金典教案-辅助角公式
- 格式:doc
- 大小:511.50 KB
- 文档页数:7
辅助角公式一、教学目标1、会将ααcos sin b a +(a 、b 不全为零)化为只含有正弦的一个三角比的形式2、能够正确选取辅助角和使用辅助角公式二、教学重点与难点 辅助角公式的推导与辅助角的选取三、教学过程1、复习•引入 两角和与差的正弦公式()sin αβ+=_________________________________()sin αβ-=_________________________________ 口答:利用公式展开sin 4πα⎛⎫+ ⎪⎝⎭=_____________________ 反之,αα化简为只含正弦的三角比的形式,则可以是αα=_____________________________ 尝试:将以下各式化为只含有正弦的形式,即化为)sin(βα+A ()0A >的形式(11cos 2αα+ (2)sin αα2、辅助角公式•推导对于一般形式ααcos sin b a +(a 、b 不全为零),如何将表达式化简为只含有正弦的三角比形式?sin cos ))a b αααααβ+==+其中辅助角β由cos sin ββ⎧=⎪⎪⎨⎪=⎪⎩β(通常πβ20<≤)的终边经过点(,)a b------------------我们称上述公式为辅助角公式,其中角β为辅助角。
3、例题•反馈例1、试将以下各式化为)sin(βα+A ()0A >的形式.(11cos 2αα- (2)ααcos sin +(3αα (4)ααcos 4sin 3-例2、试将以下各式化为)sin(βα+A (),[,0ππβ-∈>A )的形式.(1)sin cos αα-(2)ααsin cos - (3)cos αα-例3、若sin(50)cos(20)3x x +++=,且0360x ≤<,求角x 的值。
例42)cos()12123x x ππ+++=,且 02x π-<<,求sin cos x x -的值。
两角和与差的正弦、余弦、正切公式的化归
-辅助角公式
教学目标:
知识与技能:熟练利用两角和与差的正弦、余弦、正切公式化归以及辅助角公式的应用。
过程与方法:讲练结合法
情感、态度及价值观:会用联系变化的观点看待事物,增强解决问题的能力。
教学重点:熟练掌握两角和与差的正弦、余弦、正切公式和辅助角公式的应用。
教学难点:在应用辅助角公式进行化归求值的过程中,涉及两角和与差的正弦、余弦、正切公式的使用。
教学过程:
一、讲解新知:
课本6、化简
解:原式
解:原式
解:原式
知识点讲解:
辅助角公式:
有原式
或原式
其中,叫辅助角。
或
二、当堂训练:
课本6、化简
课本13、化简
答案:课本6、化简原式
课本13、化简原式原式
原式原式
三、课堂小结
四、课后作业。
化一公式(第一课时)一、教材剖析化一公式在必修 4 的教材中并无出现特意的一节进行解说,是由于化一公式的实质其实就是两角和的正弦公式的逆应用。
二、教课要点对特别角的化一公式的应用,两角和正弦的逆应用。
知道要从系数中提出a 2b2 .三、教课难点对a2b2的研究,理解为何要提这个出来。
四、教课过程(一)、知识回首引入前方我们学习了两角和的正弦公式,大家回首一下应当等于:sin() sin cos sin cos那我们看一下sin=sin cos cos sin 3cos1 sin33322则那么请同学看下边两个题应当等于多少例一:化简下边式子( 1)2sin2cos 22( 2)1sin3cos 22解说:第一个式子中的2能够当作 sin, cos, 变式后利用两角和正弦的逆应244用课进行化简。
第二个式子中的 1 和3能够当作 cos , sin。
