高考数学易错题解题方法大全01
- 格式:doc
- 大小:896.00 KB
- 文档页数:10
高三数学学习中的错题集锦与解题思路数学在高中阶段是一门重要的学科,也是许多学生感到困惑的科目之一。
高三阶段对于学生来说尤其重要,因为这一年是他们备战高考的关键时刻。
然而,在学习过程中,同学们免不了会遇到一些难以解答的数学问题,这就是所谓的错题。
为了帮助大家更好地理解和解决高三数学学习中的错题,本文将给出一些常见错题的集锦,并提供相应的解题思路。
1. 一次函数相关错题在解决一次函数相关的错题时,我们通常会遇到以下问题:(1)如何确定直线的斜率?答:直线的斜率可以通过计算两个点的坐标差值来求得。
设直线上两点为(x₁,y₁)和(x₂,y₂),则直线的斜率k可以表示为k=(y₂-y₁)/(x₂-x₁)。
例如,对于一条直线过点(2,3)和(6,4),我们可以计算斜率k=(4-3)/(6-2)=1/4。
(2)如何确定直线的解析式?答:通过已知直线上的一点和斜率,可以确定直线的解析式。
设直线的斜率为k,直线上一点的坐标为(x₁,y₁),则直线的解析式为y-y₁=k(x-x₁)。
(3)如何确定直线与坐标轴的交点?答:要确定直线与x轴的交点,只需令y=0,并解方程求得交点的x坐标。
同理,要确定直线与y轴的交点,只需令x=0,并解方程求得交点的y坐标。
2. 平面几何相关错题平面几何是高中数学中的重点内容之一,也是同学们容易出错的部分。
下面我们来看几个常见的平面几何错题及解题思路。
(1)如何判断两条直线是否平行?答:两条直线平行的条件是斜率相同。
若已知两条直线的解析式为y₁=k₁x₁+b₁和y₂=k₂x₂+b₂,那么只需判断k₁是否等于k₂即可,若相等则两条直线平行。
(2)如何判断两条直线是否垂直?答:两条直线垂直的条件是斜率的乘积为-1。
若已知两条直线的解析式为y₁=k₁x₁+b₁和y₂=k₂x₂+b₂,那么只需判断k₁与k₂的乘积是否为-1即可,若成立则两条直线垂直。
(3)如何判断一个点是否在直线上?答:对于已知直线的解析式为y=kx+b,若一个点(x₀,y₀)在该直线上,则满足该点的横坐标x₀代入方程后,等式成立,即y₀=kx₀+b。
高考数学易错点及重要知识点归纳高考数学是高中阶段各科中相对较难的一门科目,考试难度也相对较高,很容易让考生犯错,导致分数损失。
本文将总结高考数学易错点及重要知识点,并提供相应的解题技巧,希望考生能够避免犯错,取得好成绩。
一、易错点1.符号混淆这是数学中比较普遍的一个易错点,包括加减号、乘号、除号、左右括号等符号的混淆。
一旦出现符号混淆,就会直接导致答案错误或提高解题难度。
因此,考生在做题时要非常注意符号的正确使用。
2.大意误解有些考生在做题时,阅读理解出现失误,对题目的意思产生误解,从而造成答案错误。
所以一定要认真读题理解,分析问题。
尤其是碰到长篇阅读理解时,要先明确大意。
3.计算错误在数学中,很多题目难度相对较低,但往往因为一些简单的计算错误而导致错误答案。
这种错误需要我们在平时做题中多加注意和练习,对于那些需要计算的题目尤其重要。
4.公式错误在解决复杂问题时,我们往往会用到一些公式,不过使用公式时也有可能写错或理解不正确,导致答案错误。
因此,我们必须学会正确地运用公式。
5.转化错误在一些题目中,需要把题目中的信息转化为数学式子,但转化时有可能出现问题。
转化错误的解题方法很难想,因此,要认真仔细看题,并多加练习。
二、重要知识点1.根式根式是数学中常见的一类表达式,在高考数学中也经常出现。
根式的运算和化简需要考生细心认真对待。
2.平面几何平面几何中涉及到的知识点非常多,包括图形的基本性质、相邻角、对顶角、内角和、外角和、周长与面积等等。
考生需要熟记这些知识点,并掌握相应的解题技巧。
3.立体几何立体几何是高考数学中比较难的部分,需要考生掌握图形的三维空间形态,涉及到的知识点包括图形的表面积、体积、棱长、斜高等。
4.导数导数是高中数学中非常重要的一个概念,在高考数学中占有很大的分值和比重。
考生需要明确掌握导数的定义、运算法则等知识点,能够熟练地运用这些知识解决问题。
5.函数函数在高考数学中出现得非常频繁,考生需要掌握函数的概念、性质和运算法则,将它们应用到相应的问题中,解题思路要清晰、技巧到位。
高考数学易错点整理及解题的方法技巧高考数学考试要取得好成绩,除了扎实的基础知识,还要掌握方法和技巧。
下面是小编整理的高中数学考试怎么答和方法技巧,希望能对大家有所帮助。
1、高考答题应先易后难,先做简单的数学题,再做复杂的数学题;根据自己的实际情况,跳过实在没有思路的高考数学题,从易到难。
