AT10同步带拉力检测报告表下载-力启传动
- 格式:doc
- 大小:31.00 KB
- 文档页数:1
带传动的滑动和效率测定实验报告带传动的滑动率和效率测定的实验方案设计带传动的滑动率和效率测定的实验方案设计一、实验目的1.深入了解带传动的原理以及传动摩擦和滑动时候的相关问题。
2.深入了解、掌握机械带传动效率及滑动率测量方法及原理,了解测量过程所使用的仪器、仪表以及传感器的工作原理。
3.观察带传动的弹性滑动和打滑现象,加深对带传动工作原理和设计准则的理解。
4.通过对滑动曲线(? —F曲线)和效率曲线(?—F曲线)的测定和分析,深刻认识带传动特性、承载能力、效率及其影响因素。
二、实验的理论依据由于带是弹性体,受力不同的时候伸长量不等,使带传动发生弹性滑动现象。
在带绕带轮滑动传动时候,带的压力由F1 下降到F2所以带的弹性变形也要相应减小,亦即带在逐渐缩短,带的速度要落后于带轮,因此两者之间必然发生相对滑动。
同样的现象也发生在从动轮上,但是情况恰好相反。
带从松边转到紧边时,带所受到的拉力逐渐增加,带的弹性变形量也随之增大,带微微向前伸长,带的运动超前于带轮。
带与带轮间同样也发生相对滑动。
其中:带收到的张紧力F0,紧边拉力F1,松边拉力F2。
则:有效拉力F=F1- F2等于带沿带轮的接触弧上摩擦力的总和Ff带传动中滑动的程度用滑动率表示,其表达式为v1?v2D2n2(1?)?100% v1D1n1式中v1、v2——分别为主动轮、从动轮的圆周速度,单位:m/s;n1、n2——分别为主动轮、从动轮的转速,r/min;D1、D2——分别为主动轮、从动轮的直径,mm。
如图2-1所示,带传动的滑动(曲线1)随着带的有效拉力F的增大而增大,表示这种关系的曲线称为滑动曲线。
当有效拉力F小于临界点F?点时,滑动率与有效拉力F成线性关系,带处于弹性滑动工作状态;当有效拉力F超过临界点F?点以后,滑动率急剧上升,带处于弹性滑动与打滑同时存在的工作状态。
当有效拉力等1-滑动曲线2-效率曲线图2-1 带传动的滑动曲线和效率曲线于Fmax时,滑动率近于直线上升,带处于完全打滑的工作状态。
同步带受力情况的分析1 张紧力同步带安装时必须进行适当的张紧,以使带具有一定的初拉力(张紧力)。
初拉力过小会使同步带在运转中因齿合不良而发生跳齿现象,在跳齿的瞬间,可能因拉力过大而使带断裂或带齿断裂;初拉力过小还会使同步带传递运动的精度降低,带的振动噪音变大。
而初拉力过大则会使带的寿命降低,传动噪音增大,轴和轴承上的载荷增大,加剧轴承的发热和使轴承寿命降低。
故控制同步带传动合宜的张紧力是保证同步带传动正常工作的重要条件。
设0F 为同步带传动时带的张紧力,1F 、2F 、F 分别为带传动工作时带的紧边拉力、松边拉力、和有效拉力。
为了保证同步带在带轮上齿合可靠、不跳齿,同步带运转时紧边带的弹性伸长量与松边带的弹性收缩量应保持近似相等。
因此,紧边拉力的增加量应等于松边拉力的减少量,即1F -0F =0F -2F 或 1F +2F =20F 、0F =(1F +2F ) 式1-1 2 压轴力压轴力即为同步带作用在轴上的力,是紧边拉力与松边拉力的矢量和,如图2-1所示:图2-1同步带的压轴力、紧边拉力、松边拉力据机械标准JB/T 压轴力Q 计算如下所示:Q=12()F K F F + N 式2-1 当工况系数A K ≥时:Q=12()F K F F + N 式2-2 式中: F K ――矢量相加修正系数,如图2-2:图2-2 矢量相加修正系数上图中1α为小带轮包角,21118057.3d d aα-≈︒-⨯︒。
A K 为工况系数,对于医疗机械,其值如图2-3所示:图2-3 医疗机械的工况系数对于医疗机械,取A K =,所以有压轴力Q=12()F K F F + N ,其中F K 值大于。
另外由式1-1有张紧力0F =(1F +2F )。
由此可看出压轴力大于张紧力,故设计时只需计算传动中所受的压轴力,Q=12()F K F F + N 。
而带的紧边张力与松边张力分别由下面公式所得:11250/d F P V = N 式2-32250/d F P V = N 式2-4式中: V 为带速,/m s ;d P 为设计功率,d A P K P =,KW ;A K 为工况系数,P 为需传递的名义功率(KW )。
同步带受力情况的分析 1 张紧力同步带安装时必须进行适当的张紧,以使带具有一定的初拉力(张紧力)。
初拉力过小会使同步带在运转中因齿合不良而发生跳齿现象,在跳齿的瞬间,可能因拉力过大而使带断裂或带齿断裂;初拉力过小还会使同步带传递运动的精度降低,带的振动噪音变大。
