−18)×4=(﹣1)2018×(−18)×4=1×(−18)×4=−12.【点评】本题考查整式的混合运算、有理数的混合运算,熟练掌握运算法则是解答本题的关键.18.先化简,再求值:(2m+1)(2m﹣1)﹣(m﹣1)2+(2m)3÷(﹣8m),其中m2+m﹣2=0.【分析】先算乘方,再算乘法和除法,再合并同类项,最后代入求出即可.【解答】解:原式=4m2﹣1﹣(m2﹣2m+1)+8m3÷(﹣8m)=4m2﹣1﹣m2+2m﹣1﹣m2=2m2+2m﹣2=2(m2+m)﹣2,∵m2+m﹣2=0,∴m2+m=2,当m2+m=2时,原式=2×2﹣2=2.【点评】本题考查整式的混合运算和求值,能正确根据整式的运算法则进行化简是解此题的关键.19.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:4=22﹣02,12=42﹣22,20=62﹣42,因此4,12,20都是“神秘数”.(1)判断28,50是否为“神秘数”?如果是,请写成两个连续偶数平方差的形式;(2)观察上式,猜想“神秘数”是4的倍数吗?并说明理由.【分析】(1)结合新定义,直接可以判断28是“神秘数”,可以设50是“神秘数”,根据新定义,列出方程,无整数解,即可否定;(2)利用新定义,列出“神秘数”的表达式,因式分解,即可解决.【解答】解:(1)∵28=82﹣62,∴28是“神秘数”,设50=(2k+2)2﹣(2k)2,∴8k+4=50,∴k=23 4,∴2k不是整数,故50不是“神秘数”,即28是“神秘数”,且28=82﹣62,50不是“神秘数”;(2)“神秘数”是4的倍数,理由如下:∵(2k+2)2﹣(2k)2=8k+4=4(2k+1),∵2k+1是奇数,∴4(2k+1)是4的倍数,故“神秘数”是4的倍数.【点评】本题考查了因式分解的应用,理解新定义的原理是解决本题的关键.20.观察下列各式:(x﹣1)÷(x﹣1)=1;(x2﹣1)÷(x﹣1)=x+1;(x3﹣1)÷(x﹣1)=x2+x+1;(x4﹣1)÷(x﹣1)=x3+x2+x+1.根据上面各式的规律可得(x n+1﹣1)÷(x﹣1)=x n+x n﹣1+…+x+1;利用规律完成下列问题:(1)52021+52020+52019+…+51+1=52022−14;(2)求(﹣3)20+(﹣3)19+(﹣3)18+…+(﹣3)的值.【分析】根据各式规律即可确定出所求;(1)仿照题目中规律,将x=5,n=2021代入后再等式变形即可;(2)将x=﹣3,n=20代入题目中发现的规律,再等式变形计算即可求出答案.【解答】解:由题意得:x n+1﹣1;(1)将x=5,n=2021代入得:(52022﹣1)÷(5﹣1)=52021+52020+52019+…+51+1,∴52021+52020+52019+…+51+1=52022−15−1=52022−14.(2)将x=﹣3,n=20代入得:[(﹣3)21﹣1]÷(﹣3﹣1)=(﹣3)20+(﹣3)19+(﹣3)18+…+(﹣3)+1,∴(﹣3)20+(﹣3)19+(﹣3)18+…+(﹣3)=(−3)21−1−3−1=321+14−1=321−34.【点评】本题主要考查了探索规律,体现了由一般到特殊的应用,解题的关键是探索出规律,根据规律答题.21.阅读下列文字,我们知道对于一个图形,通过不同的方法计算图形的面积,可以得到一个数学等式,例如由图1可以得到(a+2b)(a+b)=a2+3ab+2b2.请解答下列问题:(1)写出图2中所表示的数学等式(a+b+c)2=a2+b2+c2+2ab+2ac+2bc;(2)利用(1)中所得到的结论,解决下面的问题:已知a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值;(3)图3中给出了若干个边长为a和边长为b的小正方形纸片.若干个长为a和宽为b 的长方形纸片,利用所给的纸片拼出一个几何图形,使得计算它的面积能得到数学公式:2a2+5ab+2b2=(2a+b)(a+2b).【分析】(1)根据数据表示出矩形的长与宽,再根据矩形的面积公式写出等式的左边,再表示出每一小部分的矩形的面积,然后根据面积相等即可写出等式.(2)根据利用(1)中所得到的结论,将a+b+c=11,ab+bc+ac=38作为整式代入即可求出.(3)找规律,根据公式画出图形,拼成一个长方形,使它满足所给的条件.【解答】解:(1)根据题意,大矩形的面积为:(a+b+c)(a+b+c)=(a+b+c)2,各小矩形部分的面积之和=a2+2ab+b2+2bc+2ac+c2,∴等式为(a+b+c)2=a2+b2+c2+2ab+2ac+2bc.(2)a2+b2+c2 =(a+b+c)2﹣2ab﹣2ac﹣2bc=112﹣2×38=45.(3)如图所示【点评】本题考查了完全平方公式的几何背景,根据矩形的面积公式分整体与部分两种思路表示出面积,然后再根据同一个图形的面积相等即可解答.22.如图所示,现有边长分别为b、a的正方形、邻边长为b和a(b>a)的长方形硬纸板若干.