2、先高分后低分,在高考数学考试的后半段时要特别注重时间,如两道题都会做,先做高分题,后做低分题,对那些拿不下来的数学难题也就是高分题应“分段得分” ,以增加在时间不足前提下的得到更多的分,这样在高考中就会增加数学超常发挥的几率。
3、同学们在解题时常常会遇到这样一种情况,解到某一步之后,不能再以统一的方法、统一的式子继续进行下去,这是因为被研究的对象包含了多种情况,这就需要对各种情况加以分类,并逐类求解,然后综合归纳得解,这就是分类讨论。
引起分类讨论的原因很多,数学概念本身具有多种情形,数学运算法则、某些定理、公式的限制,图形位置的不确定性,变化等均可能引起分类讨论。
建议同学们在分类讨论解题时,要做到标准统一,不重不漏。
4、高中数学研究的对象可分为两大部分,一部分是数,一部分是形,但数与形是有联系的,这个联系称之为数形结合或形数结合。
它既是寻找问题解决切入点的“法宝” ,又是优化解题途径的“良方” ,因此建议同学们在解答数学题时,能画图的尽量画出图形,以利于正确地理解题意、快速地解决问题。
1.不能实现二次函数,一元二次方程和一元二次不等式的相互转换。
2.二次函数令 y 为0→方程→看题目要求是什么→要么方程大于小于 0,要么刁塔(那个小三角形)b 的平方-4ac 大于等于小于 0 种.种。
3.比较大小时,对指数函数,对数函数,和幂函数的性质记忆模糊导致失误。
4.忽略对数函数单调性的限制条件导致失误。
5.函数零点定理使用不当致误。
f(a)xf(b)<0,则区间 ab 上存在零点。
6.忽略幂函数的定义域而致错。
专题14二项式定理、复数易错点一:忽略了二项式中的负号而致错((a-b )n 化解问题)Ⅰ:二项式定理一般地,对于任意正整数n ,都有:011()()n n n r n r r n nnn n n a b C a C a b C a b C b n N --*+=+++++∈ ,这个公式所表示的定理叫做二项式定理,等号右边的多项式叫做n b a )(+的二项展开式.式中的r n r r nC a b -做二项展开式的通项,用1r T +表示,即通项为展开式的第1r +项:1r n r rr n T C a b -+=,其中的系数rn C (r =0,1,2,…,n )叫做二项式系数,Ⅱ:二项式()n a b +的展开式的特点:①项数:共有1n +项,比二项式的次数大1;②二项式系数:第1r +项的二项式系数为r n C ,最大二项式系数项居中;③次数:各项的次数都等于二项式的幂指数n .字母a 降幂排列,次数由n 到0;字母b 升幂排列,次数从0到n ,每一项中,a ,b 次数和均为n ;④项的系数:二项式系数依次是012r nn n n n n C C C C C ⋅⋅⋅⋅⋅⋅,,,,,,,项的系数是a 与b 的系数(包括二项式系数).Ⅲ:两个常用的二项展开式:①011()(1)(1)n n n r r n r r n n nn n n n a b C a C a b C a b C b ---=-++-⋅++-⋅ (*N n ∈)②122(1)1n r r nn n n x C x C x C x x+=++++++Ⅳ:二项展开式的通项公式二项展开式的通项:1r n r rr nT C a b -+=()0,1,2,3,,r n =⋯公式特点:①它表示二项展开式的第1r +项,该项的二项式系数是rn C ;②字母b 的次数和组合数的上标相同;③a 与b 的次数之和为n .注意:①二项式()n a b +的二项展开式的第r +1项rn rr n C ab -和()n b a +的二项展开式的第r +1项r n r r n C b a -是有区别的,应用二项式定理时,其中的a 和b 是不能随便交换位置的.②通项是针对在()n a b +这个标准形式下而言的,如()n a b -的二项展开式的通项是1(1)r r n r rr n T C a b -+=-(只需把b -看成b 代入二项式定理).易错提醒:在二项式定理()n a b -的问题要注意b 的系数为1-,在展开求解时不要忽略.例、已知5的展开式中含32x 的项的系数为30,则=a ()AB .C .6D .6-变式1:在5223x x ⎛⎫- ⎪⎝⎭的展开式中,x 的系数是.变式2:621x x ⎛⎫- ⎪⎝⎭展开式的常数项为.变式3:612x x ⎛⎫- ⎪⎝⎭的展开式中4x 的系数为.1.712x x ⎛⎫- ⎪⎝⎭的二项式展开式中x 的系数为()易错点二:三项式转化不合理导致计算麻烦失误(三项展开式的问题)求三项展开式式中某些特定项的系数的方法第一步:通过变形先把三项式转化为二项式,再用二项式定理求解第二步:两次利用二项式定理的通项公式求解第三步:由二项式定理的推证方法知,可用排列、组合的基本原理去求,即把三项式看作几个因式之积,要得到特定项看有多少种方法从这几个因式中取因式中的量易错提醒:对于三项式的展开问题,一般采取转化为二项式再展开的办法进行求解,但在转化为二项式的时候,又有不同的处理策略:一是如果三项式能够化为完全平方的形式,或者能够进行因式分解,则可通过对分解出来的两个二项展开式分别进行分析,进而解决问题(如本例中的解法二);二是不能化为完全平方的形式,也不能进行因式分解时,可直接将三项式加括号变为二项式,套用通项公式展开后对其中的二项式再利用通项展开并进行分析求解,但要结合要求解的问题进行合理的变形,以利于求解.