2233(二)、新授知识那么此刻我们来看下一个题:例二:化简下边式子( 1) 2 sin 2 cos( 2)sin 3 cos(提示学生和例一的关系,让学生自己转变到例一去)解答:(1)22sin2cos2sin224(2) 2 1sin3cos2sin3 22为何要提 2 出来呢?由于提出来后能够在里面创建出特别角的三角函数,是我们想要的那么方才的这些题我们都比较简单看出他们和特别角之间的关系,那么假如碰到较为复杂的系数我们该提多少出来呢?例三:化简下边式子a sin xb cosx(让学生思虑并议论)学生议论后指出这里应当提出 a 2b2,由于里面剩下的a,b恰好a 2b2a2b2能够构一个角的正弦与余弦。
因此 a sin x b cosx a2b2sin(x) ,我们把这类把两三角函数变成一个三角函数的公式称为化一公式。
由此我们就能够办理任何近似的式子了例三:化简下边式子3 15 sin x 3 5 cos x解答:先察看,把315 与3 5 的公因式 35先提出来,变成 3 sin x cos x ,再利用公式,提出32 2 ,能够变成 653sin x1cos x65 sin x12226练习:化简下边式子:( 1)3cos x3sin x(2) 3 sin x cos x( 3)2sin x6cos x 2244(让学生上来做并解说)(三)总结同学们你们来谈谈这节课你收获到了什么?1,化一公式 2 ,逆向思想3,化归的思想(四)作业练习册。
公式在必修4的教材中并没有出现专门的一节进行讲解,是因为公式的本质其实就是两角和的正弦公式的逆应用。
在三角函数中,有一种常见而重要的题型,即化a sin θ+b cos θ为一个角的一个三角函数的形式,进而求原函数的周期、值域、单调区间等.为了帮助学生记忆和掌握这种题型的解答方法,总结出公式22sin cos sin()a b a b θθθφ+=++或22sin cos cos()a b a b θθθφ+=+-,让学生在大量的训练和考试中加以记忆和活用.教师引导:P(a,b)总有一个角φ的终边经过点P ,设OP=r=22a b +由三角函数定义可知: 辅助角公式•推导对于一般形式ααcos sin b a +(a 、b 不全为零),如何将表达式化简为只含有正弦的三角比形式? 其中辅助角φ由2222cos sin a a b b a b φφ=+=+ 确定,即辅助角φ(通常02φπ≤≤)的终边经过点P (,)a b------------------我们称上述公式为辅助角公式,其中角φ为辅助角。
其中φ的大小可以由sin φ、cos φ的符P号确定φ的象限,再由tanφ的值求出.或和P(a,b)所在的象限来确定. 由tanφ=ba教师指导题目4将下列各式化为一个角的正弦形式教师总结,批阅。
学案一、知识回顾:两角和与差的正余弦公式:二、新课探究:1、利用和差角公式计算下列各式的值:练习:2、求证:cos2sin()6πααα=+3、将sin cosa xb x+化为一个角的正弦形式。
P(a,b)总有一个角φ的终边经过点P,设由三角函数定义可知:b=a=辅助角公式•推导对于一般形式ααcossin ba+(a、b不全为零),如何将表达式化简为只含有正弦的三角比形式?其中辅助角φ由cos__________sin___________φφ==确定,即辅助角φ(通常02φπ≤≤)的终边经过点P (,)a b------------------我们称上述公式为辅助角公式,其中角φ为辅助角。
3.1.3三角函数的辅助角公式班级 姓名【使用说明】课前完成学案,牢记基础知识,掌握基本题型;课上小组合作探究,达疑解惑。
【学习目标】理解两角和、差余弦、正弦和正切公式,推导辅助角公式,体会三角恒等变换特点的过程,理解推导过程,应用解决某些三角问题。
【重点难点】1、重点:辅助角公式的推导过程及运用。
2、难点:辅助角公式的灵活运用。