(1)请选择适当形状和数量的硬纸板,拼出面积为2b2+3ab+a2的长方形,画出拼法的示意图;(2)从这三种硬纸板中选择一些拼出面积为8ab的不同形状的长方形,则这些长方形的周长共有4种不同情况;(3)现有①类纸板1张,②类纸板4张,则应至少取③类纸板4张才能用它们拼成一个新的正方形;(4)已知长方形②的周长为20,面积为12,求小正方形①与大正方形③的面积之和.【分析】(1)将多项式2b2+3ab+a2进行因式分解,结合边长即可画出符合题意的图形;(2)利用8ab可以分解为:a,8b;8a,b;2a,4b;4a,2b即可得出答案;(3)利用图形直接得出答案;(4)利用长方形②的周长为20,面积为12,得出a,b的关系,利用完全平方公式得出小正方形①与大正方形③的面积之和a2+b2的值.【解答】解:(1)如图所示:S=2b2+3ab+a2=(a+b)(a+2b);(2)从这三种硬纸板中选择一些拼出面积为8ab的不同形状的长方形,∵8ab可以分解为:a,8b;8a,b;2a,4b;4a,2b.∴这些长方形的周长共有4种不同情况.故答案为:4.(3)设还需要③类纸片x张才能用它们拼成一个新的正方形;则新正方形面积为:a2+4ab+xb2,且它是完全平方式.∴x=4.故答案为:4.(4)由已知得:a+b=10,ab=12,∴a2+b2=(a+b)2﹣2ab=100﹣24=76.【点评】此题考查了整式的运算和因式分解与几何图形设计,体现了数形结合思想.23.图1,是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图2的形状拼成一个正方形.(1)图2中的阴影部分的面积为(m﹣n)2;(2)观察图2,三个代数式(m+n)2,(m﹣n)2,mn之间的等量关系是(m+n)2﹣4mn=(m﹣n)2;(3)若x+y=﹣6,xy=2.75,求x﹣y;(4)观察图3,你能得到怎样的代数恒等式呢?【分析】(1)表示出阴影部分的边长,即可得出其面积;(2)大正方形的面积减去矩形的面积即可得出阴影部分的面积,也可得出三个代数式(m+n)2、(m﹣n)2、mn之间的等量关系.(3)根据(2)所得出的关系式,可求出(x﹣y)2,继而可得出x﹣y的值.(4)利用两种不同的方法表示出大矩形的面积即可得出等式.【解答】解:(1)图②中的阴影部分的面积为(m﹣n)2,故答案为:(m﹣n)2;(2)(m+n)2﹣4mn=(m﹣n)2,故答案为:(m+n)2﹣4mn=(m﹣n)2;(3)(x﹣y)2=(x+y)2﹣4xy=25,则x﹣y=±5;(4)(2m+n)(m+n)=2m(m+n)+n(m+n)=2m2+3mn+n2.【点评】本题考查了完全平方公式的几何背景,属于基础题,注意仔细观察图形,表示出各图形的面积是关键.24.小刚同学动手剪了如图①所示的正方形与长方形纸片若干张.(1)他用1张1号、1张2号和2张3号卡片拼出一个新的图形(如图②).根据这个图形的面积关系写出一个你所熟悉的乘法公式,这个乘法公式是(a+b)2=a2+2ab+b2;(2)如果要拼成一个长为(a+2b),宽为(a+b)的大长方形,则需要2号卡片2张,3号卡片3张;(3)当他拼成如图③所示的长方形,根据6张小纸片的面积和等于大纸片(长方形)的面积可以把多项式a2+3ab+2b2分解因式,其结果是(a+2b)•(a+b);(4)动手操作,请你依照小刚的方法,利用拼图分解因式a2+5ab+6b2=(a+2b)(a+3b)画出拼图.【分析】(1)利用图②的面积可得出这个乘法公式是(a+b)2=a2+2ab+b2,(2)由如图③可得要拼成一个长为(a+2b),宽为(a+b)的大长方形,即可得出答案,(3)由图③可知矩形面积为(a+2b)•(a+b),利用面积得出a2+3ab+2b2=(a+2b)•(a+b),(4)先分解因式,再根据边长画图即可.【解答】解:(1)这个乘法公式是(a+b)2=a2+2ab+b2,故答案为:(a+b)2=a2+2ab+b2.(2)由如图③可得要拼成一个长为(a+2b),宽为(a+b)的大长方形,则需要2号卡片2张,3号卡片3张;故答案为:2,3.(3)由图③可知矩形面积为(a+2b)•(a+b),所以a2+3ab+2b2=(a+2b)•(a+b),故答案为:(a+2b)•(a+b).(4)a2+5ab+6b2=(a+2b)(a+3b),如图,故答案为:(a+2b)(a+3b).【点评】本题主要考查了因式分解的应用,解题的关键是能运用图形的面积计算的不同方法得到多项式的因式分解.25.阅读理解:若x满足(30﹣x)(x﹣10)=160,求(30﹣x)2+(x﹣10)2的值.解:设30﹣x=a,x﹣10=b,则(30﹣x)(x﹣10)=ab=160,a+b=(30﹣x)+(x﹣10)=20,(30﹣x)2+(x﹣10)2=a2+b2=(a+b)2﹣2ab=202﹣2×160=80解决问题:(1)若x满足(2020﹣x)(x﹣2016)=2.则(2020﹣x)2+(x﹣2016)2=12;(2)若x满足(2021﹣x)2+(x﹣2018)2=2020,求(2021﹣x)(x﹣2018)的值;(3)如图,在长方形ABCD中,AB=20,BC=12,点E.F是BC、CD上的点,且BE =DF=x,分别以FC、CE为边在长方形ABCD外侧作正方形CFGH和CEMN,若长方形CEPF的面积为160平方单位,则图中阴影部分的面积和为384平方单位.