例、()5232x x ++的展开式中,x 的一次项的系数为()A .120B .240C .320D .480变式1:在()523a b c ++的展开式中,含22a b c 的系数为.变式2:()521x y --展开式中24x y 的系数为(用数字作答).变式3:在5(2)x y z ++的展开式中,形如3(,)m n x y z m n ∈N 的所有项系数之和是.1.811x ⎫+⎪⎭的展开式中的常数项为()易错点三:混淆项的系数与二项式系数致误(系数与二项式系数问题)Ⅰ:二项式展开式中的最值问题1.二项式系数的性质①每一行两端都是1,即0n n n C C =;其余每个数都等于它“肩上”两个数的和,即11m m m n n n C C C -+=+.②对称性每一行中,与首末两端“等距离”的两个二项式系数相等,即m n mn n C C -=.③二项式系数和令1a b ==,则二项式系数的和为0122r nn n n n n n C C C C C ++++++= ,变形式1221r nn n n n n C C C C +++++=- .④奇数项的二项式系数和等于偶数项的二项式系数和在二项式定理中,令11a b ==-,,则0123(1)(11)0n nn nn n n n C C C C C -+-++-=-= ,从而得到:0242132111222r r nn n n n n n n n C C C C C C C +-++⋅⋅⋅++⋅⋅⋅=++++⋅⋅⋅=⋅= .⑤最大值:如果二项式的幂指数n 是偶数,则中间一项12nT 的二项式系数2nnC 最大;如果二项式的幂指数n 是奇数,则中间两项12n T +,112n T+的二项式系数12n nC-,12n nC+相等且最大.2.系数的最大项求()n a bx +展开式中最大的项,一般采用待定系数法.设展开式中各项系数分别为121n A A A +⋅⋅⋅,,,,设第1r +项系数最大,应有112r rr r A A A A +++≥⎧⎨≥⎩,从而解出r 来.Ⅱ:二项式展开式中系数和有关问题常用赋值举例:(1)设()011222nn n n r n r r n n n nn n n a b C a C a b C a b C a b C b ---+=++++++ ,二项式定理是一个恒等式,即对a ,b 的一切值都成立,我们可以根据具体问题的需要灵活选取a ,b 的值.①令1a b ==,可得:012n nn n nC C C =+++ ②令11a b ==,,可得:()012301nn n n n n n C C C C C =-+-+- ,即:02131n n n n n n n n C C C C C C -+++=+++ (假设n 为偶数),再结合①可得:0213112n n n n n n n n n C C C C C C --+++=+++= .(2)若121210()n n n n n n f x a x a x a x a x a ----=+++++ ,则①常数项:令0x =,得0(0)a f =.②各项系数和:令1x =,得0121(1)n n f a a a a a -=+++++ .注意:常见的赋值为令0x =,1x =或1x =-,然后通过加减运算即可得到相应的结果.易错提醒:二项式定理()n a b +的问题要注意:项的系数与二项式系数的区别与联系(求所有项的系数只要令字母值为1).例、设(n x 的展开式中,第三项的系数为36,试求含2x 的项.变式1:求5的展开式中第3项的系数和二项式系数.变式2:计算()92x y +的展开式中第5项的系数和二项式系数.变式3:求6⎛⎝的展开式中常数项的值和对应的二项式系数.1.在二项式612x ⎫⎪⎭的展开式中,二项式系数最大的是()Ⅰ:复数的概念①复数的概念:形如a +b i(a ,b ∈R )的数叫做复数,a ,b 分别是它的实部和虚部,i 叫虚数单位,满足21i =-(1)当且仅当b =0时,a +b i为实数;(2)当b ≠0时,a +b i 为虚数;(3)当a =0且b ≠0时,a +b i 为纯虚数.其中,两个实部相等,虚部互为相反数的复数互为共轭复数.