【学习过程】(1)基本公式:=±)cos(βα=±)sin(βα=±)tan(βα(2)练习:化简=+x x cos 3sin )cos 23sin 21(x x + = ()sin_____cos cos_____sin x x += ()_____sin +x思考:正弦前面的系数是怎么得到的? 思考:怎样求ααcos sin b a +类型?一、自主探究,引发思考,层层深入,得出结论: ()()()()ϕϕϕ+=+=+=+x x x x x x b x a sin sin cos cos sin )cos sin (cos sin其中由()()⎪⎪⎩⎪⎪⎨⎧==ϕϕsin cos 确定,即辅助角的终边经过点,=ϕtan结论:辅助角公式:=+x b x a cos sin其中辅助角由=ϕtan 来确定二、互相交流、小组活动、公式应用闯关:(1)=+x x cos sin (2)=-x x cos sin(3)=+x x cos 3sin (4)=-x x cos 3sin(5)=+x x cos sin 3 (6)=-x x cos sin 3【经典范例】(自己做做看)例1:求函数x x y cos 2sin 6-=的周期,最大值和最小值。
例2例3:已知A 、B 、C 为△ABC 的三內角,向量)3,1(-=m ,)sin ,(cos A A n = ,且1=•n m , (1)求角A ;(2)若3sin cos cos sin 2122-=-•+BB B B ,求tanC 的值。
高中数学辅助角公式教案
一、教学目标
1. 了解辅助角的概念和性质;
2. 掌握辅助角的相关公式和求解方法;
3. 能够运用辅助角公式解决相关问题。
二、教学重点
1. 辅助角的概念和性质;
2. 辅助角公式的掌握;
3. 辅助角公式的应用。
三、教学内容
1. 辅助角的概念和性质;
2. 正弦、余弦、正切、余切辅助角公式;
3. 应用举例与练习。
四、教学过程
1. 辅助角的概念和性质
- 引导学生理解辅助角的概念和性质,解释其在三角函数计算中的作用;- 讲解辅助角的意义和使用方法,引导学生积极思考和互动。
2. 正弦、余弦、正切、余切辅助角公式
- 介绍正弦、余弦、正切、余切辅助角公式的推导和应用;
- 指导学生掌握辅助角公式的应用方法,举例演练解题过程。
3. 应用举例与练习
- 给出一些具体的应用题目,让学生运用所学知识解题;
- 带领学生讨论解题思路和方法,及时纠正错误,加深理解。
五、教学反馈
1. 对学生的练习情况进行检查和评价;
2. 总结学生在辅助角公式运用中存在的问题,并指导学生进行巩固练习;
3. 鼓励学生积极参与课堂讨论和练习,提高解题能力。
六、课后作业
1. 完成课堂练习题和实践题;
2. 针对学生出现的问题进行针对性的练习;
3. 鼓励学生自主学习,准备下节课分享心得。
七、教学效果评估
1. 学生掌握辅助角概念、公式和应用的情况;
2. 学生能否熟练运用辅助角公式解题;
3. 学生对辅助角公式的理解和运用能力。
以上为高中数学辅助角公式教案范本,具体教学内容和安排可根据实际情况进行调整和完善。
《辅助角公式》说课稿尊敬的各位评委、老师:大家好!今天我说课的内容是《辅助角公式》。
下面我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程以及教学反思这几个方面来展开我的说课。
一、教材分析《辅助角公式》是高中数学三角函数部分的重要内容,它在三角函数的化简、求值、证明以及解决实际问题中都有着广泛的应用。
本节课是在学生已经掌握了两角和与差的正弦、余弦公式的基础上,进一步研究如何将形如\(a\sin x + b\cos x\)的式子化为一个角的三角函数形式,从而为后续学习三角函数的图像和性质奠定基础。
教材通过对具体例子的分析,引导学生观察、思考、归纳,逐步推导出辅助角公式,体现了从特殊到一般、从具体到抽象的数学思维方法。
二、学情分析学生在之前的学习中已经掌握了三角函数的基本概念和两角和与差的正弦、余弦公式,具备了一定的三角函数运算能力和逻辑推理能力。