【分析】(1)根据题目提供的方法,进行计算即可;(2)根据题意可得,a2+b2=2020,a+b=(2021﹣x)+(x﹣2018)=3,将ab化成=12[(a+b)2﹣(a2+b2)]的形式,代入求值即可;(3)根据题意可得,(20﹣x)(12﹣x)=160,即(20﹣x)(x﹣12)=﹣160,根据(1)中提供的方法,求出(20﹣x)2+(12﹣x)2的结果就是阴影部分的面积.【解答】解:(1)设2020﹣x=a,x﹣2016=b,则(2020﹣x)(x﹣2016)=ab=2,a+b =(2020﹣x)+(x﹣2016)=4,所以(2020﹣x)2+(x﹣2016)2=a2+b2=(a+b)2﹣2ab=42﹣2×2=12;故答案为:12;(2)设2021﹣x=a,x﹣2018=b,则(2021﹣x)2+(x﹣2018)2=a2+b2=2020,a+b =(2021﹣x)+(x﹣2018)=3,所以(2021﹣x)(x﹣2018)=ab=12[(a+b)2﹣(a2+b2)]=12×(32﹣2020)=−20112;答:(2021﹣x)(x﹣2018)的值为−2011 2;(3)由题意得,FC=(20﹣x),EC=(12﹣x),∵长方形CEPF的面积为160,∴(20﹣x)(12﹣x)=160,∴(20﹣x)(x﹣12)=﹣160,∴阴影部分的面积为(20﹣x)2+(12﹣x)2,设20﹣x=a,x﹣12=b,则(20﹣x)(x﹣12)=ab=﹣160,a+b=(20﹣x)+(x﹣12)=8,所以(20﹣x)2+(x﹣12)2=(20﹣x)2+(12﹣x)2=a2+b2=(a+b)2﹣2ab=82﹣2×(﹣160)=384;故答案为:384.【点评】本题考查完全平方公式的应用,阅读理解题目中提供的方法,是类比、推广的前提和关键.。
《市场营销学》课程2022秋季期末考试复习资料一、复习资料的相关说明1、《市场营销学》课程的考核方式闭卷2、成绩评定总评成绩=40%阶段作业成绩(网上)+ 60%期末考试成绩3、复习资料的答案说明复习资料与参考答案在11月上旬放在网上。
二、期末考试重点复习题(占期末考试成绩60%)提示:期末考试试题及选项顺序会随机。
复习题一:(一)单项选择题:(10题)1.市场的基本活动是()。
BA. 生产活动B. 交换活动C. 销售活动D.促销活动2.许多冰箱生产厂家近年来高举“环保”、“健康”旗帜,纷纷推出无氟冰箱。
它们所奉行的市场营销管理哲学是 ( )。
DA.推销观念B.产品观念C.市场营销观念D.社会营销观念3.消费者不可能在真空中做出自己的购买决策,其购买决策在很大程度上受到社会、文化、个人和心理等因素的影响,其中相关群体属于()。
BA.组织因素B.社会文化因素C.心理因素D.个人因素4. 消费者在购买商品时,商品的品牌差异程度大,消费者参与程度高的购买行为属于()购买行为。
AA.复杂型B.和谐型C.多变型D.习惯型5.消费者从广告、售货员介绍、商品展览与陈列、商品包装、商品说明书等获得信息的来源属于()。
CA.经验来源B.公众来源C. 商业性来源D. 个人来源6.在中秋节、情人节等节日即将来临的时候,许多商家都大做广告,以促销自己的产品。
他们对市场进行细分的方法是()。
BA.地理细分B.行为细分C.心理细分D.人口细分7.消费者购买某种产品时所追求的利益,即顾客真正要买的东西,是产品整体概念中的()。
AA.核心产品B. 潜在产品C.附加产品D.形式产品8.企业在定价时,通过降低价格薄利多销来达到增加盈利的目的,采取这种策略的前提是()。
BA.需求价格弹性小于1B.需求价格弹性大于1C.需求收入弹性小于1D.需求收入弹性大于19.公共宣传的目标是( )。
CA.出售商品 B.盈利 C.树立企业良好的形象 D.占领市场10.产品组合的长度是指( )的总数。
中考数学专题复习之因式分解综合题训练1.常用的分解因式的方法有提取公因式法、公式法,但有一部分多项式只单纯用上述方法就无法分解,如x2﹣2xy+y2﹣16,我们细心观察这个式子,会发现,前三项符合完全平方公式,进行变形后可以与第四项结合,再应用平方差公式进行分解.过程如下:x2﹣2xy+y2﹣16=(x﹣y)2﹣16=(x﹣y+4)(x﹣y﹣4).这种分解因式的方法叫分组分解法.利用这种分组的思想方法解决下列问题:(1)9a2+4b2﹣25m2﹣n2+12ab+10mn;(2)已知a、b、c分别是△ABC三边的长且2a2+b2+c2﹣2a(b+c)=0,请判断△ABC 的形状,并说明理由.2.为进一步落实《中华人民共和国民办教育促进法》,某市教育局拿出了b元资金建立民办教育发展基金会,其中一部分作为奖金发给了n所民办学校.奖金分配方案如下:首先将n所民办学校按去年完成教育、教学工作业绩(假设工作业绩均不相同)从高到低,由1到n排序,第1所民办学校得奖金bn元,然后再将余额除以n发给第2所民办学校,按此方法将奖金逐一发给了n所民办学校.