②两个复数,(,,,)a bi c di a b c d R ++∈相等a c b d=⎧⇔⎨=⎩(两复数对应同一点)③复数的模:复数(,)a bi a b R +∈的模,其计算公式||||z a bi =+=Ⅱ:复数的加、减、乘、除的运算法则1、复数运算(1)()()()()i a bi c di a c b d +±+=±+±(2)()()()()a bi c di ac bd ad bc i +⋅+=-++22222()()z z ||||)2a bi a bi a b z z z z z a⎧+⋅-=⋅=+=⎪⎪=⎨⎪+=⎪⎩(注意其中||z =z 的模;z a bi =-是z a bi =+的共轭复数(,)a b R ∈.(3)2222()()()()(0)()()a bi a bi c di ac bd bc ad i c d c di c di c di c d++⋅-++-==+≠++⋅-+.实数的全部运算律(加法和乘法的交换律、结合律、分配律及整数指数幂运算法则)都适用于复数.2、复数的几何意义(1)复数(,)z a bi a b R =+∈对应平面内的点(,)z a b ;(2)复数(,)z a bi a b R =+∈对应平面向量OZ;(3)复平面内实轴上的点表示实数,除原点外虚轴上的点表示虚数,各象限内的点都表示复数.(4)复数(,)z a bi a b R =+∈的模||z 表示复平面内的点(,)z a b 到原点的距离.易错提醒:1、求一个复数的实部与虚部,只需将已知的复数化为代数形式z =a +b i(a ,b ∈R ),则该复数的实部为a ,虚部为b .2、复数是实数的条件:①z =a +b i ∈R ⇔b =0(a ,b ∈R );②z例、复数113i-的虚部是()A.110i -B.110-C.310D.310i 变式1:已知复数1i2i z -=+(i 为虚数单位),则z 的虚部为()A .35-B .3i5-C .35D .35i变式2:已知i 是虚数单位,则复数12i1i--的虚部是()A .12-B .12C .32-D .32变式3:已知复数()()2i 1i z =-+,则复数z 的虚部为,z =.1.5(2i)(12i)i-++的虚部为()易错点五:复数的几何意义应用错误(复数有关模长的求算)复数的模:复数(,)a bi a b R +∈的模,其计算公式||||z a bi =+=易错提醒:复数与复平面内的点、平面向量存在一一对应关系,两个复数差的模可以理解为两点之间的距离.例、若z C ∈,且22i 1z +-=,则22i z --的最小值为()A .2B .3C .4D .5变式1:已知复数z 满足1i z -+=,z 为z 的共轭复数,则z z ⋅的最大值为.变式2:已知i 为虚数单位,且2i 1z -=,则z 的最大值是.变式3:已知复数z 满足|2|2|2i |z z -=-,则||z 的最大值为.1.设复数z 满足|2i |z -=z 在复平面内对应的点为(,)x y ,则()。
高考数学中常见的易错知识点及解决方法高考数学是每个参加高考的学生必须面对的一门科目,而且数学成绩往往被认为是考生能否进入理想大学的重要标准之一。
多数学生都有很好的数学基础,但是在考试中却时常出现低分甚至失误现象。
这些出现的问题往往是由于一些常见的易错知识点造成的。
因此,了解高考数学中常见的易错知识点及解决方法就显得十分必要。
一、函数与解析几何中的易错知识点在高考数学中,函数与解析几何常常是被考查的知识点,而且实际上也是大部分同学最熟悉的知识点之一。
不过,还是会出现不少的错误点。
主要的易错知识点有:1、函数的零点和单调性。
许多学生考试中都容易把函数的零点或者单调性搞错。
为了正确理解和应用,必须深入理解函数的符号表、零点的概念,以及单调性所规定的条件。
2、解析几何中的直线和平面方程。
因为解析几何与平面几何关系密切,所以想要应对好这样的知识点,必须有很好地平面几何基础。
同时,对直线与平面的转化也要掌握。
在考试中,对方程的意义及构造清楚,能够活学活用,是完全掌握这一知识点的关键。
3、空间直线、平面和集合的误解。
由于学生在处理空间问题的过程中会更易犯发生错误,因此在处理时,必须首先清晰规划坐标系。
在后续处理中,必须注意直线、平面和集合的正确定义,特别是当定义体几何形状时,更需认真构思。
同时,学生应该在考前多模拟几组题目,尝试熟练掌握。
二、概率统计中的易错知识点概率统计是高中数学的最后一个知识模块,考点很多,容易出现失误。
以下为常见的易错知识点:1、概率的问题。
概率问题常常出现在高考试卷的第三部分中,包括抽样、事件、概率与数理统计这个部分。
当处理和运用概率时务必清楚和掌握概率的基础知识,了解实验的独立性和的合理性,再做题时注意分类讨论,做到心中有数。