而初拉力过大则会使带的寿命降低,传动噪音增大,轴和轴承上的载荷增大,加剧轴承的发热和使轴承寿命降低。
故控制同步带传动合宜的张紧力是保证同步带传动正常工作的重要条件。
设0F 为同步带传动时带的张紧力,1F 、2F 、F 分别为带传动工作时带的紧边拉力、松边拉力、和有效拉力。
为了保证同步带在带轮上齿合可靠、不跳齿,同步带运转时紧边带的弹性伸长量与松边带的弹性收缩量应保持近似相等。
因此,紧边拉力的增加量应等于松边拉力的减少量,即1F -0F =0F -2F 或 1F +2F =20F 、0F =0.5(1F +2F ) 式1-12 压轴力压轴力即为同步带作用在轴上的力,是紧边拉力与松边拉力的矢量和,如图2-1所示:图2-1同步带的压轴力、紧边拉力、松边拉力据机械标准JB/T 7512.3-1994压轴力Q 计算如下所示:Q=12()F K F F + N 式2-1 当工况系数A K ≥1.3时:Q=0.7712()F K F F + N 式2-2式中: F K ――矢量相加修正系数,如图2-2:图2-2 矢量相加修正系数上图中1α为小带轮包角,21118057.3d daα-≈︒-⨯︒。
A K 为工况系数,对于医疗机械,其值如图2-3所示:图2-3 医疗机械的工况系数对于医疗机械,取A K =1.2,所以有压轴力Q=12()F K F F + N ,其中F K 值大于0.5。
另外由式1-1有张紧力0F =0.5(1F +2F )。
由此可看出压轴力大于张紧力,故设计时只需计算传动中所受的压轴力,Q=12()F K F F + N 。
而带的紧边张力与松边张力分别由下面公式所得:11250/d F P V = N 式2-32250/d F P V = N 式2-4式中: V 为带速,/m s ;d P 为设计功率,d A P K P =,KW ;A K 为工况系数,P 为需传递的名义功率(KW )。
带传动的滑动率和效率测定的实验方案设计一、实验目的1.深入了解带传动的原理以及传动摩擦和滑动时候的相关问题。
2.深入了解、掌握机械带传动效率及滑动率测量方法及原理,了解测量过程所使用的仪器、仪表以及传感器的工作原理。
3.观察带传动的弹性滑动和打滑现象,加深对带传动工作原理和设计准则的理解。
4.通过对滑动曲线(ε—F曲线)和效率曲线(η—F曲线)的测定和分析,深刻认识带传动特性、承载能力、效率及其影响因素。
二、实验的理论依据由于带是弹性体,受力不同的时候伸长量不等,使带传动发生弹性滑动现象。
在带绕带轮滑动传动时候,带的压力由F1 下降到F2所以带的弹性变形也要相应减小,亦即带在逐渐缩短,带的速度要落后于带轮,因此两者之间必然发生相对滑动。
同样的现象也发生在从动轮上,但是情况恰好相反。
带从松边转到紧边时,带所受到的拉力逐渐增加,带的弹性变形量也随之增大,带微微向前伸长,带的运动超前于带轮。
带与带轮间同样也发生相对滑动。
其中:带收到的张紧力F0,紧边拉力F1,松边拉力F2。
则:有效拉力F=F1- F2等于带沿带轮的接触弧上摩擦力的总和F f带传动中滑动的程度用滑动率表示,其表达式为%100)1(1122121⨯-=-=n D n D v v v ε式中 v 1、v 2——分别为主动轮、从动轮的圆周速度,单位:m/s ;n 1、n 2——分别为主动轮、从动轮的转速,r/min ; D 1、D 2——分别为主动轮、从动轮的直径,mm 。
如图2-1所示,带传动的滑动(曲线1)随着带的有效拉力F 的增大而增大,表示这种关系的曲线称为滑动曲线。
当有效拉力F 小于临界点F '点时,滑动率与有效拉力F 成线性关系,带处于弹性滑动工作状态;当有效拉力F 超过临界点F '点以后,滑动率急剧上升,带处于弹性滑动与打滑同时存在的工作状态。
当有效拉力等于F max 时,滑动率近于直线上升,带处于完全打滑的工作状态。
测试报告报告号: AJD201205894日期: 2012年10月16日 第 1 页 共 3页上海永利带业股份有限公司 上海市青浦区徐泾镇徐旺路58号此报告是报告号为AJD201205893的中文译本的中文译本,,如中英文有差异如中英文有差异,,概以英文为准概以英文为准。