但是,对于将\(a\sin x + b\cos x\)化为一个角的三角函数形式,学生可能会感到困难,需要教师通过引导和启发,帮助学生理解和掌握辅助角公式的本质和应用。
三、教学目标1、知识与技能目标(1)理解辅助角公式的推导过程,掌握辅助角公式的形式和特点。
(2)能够熟练运用辅助角公式将形如\(a\sin x + b\cos x\)的式子化为一个角的三角函数形式,并进行三角函数的化简、求值和证明。
2、过程与方法目标(1)通过对辅助角公式的推导,培养学生观察、分析、归纳、推理的能力。
(2)通过运用辅助角公式解决问题,提高学生的运算能力和逻辑思维能力。
3、情感态度与价值观目标(1)让学生在探究辅助角公式的过程中,感受数学的严谨性和逻辑性,培养学生的数学兴趣和学习积极性。
(2)通过解决实际问题,让学生体会数学在生活中的应用价值,培养学生的应用意识和创新精神。
四、教学重难点1、教学重点辅助角公式的推导和应用。
2、教学难点辅助角的确定以及辅助角公式的灵活运用。
第三章 三角恒等变形 第2节 两角和与差的三角函数之辅助角(又称合一)公式sin cos sin()a b A θθθϕ+=+【】专题教学设计 梧州高级中学数学组 周勇辅助角公式是三角变换中最重要的公式,在解决三角函数问题过程中具有广泛地应用,由于公式的推导理解和灵活运用有一定的难度,所以需要进行专题的讲解。
根据内容特点,我做出如下的教学设计。
一、学习目标1、知识与技能1掌握辅助角公式的推导过程,认识辅助角公式的作用和意义。
2利用辅助角公式进行简单的三角函数变形和求值,能解决某些简单的三角函数问题。
2、过程与方法以问题链为导学方式来帮助学生完成本节内容的学习,着重抓住学生的思维发展过程,先引导学生复习两角和差的正余弦公式并通过具体实例训练逆向使用,从中启发学生认真观察、类比、思考,深入挖掘得出辅助角公式并进行理论推导和证明,体会公式的作用和意义,并学会模仿使用公式和灵活运用。
3、情感目标与价值观通过让学生历练数学问题解决的思维发展过程,让学生体会辅助角公式的产生是自然的,方法是多样的,结果是简洁的,感受到思维的快乐和数学的美感。
【学习重点】辅助角公式的推导。
【学习难点】辅助角公式的应用。
【学法指导】通过个人自主探究和小组互相讨论,激发学生学习兴趣。
二、学习内容与过程:情景设置:(一)复习引入,公式巩固sin()αβ+=sin cos cos sin αβαβ+ sin()αβ-=sin cos cos sin αβαβ-cos()αβ+=cos cos sin sin αβαβ- cos()αβ-=cos cos sin sin αβαβ+请分析上述公式形式特点,得出其记忆口诀(左复右单,正同名异,余异名同)。
设计意图:通过复习回顾公式,一方面归纳出公式形式上的特点来巩固和帮助学生记忆公式,另一方面为后续逆向使用公式提供必要铺垫。
情景设置:(二)问题探究,观察思考1.请利用正余弦和差公式进行展开:sin()6πθ+=1cos 22θθ+2请将下面式子化为只含正弦名称的三角函数形式:1sin 2θθ+=sin()3πθ+ 设计意图:通过以上两个具体实例帮助学生从正向和逆向使用公式,增强思维的互逆性,另外特别训练学生的观察能力。
辅助角公式sin cos )a b θθθϕ+=+教学应注意的的几个问题在三角函数中,有一种常见而重要的题型,即化sin cos a b θθ+为一个角的一个三角函数的形式,进而求原函数的周期、值域、单调区间等.为了帮助学生记忆和掌握这种题型的解答方法,教师们总结出公式sin cos a b θθ+)θϕ+或sin cos a b θθ+cos()θϕ-,让学生在大量的训练和考试中加以记忆和活用.但事与愿违,半个学期不到,大部分学生都忘了,教师不得不重推一遍.到了高三一轮复习,再次忘记,教师还得重推!