2、估计和推断统计中的易错点。
在高考种,像正态分布、假设检验、置信区间等概念并不是完美易懂的,考生们考虑这些问题时,经常会犯错误,并且还有导致因果混乱的风险。
要在高考中获得好成绩,必须深入理解这些统计概念,活学活用,自信掌握。
高考数学易错题解题方法大全(02)一.选择题【范例1】已知一个凸多面体共有9个面,所有棱长均为1, 其平面展开图如右图所示,则该凸多面体的体积V =( )A . 216+B . 1C .62 D .221+ 答案: A 【错解分析】此题容易错选为D ,错误原因是对棱锥的体积公式记忆不牢。
【解题指导】将展开图还原为立体图,再确定上面棱锥的高。
【练习1】一个圆锥的底面圆半径为3,高为4,则这个圆锥的侧面积为( )A .152πB .10πC .15πD .20π 【范例2】设)(x f 是62)21(x x +展开式的中间项,若mx x f ≤)(在区间⎥⎦⎤⎢⎣⎡2,22上恒成立,则实数m 的取值范围是( )A .[)+∞,0B .⎪⎭⎫⎢⎣⎡+∞,45 C . ⎥⎦⎤⎢⎣⎡5,45 D .[)+∞,5答案:D【错解分析】此题容易错选为C ,错误原因是对恒成立问题理解不透。
注意区别不等式有解与恒成立:max ()()a f x a f x >⇔>恒成立; min ()()a f x a f x <⇔<恒成立;min ()()a f x a f x >⇔>有解; max ()()a f x a f x <⇔<有解【解题指导】∵333623625)21()()(x x x C x f ==-,∴mx x ≤325在区间⎥⎦⎤⎢⎣⎡2,22上恒成立,即m x ≤225在区间⎥⎦⎤⎢⎣⎡2,22上恒成立,∴5≥m . 【练习2】若1()11nx -的展开式中第三项系数等于6,则n 等于( ) A. 4 B. 8 C. 12 D. 16【范例3】一只蚂蚁在边长分别为5,12,13的三角形区域内随机爬行,则其恰在离三个顶点距离都大于1的地方的概率为( ) A.54 B. 53 C. 60π D. 3π 答案:C【错解分析】此题容易错选为A ,错误原因是没有看清蚂蚁在三角形区域内随机爬行,而不是在三边上爬。
2009年高考数学易错题解题方法(1)一.选择题【范例1】已知集合A={x|x=2n —l ,n∈Z},B={x|x 2一4x<0},则A ∩B=( ) A .}1{ B .}41{<<x x C .{}13, D .{1,2,3,4} 答案:C【错解分析】此题容易错选为B ,错误原因是对集合元素的误解。
【解题指导】集合A 表示奇数集,集合B={1,2,3,4}.【练习1】已知集合{}x y y x A sin ),(==,集合{}x y y x B tan ),(==,则=B A ( )A . {})0,0( B .{})0,0(),0,(π C .{})0,(πk D . ∅【范例2】若A 、B 均是非空集合,则A ∩B ≠φ是A ⊆B 的( ) A.充分不必要条件 B.必要不充分条件C.充要条件D.即不充分也不必要条件 答案:B【错解分析】考生常常会选择A ,错误原因是混淆了充分性,与必要性。
【解题指导】考查目的:充要条件的判定。
【练习2】已知条件p :2|1|>+x ,条件q :a x >,且p ⌝是q ⌝的充分不必要条件,则a 的取值范围可以是( )A .1≥a ;B .1≤a ;C .1-≥a ;D .3-≤a ;【范例3】定义在R 上的偶函数)(x f 满足)()1(x f x f -=+,且在[-1,0]上单调递增,设)3(f a =, )2(f b =,)2(f c =,则c b a ,,大小关系是( )A .c b a >>B .b c a >>C .a c b >>D .a b c >>答案:D【错解分析】此题常见错误A 、B ,错误原因对)()1(x f x f -=+这样的条件认识不充分,忽略了函数的周期性。
【解题指导】 由)()1(x f x f -=+可得,)(x f 是周期为2 的函数。
高考数学错题答题方法整理错题集就是把自己平常和考试时做错过的题目抄下来,不仅要把正确的答案写上去,还要把错误的答案加上,然后分析做错的原因,是知识点没掌握,还是忽略了使用的条件范围,或者因为粗心计算错误。
数学的知识点繁多而且相对独立,考试前复习时总是不知道从哪里下手才好,回想一下好像自己基本原理都懂了,但考试要用到时却总是想不起来。
而错题集,就像一张药方,既有症状描述,还有对症下的药。
对比错题集,能够很快找到自己的不够,加以巩固,避免再犯同样的错误。
跌倒一次不可怕,可怕的是在同一个地方连续跌倒两次。
错题集的升级版就是不仅有错题,还有好题。
相信阅尽题海的同学都会对一些题记忆深入。