(1)请用n、b分别表示第2所、第3所民办学校得到的奖金;(2)设第k所民办学校所得到的奖金为a k元(1≤k≤n),试用k、n和b表示a k(不必证明);(3)比较a k和a k+1的大小(k=1,2,…,n﹣1),并解释此结果关于奖金分配原则的实际意义.3.已知一个各个数位上的数字均不为0的四位正整数M=abcd(a>c),以它的百位数字作为十位,个位数字作为个位,组成一个新的两位数s,若s等于M的千位数字与十位数字的平方差,则称这个数M为“平方差数”,将它的百位数字和千位数字组成两位数ba,个位数字和十位数字组成两位数dc,并记T(M)=ba+dc.例如:6237是“平方差数”,因为62﹣32=27,所以6237是“平方差数”;此时T(6237)=26+73=99.又如:5135不是“平方差数”,因为52﹣32=16≠15,所以5135不是“平方差数”.(1)判断7425是否是“平方差数”?并说明理由;(2)若M=abcd是“平方差数”,且T(M)比M的个位数字的9倍大30,求所有满足条件的“平方差数”M.4.整体思想是数学解题中常见的一种思想方法:下面是某同学对多项式(x2+2x)(x2+2x+2)+1进行因式分解的过程.将“x2+2x”看成一个整体,令x2+2x=y,则原式=y(y+2)+1=y2+2y+1=(y+1)2,再将“y”还原即可.解:设x2+2x=y.原式=y(y+2)+1=y2+2y+1=(y+1)2=(x2+2x+1)2.问题:(1)该同学完成因式分解了吗?如果没完成,请你直接写出最后的结果;(2)请你模仿以上方法尝试对多项式(x2﹣4x)(x2﹣4x+8)+16进行因式分解.5.如果一个四位自然数M的各个数位上的数字均不为0,且满足千位数字与十位数字的和为10,百位数字与个位数字的差为1,那么称M为“和差数”.“和差数”M的千位数字的二倍与个位数字的和记为P(M),百位数字与十位数字的和记为F(M),令G(M)=P(M)F(M),当G(M)为整数时,则称M为“整和差数”.例如:∵6342满足6+4=10,3﹣2=1,且P(6342)=14,F(6342)=7,即G(6342)=2为整数,∴6342是“整和差数”.又如∵4261满足4+6=10,2﹣1=1,但P(4261)=9,F(4261)=8,即G(4261)=98不为整数,∴4261不是“整和差数”.(1)判断7736,5352是否是“整和差数”?并说明理由.(2)若M=2000a+1000+100b+10c+d(其中1≤a≤4,2≤b≤9,1≤c≤9,1≤d≤9且a、b、c、d均为整数)是“整和差数”,求满足条件的所有M的值.6.在数的学习过程中,我们总会对其中一些具有某种特性的数充满好奇,如学习自然数时,我们发现一种特殊的自然数﹣﹣“博雅数”.定义:对于三位自然数N,各位数字都不为0,且它的百位数字的2倍与十位数字和个位数字之和恰好能被7整除,则称这个自然数N为“博雅数”.例如:415是“博雅数”,因为4,1,5都不为0,且4×2+1+5=14,14能被7整除;412不是“博雅数”,因为4×2+1+2=11,11不能被7整除.(1)判断513,427是否是“博雅数”?并说明理由;(2)求出百位数字比十位数字大6的所有“博雅数”的个数,并说明理由.7.如果一个四位自然数的百位数字大于或等于十位数字,且千位数字等于百位数字与十位数字的和,个位数字等于百位与十位数字的差,则我们称这个四位数为亲密数,例如:自然数4312,其中3>1,4=3+1,2=3﹣1,所以4312是亲密数;(1)最小的亲密数是,最大的亲密数是;(2)若把一个亲密数的千位数字与个位数字交换,得到的新数叫做这个亲密数的友谊数,请证明任意一个亲密数和它的友谊数的差都能被原亲密数的十位数字整除;(3)若一个亲密数的后三位数字所表示的数与千位数字所表示的数的7倍之差能被13整除,请求出这个亲密数.8.阅读并解决问题.对于形如x2+2ax+a2这样的二次三项式,可以用公式法将它分解成(x+a)2的形式.但对于二次三项式x2+2ax﹣3a2,就不能直接运用公式了.此时,我们可以在二次三项式x2+2ax﹣3a2中先加上一项a2,使它与x2+2ax的和成为一个完全平方式,再减去a2,整个式子的值不变,于是有:x2+2ax﹣3a2=(x2+2ax+a2)﹣a2﹣3a2=(x+a)2﹣(2a)2=(x+3a)(x﹣a).像这样,先添﹣适当项,使式中出现完全平方式,再减去这个项,使整个式子的值不变的方法称为“配方法”.(1)利用“配方法”分解因式:a2﹣6a+8.(2)若a+b=5,ab=6,求:①a2+b2;②a4+b4的值.(3)已知x是实数,试比较x2﹣4x+5与﹣x2+4x﹣4的大小,说明理由.9.(1)阅读材料:一个正整数x能写成x=a2﹣b2(a,b均为正整数,且a≠b),则称x为“雪松数“,a,b为x的一个平方差分解.例如:24=72﹣52,24为雪松数,7和5为24的一个平方差分解.①请直接写出一个30以内且是两位数的雪松数,并写出它们的一个平方差分解;②试证明10不是雪松数;(2)若a,b正整数,且ab+a+b=68,求ab的值.10.