本文旨在通过辅助角公式的另一种自然的推导,体现一种解决问题的过程与方法,减轻学生的记忆负担;同时说明“辅助角”的范围和常见的取角方法,帮助学生澄清一些认识;另外通过例子说明辅助角公式的灵活应用,优化解题过程与方法;最后通过例子说明辅助公式在实际中的应用,让学生把握辅助角与原生角的范围关系,以更好地掌握和使用公式. 一.教学中常见的的推导方法教学中常见的推导过程与方法如下 1.引例 例1α+cos α=2sin (α+6π)=2cos (α-3π). 其证法是从右往左展开证明,也可以从左往右“凑”,使等式得到证明,并得出结论: 可见α+cos α可以化为一个角的三角函数形式.一般地,asin θ+bcos θ 是否可以化为一个角的三角函数形式呢? 2.辅助角公式的推导 例2 化sin cos a b θθ+为一个角的一个三角函数的形式.解: asin θ+bcos θsin θcos θ),①=cos ϕ=sin ϕ,则asin θ+bcos θθcos ϕ+cos θsin ϕ)θ+ϕ),(其中tan ϕ=ba)②=sin ϕ=cos ϕ,则asin θ+bcos θθsin ϕ+cos θcos ϕθ-ϕ),(其中tan ϕ=a b) 其中ϕ的大小可以由sin ϕ、cos ϕ的符号确定ϕ的象限,再由tan ϕ的值求出.或由tan ϕ=ba和(a,b)所在的象限来确定. 推导之后,是配套的例题和大量的练习.但是这种推导方法有两个问题:一是为什么要令=cos ϕ=sin ϕ?让学生费解.二是这种 “规定”式的推导,学生难记易忘、易错! 二.让辅助角公式sin cos a b θθ+)θϕ+来得更自然能否让让辅助角公式来得更自然些?这是我多少年来一直思考的问题.2009年春.我又一次代2008级学生时,终于想出一种与三角函数的定义衔接又通俗易懂的教学推导方法.首先要说明,若a=0或b=0时,sin cos a b θθ+已经是一个角的一个三角函数的形式,无需化简.故有ab ≠0. 1.在平面直角坐标系中,以a 为横坐标,b 为纵坐标描一点P(a,b)如图1所示,则总有一个角ϕ,它的终边经过点P.设由三角函数的定义知sin ϕ=b rcos ϕ=a r =.所以asin θ+bcos θϕ sin θϕcos θ)θϕ+.(其中tan ϕ=ba)2.若在平面直角坐标系中,以b为横坐标,以a为纵坐标可以描点P(b,a),如图2所示,则总有一个角ϕ的终边经过点P(b,a),设OP=r,则由三角函数的定义知sinϕ=ar,cosϕ=b rasinθ+bcosθsin cos ϕθϕθ+s()θϕ-. (其中tanϕ=ab)例3cosθθ+为一个角的一个三角函数的形式.解:在坐标系中描点P(,1),设角ϕ的终边过点P,则OPϕ=12,cosϕ=2.∴cosθθ+=2cosϕsinθ+2sinϕcosθ=2sin(θϕ+).tanϕ=3.26kπϕπ=+,cosθθ+=2sin(6πθ+).经过多次的运用,同学们可以在教师的指导下,总结出辅助角公式asinθ+bcosθ=(sinθ+cosθ)=)θϕ+,(其中tanϕ=ba).或者asinθ+bcosθ=(sinθ+cosθ)=)θϕ-,(其中tanϕ=ab)我想这样的推导,学生理解起来会容易得多,而且也更容易理解asinθ+bcosθsinθcosθ)的道理,以及为什么只有两种形式的结果.例4化sinαα-为一个角的一个三角函数的形式.解法一:点(1,-)在第四象限.OP=2.设角ϕ过P点.则sin2ϕ=-,1cos2ϕ=.满足条件的最小正角为53π,52,.3k k Zϕππ=+∈1sin2(sin cos)2(sin cos cos sin)22552sin()2sin(2)2sin().33kαααααϕαϕαϕαππαπ∴-=-=+=+=++=+解法二:点P(-,1)在第二象限,OP=2,设角ϕ过P点.则1sin2ϕ=,cos2ϕ=-.满足条件的最小正角为56π,52,.6k k Zϕππ=+∈1sin2(sin cos)2(sin sin cos cos)22552cos()2cos(2)2cos().66kαααααϕαϕαϕαππαπ∴-=-=+=-=--=-三.