有的必须要全面细致的分类讨论,略微合计不周就会坠入陷阱;有的看似计算量庞大得吓人,其实反向思维,将答案代入其中也不过小菜一碟(这种状况在选择题中尤为特别);有的条件众多,刁钻古怪,不知道从何下手(如最后的附加题),其实放下畏惧,步步为营,也可以得到大部分的步骤分。
收集好题可以让你摸清出题者的思路和惯用的考查手法,识破其中的陷阱和伎俩。
其实不少同学已经有把错题集合起来再做一遍的习惯,但难能可贵的是保持。
错题集不仅适用于数学,也同样适用于政治、历史等其他学科。
它为你提供了一个知识的框架,提醒你考查的重点和自己尚存的缺点。
更重要的是,每个人的错题集都是独一无二的,它是属于你自己的武林秘笈。
2学好高一数学的方法调整好状态,控制好自我(1)坚持清醒。
数学的考试时间在下午,建议同学们中午最好休息半个小时或一个小时,其间尽量放松自己,从心理上暗示自己:只有静心休息才干保证考试时清醒。
(2)按时到位。
要求答在答题卷上,但发卷时间应在开考前5-10分钟内。
建议同学们提前15-20分钟到达考场。
限时答题,先提速后改正错误很多同学做题慢的一个重要原因就是平常做作业习惯了拖延时间,导致形成了一个不太好的解题习惯。
所以,提升解题速度就要先解决"拖延症'。
【高考复习】18个高考数学易错点及解题思路,原来分都丢在这里了易错点1:遗忘空集致误错因分析:由于空集是任何非空集合的真子集,因此,对于集合B,就有B=A,φ≠B,B≠φ,三种情况,在解题中如果思维不够缜密就有可能忽视了B≠φ这种情况,导致解题结果错误。
尤其是在解含有参数的集合问题时,更要充分注意当参数在某个范围内取值时所给的集合可能是空集这种情况。
规避绝招:空集是一个特殊的集合,由于思维定式的原因,考生往往会在解题中遗忘了这个集合,导致解题错误或是解题不全面。
易错点2:忽视集合元素的三性致误错因分析:集合中的元素具有确定性、无序性、互异性,集合元素的三性中互异性对解题的影响最大,特别是带有字母参数的集合,实际上就隐含着对字母参数的一些要求。
规避绝招:在解题时可以先确定字母参数的范围后,再具体解决问题。
易错点3:四种命题的结构不明致误错因分析:如果原命题是“若A则B”,则这个命题的逆命题是“若B则A”,否命题是“若┐A则┐B”,逆否命题是“若┐B则┐A”。
这里面有两组等价的命题,即“原命题和它的逆否命题等价,否命题与逆命题等价”。
另外,在否定一个命题时,要注意全称命题的否定是特称命题,特称命题的否定是全称命题。
如对“a,b都是偶数”的否定应该是“a,b不都是偶数”,而不应该是“a,b都是奇数”。
规避绝招:在解答由一个命题写出该命题的其他形式的命题时,一定要明确四种命题的结构以及它们之间的等价关系。
易错点4:充分必要条件颠倒致误错因分析:对于两个条件A,B,如果A=>B成立,则A是B的充分条件,B是A的必要条件;如果B=>A成立,则A是B的必要条件,B是A的充分条件;如果A<=>B,则A,B 互为充分必要条件。
规避绝招:解题时最容易出错的就是颠倒了充分性与必要性,所以在解决这类问题时一定要根据充要条件的概念作出准确的判断。
易错点5:逻辑联结词理解不准致误错因分析:在判断含逻辑联结词的命题时很容易因为理解不准确而出现错误,在这里我们给出一些常用的判断方法,希望对大家有所帮助:p∨q真<=>p真或q真,p∨q假<=>p假且q假(概括为一真即真);p∧q真<=>p真且q真,p∧q假<=>p假或q假(概括为一假即假);┐p真<=>p假,┐p假<=>p真(概括为一真一假)。
高考数学易错题解题方法大全(01)一.选择题【范例1】已知集合A={x|x=2n —l ,n∈Z},B={x|x 2一4x<0},则A ∩B=( ) A .}1{ B .}41{<<x x C .{}13, D .{1,2,3,4} 答案:C【错解分析】此题容易错选为B ,错误原因是对集合元素的误解。
【解题指导】集合A 表示奇数集,集合B={1,2,3,4}.【练习1】已知集合{}x y y x A sin ),(==,集合{}x y y x B tan ),(==,则=B A ( ) A . {})0,0( B .{})0,0(),0,(π C .{})0,(πk D . ∅【范例2】若A 、B 均是非空集合,则A ∩B ≠φ是A ⊆B 的( ) A.充分不必要条件 B.必要不充分条件C.充要条件D.即不充分也不必要条件 答案:B【错解分析】考生常常会选择A ,错误原因是混淆了充分性,与必要性。
【解题指导】考查目的:充要条件的判定。