探究题:(1)问题情景:将下列各式因式分解,将结果直接写在横线上:x2+6x+9=;x2﹣4x+4=;4x2﹣20x+25=;(2)探究发现:观察以上三个多项式的系数,我们发现:62=4×1×9;(﹣4)2=4×1×4;(﹣20)2=4×4×25;归纳猜想:若多项式ax2+bx+c(a>0,c>0)是完全平方式,猜想:系数a,b,c之间存在的关系式为;(3)验证结论:请你写出一个不同于上面出现的完全平方式,并用此式验证你猜想的结论;(4)解决问题:若多项式(n+1)x2﹣(2n+6)x+(n+6)是一个完全平方式,利用你猜想的结论求出n的值.11.第十四届国际数学教育大会(ICME﹣14)会徽的主题图案有着丰富的数学元素,展现了我国古代数学的文化魅力,其右下方的“卦”是用我国古代的计数符号写出的八进制数3745.八进制是以8作为进位基数的数字系统,有0~7共8个基本数字.八进制数3745换算成十进制数是3×83+7×82+4×81+5×80=2021,表示ICME﹣14的举办年份.(1)八进制数3746换算成十进制数是;(2)小华设计了一个n进制数143,换算成十进制数是120,求n的值.12.阅读材料:,上面的方法称为多项式的配方法,运用多项式的配方法及平方差公式能对一些多项式进行因式分解.根据以上材料,解答下列问题:(1)因式分解:x2+2x﹣3;(2)求多项式x2+6x﹣10的最小值;(3)已知a、b、c是△ABC的三边长,且满足a2+b2+c2+50=6a+8b+10c,求△ABC的周长.13.把代数式通过配方等手段,得到完全平方式,再运用完全平方式的非负性来增加题目的已知条件,这种解题方法叫做配方法.配方法在代数式求值、解方程、最值问题等都有着广泛的应用.例如:①用配方法分解因式:a2+6a+8.原式=a2+6a+9﹣1=(a+3)2﹣1=(a+3+1)(a+3﹣1)=(a+4)(a+2).②利用配方法求最小值:求a2+6a+8最小值.解:a2+6a+8=a2+2a⋅3+32﹣32+8=(a+3)2﹣1.因为不论x取何值,(a+3)2总是非负数,即(a+3)2≥0.所以(a+3)2﹣1≥﹣1,所以当x=﹣3时,a2+6a+8有最小值,最小值是﹣1.根据上述材料,解答下列问题:(1)填空:x2﹣8x+=(x﹣)2;(2)将x2﹣10x+2变形为(x+m)2+n的形式,并求出x2﹣10x+2的最小值;(3)若M=6a2+19a+10,N=5a2+25a,其中a为任意实数,试比较M与N的大小,并说明理由.14.我们已经学过将一个多项式分解因式的方法有提公因式法和运用公式法,其实分解因式的方法还有分组分解法、拆项法等等.①分组分解法:例如:x 2﹣2xy +y 2﹣4=(x 2﹣2xy +y 2)﹣4=(x ﹣y )2﹣22=(x ﹣y ﹣2)(x ﹣y +2). ②拆项法:例如:x 2+2x ﹣3=x 2+2x +1﹣4=(x +1)2﹣22=(x +1﹣2)(x +1+2)=(x ﹣1)(x +3).(1)仿照以上方法,按照要求分解因式:①(分组分解法)4x 2+4x ﹣y 2+1;②(拆项法)x 2﹣6x +8;(2)已知:a 、b 、c 为△ABC 的三条边,a 2+b 2+c 2﹣4a ﹣4b ﹣6c +17=0,求△ABC 的周长.15.阅读材料:利用公式法,可以将一些形如ax 2+bx +c (a ≠0)的多项式变形为a (x +m )2+n 的形式,我们把这样的变形方法叫做多项式ax 2+bx +c (a ≠0)的配方法,运用多项式的配方法及平方差公式能对一些多项式进行因式分解.例如x 2+4x ﹣5=x 2+4x +(42)2﹣(42)2﹣5=(x +2)2﹣9=(x +2+3)(x +2﹣3)=(x +5)(x ﹣1).根据以上材料,解答下列问题.(1)分解因式:x 2+2x ﹣8;(2)求多项式x 2+4x ﹣3的最小值;(3)已知a ,b ,c 是△ABC 的三边长,且满足a 2+b 2+c 2+50=6a +8b +10c ,求△ABC 的周长.16.如果一个自然数M 能分解成A ×B ,其中A 和B 都是两位数,且A 与B 的十位数字之和为10,个位数字之和为9,则称M 为“十全九美数”,把M 分解成A ×B 的过程称为“全美分解”,例如:∵2838=43×66,4+6=10,3+6=9,∴2838是“十全九美数“;∵391=23×17,2+1≠10,∴391不是“十全九美数”.(1)判断2100和168是否是“十全九美数”?并说明理由;(2)若自然数M是“十全九美数“,“全美分解”为A×B,将A的十位数字与个位数字的差,与B的十位数字与个位数字的和求和记为S(M);将A的十位数字与个位数字的和,与B的十位数字与个位数字的差求差记为T(M).当S(M)T(M)能被5整除时,求出所有满足条件的自然数M.17.阅读下列材料:材料1:将一个形如x2+px+q的二次三项式因式分解时,如果能满足q=mn且p=m+n,则可以把x2+px+q因式分解成(x+m)(x+n)的形式,如x2+4x+3=(x+1)(x+3);x2﹣4x﹣12=(x﹣6)(x+2).材料2:因式分解:(x+y)2+2(x+y)+1.解:将“x+y”看成一个整体,令x+y=A,则原式=A2+2A+1=(A+1)2,再将“A”还原,得原式=(x+y+1)2.上述解题方法用到“整体思想”,“整体思想”是数学解题中常见的一种思想方法.请你解答下列问题:(1)根据材料1,把x2﹣6x+8分解因式;(2)结合材料1和材料2,完成下面小题:分解因式:(x﹣y)2+4(x﹣y)+3.18.如图,将一张大长方形纸板按图中虚线裁剪成9块,其中有2块是边长为a厘米的大正方形,2块是边长都为b厘米的小正方形,5块是长为a厘米,宽为b厘米的相同的小长方形,且a>b.(1)观察图形,可以发现代数式2a2+5ab+2b2可以因式分解为.(2)若图中阴影部分的面积为20平方厘米,大长方形纸板的周长为24厘米,求图中空白部分的面积.。