关于辅助角的范围问题由sin cos)a bθθθϕ+=+中,点P(a,b)的位置可知,终边过点P(a,b)的角可能有四种情况(第一象限、第二象限、第三象限、第四象限).设满足条件的最小正角为1ϕ,则12kϕϕπ=+.由诱导公式(一)知1 sin cos))a bθθθϕθϕ+=+=+.其中1(0,2)ϕπ∈,1tan baϕ=,1ϕ的具体位置由1sin ϕ与1cos ϕ决定,1ϕ的大小由1tan baϕ=决定.类似地,sin cos )a b θθθϕ+=-,ϕ的终边过点P(b,a),设满足条件的最小正角为2ϕ,则22.k ϕϕπ=+由诱导公式有2sin cos ))a b θθθϕθϕ+=-=-,其中2(0,2)ϕπ∈,2tan abϕ=,2ϕ的位置由2sin ϕ和2cos ϕ确定,2ϕ的大小由2tan abϕ=确定.注意:①一般地,12ϕϕ≠;②以后没有特别说明时,角1ϕ(或2ϕ)是所求的辅助角.四.关于辅助角公式的灵活应用引入辅助角公式的主要目的是化简三角函数式.在实际中结果是化为正弦还是化为余弦要具体问题具体分析,还有一个重要问题是,并不是每次都要化为1sin cos )a b θθθϕ+=+的形式或2sin cos )a b θθθϕ+=-的形式.可以利用两角和与差的正、余弦公式灵活处理.例5 化下列三角函数式为一个角的一个三角函数的形式.cos αα-;(2)sin()cos()6363ππαα-+-. 解:(1)1cos sin cos )222(sin coscos sin )2sin()666ααααπππααα-=-=-=-(2)sin()cos()63631sin()cos()]32323)cos cos()sin ]333332sin()33ππααππααππππααπα-+-=-+-=-+-=-在本例第(1)小题中,a =1b =-,-1),而取的是点P1).也就是说,当a 、b 中至少有一个是负值时.我们可以取P(a ,b ),或者P(b ,a ).这样确定的角1ϕ(或2ϕ)是锐角,就更加方便.例6 已知向量(cos(),1)3ax π=+,1(cos(),)32b x π=+-,(sin(),0)3c x π=+,求函数()h x =2a b b c ⋅-⋅+的最大值及相应的x的值.解:21()cos()sin()cos()23233h x x x x πππ=+--+++=21cos(2)1233sin(2)2232x x ππ++-++ =1212cos(2)sin(2)22323x x ππ+-++=22cos(2)sin(2)]222323x x ππ+-++=11cos(2)2212x π++max()2.2h x ∴=+这时111122,.1224x k x k k Z ππππ+==-∈. 此处,若转化为两角和与差的正弦公式不仅麻繁,而且易错,请读者一试.五.与辅助角有关的应用题与辅助角有关的应用题在实际中也比较常见,而且涉及辅角的范围,在相应范围内求三角函数的最值往往是个难点.例7 如图3,记扇OAB 的中心角为45︒,半径为1,矩形PQMN 内接于这个扇形,求矩形的对角线l 的最小值.解:连结OM,设∠AOM=θ.则MQ=sin θ,OQ=cos θ,OP=PN=sin θ. PQ=OQ-OP=cos sin θθ-.222l MQ PQ =+=22sin(cos sin )θθθ+-=31(sin 2cos 2)22θθ-+=13sin(2)22θϕ-+,其中11tan 2ϕ=,1(0,)2πϕ∈,11arctan 2ϕ=. 04πθ<<,111arctan 2arctan .222πθϕ∴<+<+2min 322l ∴=-,min 12l -=. 所以当11arctan 422πθ=-时, 矩形的对角线l的最小值为12-.θNBMAPO图3。