【练习2】已知条件p :2|1|>+x ,条件q :a x >,且p ⌝是q ⌝的充分不必要条件,则a 的取值范围可以是( )A .1≥a ;B .1≤a ;C .1-≥a ;D .3-≤a ;【范例3】定义在R 上的偶函数)(x f 满足)()1(x f x f -=+,且在[-1,0]上单调递增,设)3(f a =, )2(f b =,)2(f c =,则c b a ,,大小关系是( )A .c b a >>B .b c a >>C .a c b >>D .a b c >>答案:D【错解分析】此题常见错误A 、B ,错误原因对)()1(x f x f -=+这样的条件认识不充分,忽略了函数的周期性。
【解题指导】 由)()1(x f x f -=+可得,)(x f 是周期为2 的函数。
利用周期性c b a ,,转化为[-1,0]的函数值,再利用单调性比较.【练习3】设函数f (x )是定义在R上的以5为周期的奇函数,若1)2(>f ,33)2008(-+=a a f ,则a 的取值范围是( )A.(-∞, 0)B.(0, 3)C.(0, +∞)D.(-∞, 0)∪(3, +∞)xyOP 1 P 0P 2【范例4】12coslog12sinlog22ππ+的值为( )A .-4B .4C .2D .-2 答案:D【错解分析】此题常见错误A 、C ,错误原因是对两倍角公式或对对数运算性质不熟悉。
【解题指导】结合对数的运算性质及两倍角公式解决. 【练习4】式子4332loglog⋅值是( )A .-4B .4C .2D .-2【范例5】设0x 是方程x x lg 8=-的解,且0(,1)()x k k k ∈+∈Z ,则=k ( ) A .4 B .5 C .7 D .8答案:C【错解分析】本题常见错误为D ,错误原因没有考虑到函数y=8-x 与y=lgx 图像的结合。
【解题指导】考查零点的概念及学生的估算能力.【练习5】方程lg(2)1x x +=的实数根有( )个. A .0 B .1 C .2 D .3 【范例6】已知∠AOB=lrad ,点A l ,A 2,…在OA 上, B 1,B 2,…在OB 上,其中的每一个实线段和 虚线段氏均为1个单位,一个动点M 从O 点 出发,沿着实线段和以O 为圆心的圆弧匀速 运动,速度为l 单位/秒,则质点M 到达A 10 点处所需要的时间为( ) 秒。
A .62B .63C .65D .66答案:C【错解分析】本题常见错误B 、D ,这样的错误常常由于是信息图片信息把握力不强。
【解题指导】本题综合考察等差数列求和,及扇形的弧长公式。
要细读题,理解动点的运动规律。
【练习6】如图,将平面直角坐标系的格点(横、纵坐标均为整数的点)按如下规则表上数字标签:原点处标0,点(1,0)处标1,点(1,-1)处 标2,点(0,-1)处标3,点(-1,-1)处标4, 点(-1,0)标5,点(-1,1)处标6,点(0,1) 处标7,以此类推,则标签22009的格点的坐标 为( )A .(1005,1004)B .(1004.1003)C .(2009,2008)D .(2008,2007)【范例7】如图,点P 是单位圆上的一个顶点,它从初始位置0P 开∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙∙∙∙∙xy1 2 133 4 56 7 8 9101112 0始沿单位圆按逆时针方向运动角α(02πα<<)到达点1P ,然后继续沿单位圆逆时针方向运动3π到达点2P ,若点2P 的横坐标为45-,则cos α的值等于 .答案:33410-【错解分析】本题常见错误写成33410-的相反数,这样的错误常常是忽略角度所在的象限。
【解题指导】本题主要考察三角函数的定义,及对两角和与差公式的理解。
【练习7】已知==+=x x x 2cos ,cos sin cos ,cos sin sin 则αααα . 【范例8】已知向量||||abp a b =+,其中a 、b 均为非零向量,则||p 的取值范围是 . 答案:[0,2]【错解分析】本题常见错误五花八门,错误原因是没有理解向量的模的不等式的性质。
【解题指导】b ba a ,分别表示与a 、b 同向的单位向量,bb a a b b a a b b a a +≤+≤- 【练习8】△ABC 中,π2C =,1,2AC BC ==,则()2(1)f C A C B λλλ=+-的最小值是 .【范例9】若不等式R x a x x ∈≥-++对|1||2|恒成立,则实数a 的取值范围是 . 答案:]3,(-∞【错解分析】解含绝对值不等式也是考生常常出现错误的,错误原因有解法单一,比如只会运用去绝对值的方法,这样会导致计算量较多,易错。
通常简捷的方法可以是利用绝对值的几何意义。