第十五讲专题复习因式分解类型一因式分解的应用1.已知a,b,c为△ABC的三边长,且满足a2c2﹣b2c2=a4﹣b4,判断△ABC的形状()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形提示:直角三角形中,两直角边的平方和等于斜边的平方a2+b2=c22.设a、b、c是三角形的三边长,且a2+b2+c2=ab+bc+ca,关于此三角形的形状有以下判断:①是等腰三角形;②是等边三角形;③是锐角三角形;④是斜三角形.其中正确的说法的个数是()A.4个B.3个C.2个D.1个3.已知M=62007+72009,N=62009+72007,那么M,N的大小关系是()A.M>N B.M=N C.M<N D.无法确定4.若x2﹣4x+3与x2+2x﹣3的公因式为x﹣c,则c之值为?()A.﹣3B.﹣1C.1D.35.设多项式x3﹣x﹣a与多项式x2+x﹣a有公因式,则a=.6.y﹣2x+1是4xy﹣4x2﹣y2﹣k的一个因式,则k的值是()A.0B.﹣1C.1D.4类型二恒等变形化简求值7.多项式a n﹣a3n+a n+2分解因式的结果是()A.a n(1﹣a3+a2)B.a n(﹣a2n+a2)C.a n(1﹣a2n+a2)D.a n(﹣a3+a n)8.若x3+x2+x+1=0,则x﹣27+x﹣26+…+x﹣1+1+x+…+x26+x27的值是()A.1B.0C.﹣1D.29.若m2=n+2,n2=m+2,(m≠n),则m3﹣2mn+n3的值为()A.1B.0C.﹣1D.﹣210.已知:m2+n2+mn+m﹣n=﹣1,则的值等于()A.﹣1B.0C.1D.211.已知代数式x4+6x2y+9y2+2x2+6y+4的值为7,那么代数式x4+6x2y+9y2﹣2x2﹣6y﹣1的值是()A.2B.﹣2或14C.14D.﹣212.已知2x2﹣3xy+y2=0(xy≠0),则的值是()A.2,B.2C.D.﹣2,13.若x2﹣x﹣1=0,则=()A.0B.C.D.-------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 14.已知x2﹣x﹣1=0,则﹣x3+2x2+2005的值为.15.若a4+b4=a2﹣2a2b2+b2+6,则a2+b2=.16.已知x2﹣x﹣1=0,那么代数式x3﹣2x+1的值是.17.已知a+b=3,ab=2,则代数式a3b+2a2b2+ab3的值是.18.已知多项式x2+7xy+my2﹣5x+43y﹣24可分解成x、y的两个一次因式,则实数m=.19.如果x2+3x﹣3=0,则代数式x3+2x2﹣6x+3的值为.20.已知正数a、b、c满足ab+a+b=bc+b+c=ac+a+c=3,则(a+1)(b+1)(c+1)=.21.设x为满足x2002+20022001=x2001+20022002的整数,则x=.22.如果多项式x2+px+12可以分解成两个一次因式的积,那么整数p的值可取个.23.因式分解:①x3﹣x2+②6x3﹣11x2+x+4③x2﹣2x﹣2y2+4y﹣xy ④(x2+x+1)(x2+x+2)﹣12类型三新定义中的推理证明24.①已知a2(b+c)=b2(a+c)=2015,且a,b,c互不相等,求c2(a+b)﹣2014的值②已知x、y均为实数,且满足xy+x+y=17,x2y+xy2=66,求x4+x3y+x2y2+xy3+y4的值25.已知代数式M=x2+2y2+z2﹣2xy﹣8y+2z+17.(1)若代数式M的值为零,求此时x,y,z的值;(2)若x,y,z满足不等式M+x2≤7,其中x,y,z都为非负整数,且x为偶数,直接写出x,y,z的值.26.按下面规则扩充新数:已有a和b两个数,可按规则c=ab+a+b扩充一个新数,而a,b,c三个数中任取两数,按规则又可扩充一个新数,…,每扩充一个新数叫做一次操作.现有数2和3.①求按上述规则操作三次得到扩充的最大新数;②能否通过上述规则扩充得到新数5183?并说明理由.27.如果有理数m可以表示成2x2﹣6xy+5y2(其中x、y是任意有理数)的形式,我们就称m为“世博数”.(1)两个“世博数”a、b之积也是“世博数”吗?为什么?(2)证明:两个“世博数”a、b(b≠0)之商也是“世博数”.。
安全生产考核复习题一、单选题1、工程项目实行总承包的应由(B) 单位统一组织编制“生产安全事故应急救援预案”。
A、甲方;B、总包;C、监理;D、分包;2、、电焊机一次侧电源线长度最大不得超过(A) 米。
A、5;B、10;C、15;D、20.3、施工现场的配电箱,为了防止雨水和尘沙侵入电器,配电箱导线的进出口必须设在(A)。
A、箱体下底面;B、箱体顶面;c、箱体侧面:D、箱体后面;4、在金属容器内施焊时,应采取通风措施,照明电压不得超过(A)V。
容器内施焊应采取用绝缘材料使焊工身体与焊件隔离。
A、12:B、24:C、36;D、220:5、北京市《绿色施工管理规程》规定:施工场地的强噪声设备可采取对强噪声设备进行(D)等降低噪声的措施。
A、更新:B、维修;c、遮挡;D、封闭:6、施工现场的安全防护用具、机械设备、施工机具及配件必须(A)管理,定期进行检查、维修和保养,建立相应的资料档案,并按照国家有关规定及时报废。
.A、专人;B、专项;c、专门:D、专业:7、《中华人民共和国刑法》第一百三十四条规定:在生产作业中违反有关安全管理的规定,因而发生重大伤亡事故或者造成其他严重后果的,处(C)以下的有期徒刑或者拘役。
A、1年B、2年;C、3年;D、5年8、《中华人民共和国刑法》第一百三十四条规定:强令他认违章冒险作业,因而发生重大伤亡事故,或者造成其他严重后果的,处(D)以下的有期徒刑或者拘役。
A.1年 B.2年 C.3年 D、5年9、《中华人民共和国刑法》第一百三十五条规定:安全生产设施或者安全生产条件不符合国家规定,因而发生重大伤亡事故或者造成其他严重后果的,对直接负责的主管人员和其他直接责任人员,处(C)以下有期徒刑或者拘役。
A.1年 B.2年 C.3年 D、5年10、《中华人民共和国刑法》第一百三十六条规定:违反爆炸性、易燃性、放射性、毒害性、腐蚀性物品的管理规定,在生产、储存、运输、使用中发生重大事故,造成严重后果的,处(C)以下有期徒刑或者拘役。
A.1年 B.2年 C.3年 D、5年11、《中华人民共和国刑法》第一百三十九条规定:违反消防管理法规,经消防监督机构通知采取改正措施而拒绝执行,造成严重后果的,对直接责任人员,处(C)以下有期徒刑或者拘役。
A.1年 B.2年 C.3年 D、5年12、《中华人民共和国刑法》第一百三十九条规定:在安全事故发生后,负有报告职责的人员不报或者谎报事故情况,贻误事故抢救,情节严重的,处(C)以下有期徒刑或者拘役。
A.1年 B.2年 C.3年 D、5年13、《中华人民共和国安全生产法》规定:国家实行生产安全事故责任追究制度,依照本法和有关法律、法规的规定,追究生产安全事故(B)的法律责任。
A、相关人员B、责任人员C、主要负责人D、技术管理人员14、《中华人民共和国安全生产法》规定:生产经营单位的特种作业人员必须按照国家有关规定经专门的安全作业培训,取得特种作业( B ),方可上岗作业。
A.岗位证书 B.操作资格证书C.安全生产考核证书 D、执业资格证书15、《中华人民共和国安全生产法》规定:生产经营单位应当在有较大危险因素的生产经营场所和有关设施、设备上,设置明显的( C )。
A、安全宣传标语;B、安全宣教挂图:C、安全警示标志D、安全防护设施16、《中华人民共和国安全生产法》规定:国家对严重危及生产安全的工艺、设备实行(B)制度。
A、安全管理B、淘汰C、论证D、评估17、《中华人民共和国安全生产法》规定:生产经营单位进行爆破、吊装等危险作业,应当安排(B)进行现场安全管理,确保操作规程的遵守和安全措施的落实。
A.专业施工员 B.专门人员 c.技术负责人 D.监理人员18、《中华人民共和国安全生产法》规定:两个以上生产经营单位在同一作业区域内进行生产经营活动,可能危及对方生产安全的,应当签订(A)协议,明确各自的安全生产管理职责和应当采取的安全措施。
A、安全生产管理B、安全生产计划C、安全生产技术D、安全生产分包19、《中华人民共和国安全生产法》规定:因生产安全事故受到损害的从业入员,除依法享有工伤社会保险外,依照有关民事法律尚有获得赔偿的权利,有权向(B)提出赔偿要求。
A、分包单位: 8、本单位: c、总包单位; D、施工单位;20、《中华人民共和国安全生产法》规定:个人经营的投资人未能保证安全生产所必需的资金投入,导致发生生产安全事故,构成犯罪的,依法追究刑事责任;尚不够刑事处罚的,对个人经营的投资人处2万元以上 (B) 万元以下的罚款。
A.10 B.20 C.30 D、5021、《中华人民共和国安全生产法》规定:生产经营单位的主要负责人未履行本法规定的安全生产管理职责的,责令限期改正;逾期未改正的,责令生产经营单位停产停业整顿;导致发生生产安全事故,构成犯罪的,依照刑法有关规定追究刑事责任;尚不够刑事处罚的,给予撤职处分或者处2万元以上(B)万元以下的罚款。
A.10 B.20 C.30 D、5022、《中华人民共和国安全生产法》规定:生产经营单位未按照规定设立安全生产管理机构或者配备安全生产管理人员的,责令限期改正;逾期未改正的,责令停产停业整顿,可以并处(A)以下的罚款。
A、2万元B、5万元C、10万元D、 20万元23、《中华人民共和国安全生产法》规定:建筑施工单位的主要负责人和安全生产管理人员未按照规定经考核合格的,责令限期改正;逾期未改正的,责令停产停业整顿,可以并处(A)以下的罚款。