【解题指导】由绝对值的几何意义知|1||2|-++x x 的最小值为3. 【练习9】不等式|x +1|(2x -1)≥0的解集为 . 【范例10】圆()2211y x +=-被直线0x y -=分成两段圆弧,则较短弧长与较长弧长之比为 . 答案:1∶3【错解分析】圆与直线的位置关系的错误点通常是考生找错了圆的圆心,判断不了圆的位置,在花函数图像是产生了偏差。
【解题指导】对直线与圆的位置关系通常考查两点,(1)直线与圆相切时利用d=r 建立关系式,(2)直线与圆相交时画图利用勾股定理建立关系式.【练习10】已知直线a y x =+与圆422=+y x 交于A 、B 两点,O 是坐标原点,向量OA →、OB →满足|OA →+OB →|=|OA →-OB →|,则实数a 的值是 .【范例11】一个与球心距离为1的平面截球所得的圆面面积为π,则球的表面积为__________. 答案:8π【错解分析】球体是近年高考通常所设计的集合体,通常也是考生容易 出错的一个地方,通常的错误是对球体的与题目结合时候空间想象力缺乏 导致,或者计算的时候计算不出球的半径等。
【解题指导】过球心与小圆圆心做球的截面,转化为平面几何来解决. 【练习11】如图,已知一个多面体的平面展开图由一边长为1的正方 体和4个边长为1的正三角形组成,则该多面体的体积是 .【范例12】已知过点)2,1(P 的直线l 与x 轴正半轴、y 轴正半轴分别交于A 、B 两点,则AOB ∆的面积最小为 .答案:4【错解分析】本题考查均值不等式和数形结合,也是考生容易错误的地方,例如不会利用均值不等式,或者没有看出均值不等式中隐含的“面积”。
【解题指导】设直线方程为1=+b y a x ,代点得:121=+ba .由于abba2221≥+,所以8,412≥≤ab ab即,所以421≥=∆ab S AOB【练习12】函数1)3(log -+=x y a )1,0(≠>a a 且的图象恒过定点A ,若点A 在直线02=++ny mx 上,其中0>mn ,则nm 21+的最小值为 .【范例13】已知点P (4,4),圆C :22()5(3)x m y m -+=<与椭圆E :22221(0)x y a b ab+=>>有一个公共点A (3,1),F 1、F 2分别是椭圆的左、右焦点,直线PF 1与圆C 相切. (1)求m 的值与椭圆E 的方程; (2)设Q 为椭圆E上的一个动点,求AP AQ⋅的取值范围.【错解分析】本题易错点(1)在于计算椭圆的方程的量本身就大,方法和计算技巧的运用很重要。
解:(1)点A 代入圆C 方程,得2(3)15m -+=.∵m<3,∴m=1.圆C :22(1)5x y -+=. 设直线PF 1的斜率为k ,则PF 1:(4)4y k x =-+,即440kx y k --+=.∵直线PF 1与圆C 相切,QPO yxF 1A C F 2∴2|044|51k k k --+=+.解得111,22k k ==或.当k =112时,直线PF 1与x 轴的交点横坐标为3611,不合题意,舍去.当k =12时,直线PF 1与x 轴的交点横坐标为-4,∴c=4.F 1(-4,0),F 2(4,0).2a =AF 1+AF 2=52262+=,32a =,a 2=18,b 2=2. 椭圆E 的方程为:221182xy+=. (2)(1,3)AP =,设Q (x ,y ),(3,1)A Q x y =--,(3)3(1)36AP AQ x y x y ⋅=-+-=+-.∵221182xy+=,即22(3)18x y +=而22(3)2|||3|x y x y +⋅≥,∴-18≤6xy≤18.∴222(3)(3)6186x y x y xy xy +=++=+的取值范围是[0,36], 即3x y +的取值范围是[-6,6].∴36AP AQ x y ⋅=+-的取值范围是[-12,0]. 【练习13】已知圆M P N yx M 为圆点定点),0,5(,36)5(:22=++上的动点,点Q 在NP 上,点G 在MP 上,且满足0,2=⋅=NP GQ NQ NP . (1)求点G 的轨迹C 的方程;(2)过点(2,0)作直线l ,与曲线C 交于A 、B 两点,O 是坐标原点,设,OB OA OS +=是否存在这样的直线l ,使四边形OASB 的对角线相等(即|OS|=|AB|)?若存在,求出直线l 的方程;若不存在,试说明理由.【范例14】如图,在矩形ABCD 中,已知A (2,0)、C (-2,2),点P 在BC 边上移动,线段OP 的垂直平分线交y 轴于点E ,点M 满足.EP EO EM +=(1)求点M 的轨迹方程; (2)已知点F (0,21),过点F 的直线l 交点M 的轨迹于Q 、R 两点,且,FR QF λ=求实数λ的取值范围.【错解分析】向量的综合题型考察的范围可以很广,这样的题型容易产生画图不准确,题意模糊的错误,导致考生无法作答,因此要理解题意,把握条件,学会精确画图。