A、2万元B、5万元C、10万元D、 20万元24、《中华人民共和国安全生产法》规定:特种作业人员未按照规定经专门的安全作业培训并取得特种作业操作资格证书,上岗作业的,责令限期改正;逾期未改正的,责令停产停业整顿,可以并处(A)以下的罚款。
A、2万元B、5万元C、10万元D、 20万元25、《中华人民共和国安全生产法》规定:生产经营单位未在有较大危险因素的生产经营场所和有关设施、设备上设置明显的安全警示标志的,责令限期改正;逾期未改正的,责令停止建设或者停产停业整顿,可以并处(B)以下的罚款;造成严重后果,构成犯罪的,依照刑法有关规定追究刑事责任。
A、2万元B、5万元C、10万元D、 20万元26、《中华人民共和国安全生产法》规定:生产经营单位安全设备的安装、使用、检测、改造和报废不符合国家标准或者行业标准的或未对安全设备进行经常性维护、保养和定期检测的,责令限期改正;逾期未改正的,责令停止建设或者停产停业整顿,可以并处(B)以下的罚款;造成严重后果,构成犯罪的,依照刑法有关规定追究刑事责任。
A、2万元B、5万元C、10万元D、 20万元27、《中华人民共和国安全生产法》规定:生产经营单位使用国家明令淘汰、禁止使用的危及生产安全的工艺、设备的,责令限期改正;逾期未改正的,责令停止建设或者停产停业整顿,可以并处(B)以下的罚款;造成严重后果,构成犯罪的,依照刑法有关规定追究刑事责任。
A、2万元B、5万元C、10万元D、 20万元28、《中华人民共和国安全生产法》规定:生产经营单位进行爆破、吊装等危险作业、未安排专门管理人员进行现场安全管理的,依据《中华人民共和国安全生产法》第八十五条规定,责令限期改正;逾期未改正的,责令停产停业整顿,可以处 (B) 的罚款。
A.1万元以上5万元以下; B.2万元以上10万元以下;C.5万元以上10万元以下 D、5万元以上20万元以下29、《中华人民共和国安全生产法》规定:生产经营单位未与承包单位、承租单位签订专门的( C )或者未在承包合同、租赁合同中明确各自的安全生产管理职责,或者未对承包单位、承租单位的安全生产统一协调、管理的,责令限期改正;逾期未改正的,责令停产停业整顿。
A、安全生产责任制度B、安全生产计划C、安全生产管理协议D、分包协议30、《中华人民共和国安全生产法》规定:两个以上生产经营单位在同一作业区域内进行可能危及对方安全生产的生产经营活动,未签订安全生产管理协议或者未指定( D )进行安全检查与协调的,责令限期改正;逾期未改正的,责令停产停业。
A、专门人员B、专业施工员C、监理人员D、专职安全生产管理人员31、《中华人民共和国安全生产法》规定:生产经营单位与从业人员订立协议,免除或者减轻其对从业人员因生产安全事故伤亡依法应承担的责任的,该协议无效;对生产经营单位的主要负责人、个人经营的投资人处(B)的罚款。
A.1万元以上5万元以下; B.2万元以上10万元以下;C.5万元以上10万元以下 D、5万元以上20万元以下32、《中华人民共和国安全生产法》规定:生产经营单位主要负责人在本单位发生重大生产安全事故时,不立即组织抢救或者在事故调查处理期间擅离职守或者逃匿的,给予降职、撤职的处分,对逃匿的处( C )拘留;构成犯罪的,依照刑法有关规定追究刑事责任。
A、7日以下B、10日以下C、15日以下D、10~15日33、生产经营单位发生生产安全事故造成人员伤亡、他人财产损失的,应当依法承担赔偿责任;拒不承担或者其负责人逃匿的,由( A )依法强制执行。
A、人民法院B、检察院C、公安机关D、行政主管部门34、《中华人民共和国建筑法》规定:建筑工程总承包单位按照总承包合同的约定对建设单位负责;分包单位按照分包合同的约定对总承包单位负责。
总承包单位和分包单位就分包工程对建设单位承担( C )责任。
A、按份B、相关C、连带D、履行35、《中华人民共和国建筑法》规定:建筑施工企业在编制施工组织设计时,应当根据建筑工程的特点制定相应的安全技术措施;对专业性较强的工程项目,应当编制( A ),并采取安全技术措施。
A.专项安全施工组织设计 B.消防安全制度C.有限空间操作规程 D、应急救援预案36、《中华人民共和国建筑法》规定:施工现场对毗邻的建筑物、构筑物和特殊作业环境可能造成损害的,建筑施工企业应当采取( B )措施。
A.安全保卫 B.安全防护 C.安全提示 D、安全警示37、《中华人民共和国建筑法》规定:建筑施工企业的管理人员违章指挥、强令职工冒险作业,因而发生重大伤亡事故或者造成其他严重后果的,依法追究(D )。
A.吊销资质证书 B.民事责任 C.行政责任 D、刑事责任38、《中华人民共和国消防法》规定:禁止在具有(A)的场所吸烟、使用明火。
A、火灾、爆炸危险;B、液体、爆炸危险:C、火灾、易燃危险;D、固体、爆炸危险:39、《中华人民共和国消防法》规定:进行电焊、气焊等具有火灾危险作业的人员和自动消防系统的操作人员,必须( C ),并遵守消防安全操作规程。
A.经过培训 B.经安全考核 C.持证上岗 D、身体健康40、《中华人民共和国消防法》规定:消防产品必须符合国家标准;没有国家标准的,必须符合(B)。