以下测试样品为客户提供并确认: 样品样品名称名称: PVK 阻燃输送带测试要求测试要求:ISO 340:2004 传送带- 实验室环境测试条件下防火特性– 测试方法和要求测试结果测试结果:--- 参见数据附表 ---结论: 参照测试结果, 客户提送的样品满足 ISO 340:2004标准要求测试持续时间: 样品收到日期 : 2012年10月09日测试执行时间: 2012年10月09日 至 2012年10月15日通标标准技术服务有限公司 授权代表签署__________________ 邹石龙 技术主管测试报告报告号: AJD201205894 日期: 2012年10月16日第 2 页共3页方法测试方法I. 测试该测试是参照标准:ISO 340:2004传送带- 实验室环境测试条件下防火特性– 测试方法和要求信息样品信息II. 样品名称/ 颜色PVK阻燃输送带/ 黑色试样尺寸(mm) 长度: 200mm, 宽度: 25mm温度(℃) 湿度(%) 处理时间(小时)预处理23±2 50±5 144III. 测试过程使燃烧头与垂直悬挂的样品中心线成水平面成45º夹角, 并保持燃烧头和样品底边的距离为50mm, 燃烧45s 后,移开燃烧器,并记录下样品的续燃时间和阴燃时间.移开燃烧器60s±5s后,开启通风,使空气在样品表面的流速为1.5 m/s,记录下样品是否重新被点燃,并记录下燃烧时间.IV. 测试结果有覆盖层的样品1 2 3 4 5 6续燃时间(s) 0 0 0 0 0 0阴燃时间(s) 0 0 0 0 0 06个样品总续燃时间0重新点燃续燃时间(s) 0* 0* 0* 0* 0* 0*单个最大值(s) 0备注: 0*---样品未重新点燃要求:1) 续燃时间(移开燃烧头后)6个样品总燃烧的续燃时间小于45 s,任何一个单个样品燃烧值小于15s.2) 没有重新点燃的情况(开启通风后)接下页…测试报告报告号: AJD201205894 日期: 2012年10月16日第 3 页共3页附录照片:***报告结束***。
同步带受力情况的分析 1 张紧力同步带安装时必须进行适当的张紧,以使带具有一定的初拉力(张紧力)。
初拉力过小会使同步带在运转中因齿合不良而发生跳齿现象,在跳齿的瞬间,可能因拉力过大而使带断裂或带齿断裂;初拉力过小还会使同步带传递运动的精度降低,带的振动噪音变大。
而初拉力过大则会使带的寿命降低,传动噪音增大,轴和轴承上的载荷增大,加剧轴承的发热和使轴承寿命降低。
故控制同步带传动合宜的张紧力是保证同步带传动正常工作的重要条件。
设0F 为同步带传动时带的张紧力,1F 、2F 、F 分别为带传动工作时带的紧边拉力、松边拉力、和有效拉力。
为了保证同步带在带轮上齿合可靠、不跳齿,同步带运转时紧边带的弹性伸长量与松边带的弹性收缩量应保持近似相等。
因此,紧边拉力的增加量应等于松边拉力的减少量,即1F -0F =0F -2F 或 1F +2F =20F 、0F =0.5(1F +2F ) 式1-12 压轴力压轴力即为同步带作用在轴上的力,是紧边拉力与松边拉力的矢量和,如图2-1所示:图2-1同步带的压轴力、紧边拉力、松边拉力据机械标准JB/T 7512.3-1994压轴力Q 计算如下所示:Q=12()F K F F + N 式2-1 当工况系数A K ≥1.3时:Q=0.7712()F K F F + N 式2-2式中: F K ――矢量相加修正系数,如图2-2:图2-2 矢量相加修正系数上图中1α为小带轮包角,21118057.3d daα-≈︒-⨯︒。
A K 为工况系数,对于医疗机械,其值如图2-3所示:图2-3 医疗机械的工况系数对于医疗机械,取A K =1.2,所以有压轴力Q=12()F K F F + N ,其中F K 值大于0.5。
另外由式1-1有张紧力0F =0.5(1F +2F )。
由此可看出压轴力大于张紧力,故设计时只需计算传动中所受的压轴力,Q=12()F K F F + N 。
而带的紧边张力与松边张力分别由下面公式所得:11250/d F P V = N 式2-32250/d F P V = N 式2-4式中: V 为带速,/m s ;d P 为设计功率,d A P K P =,KW ;A K 为工况系数,P 为需传递的名义功率(KW )。
西翼总机巷一部输送机性能测试报告胶带输送机定期进行检验,检验时应按本规程操作。
一、带式输送机检验条件1.检验设备:秒表、电机经济运行测试仪、声级计、钢卷尺、转速表。
2.皮带长度、环境温度符合要求。
二、检验依据MT 820--2006 煤矿用带式输送机技术条件GB/T10595--2009 带式输送机技术条件MT/T901-2000 煤矿井下用伸缩式带式输送机三、检验项目按胶带输送机测试报告所列检验项目进行检验。
四、检验规程1、外观检验:生产技术人员对整机外观质量进行检验。
主要检验:①整机外观喷柒应均匀、整洁漆膜应附着牢固。
可在机头架、中间架、机尾部的非正视表面上,任选10个不同位置,用钢筋棍进行划痕检查。
②整机各部件应具有光滑、整齐的轮廓,不应有明显的凹凸、缺口、卷边、夹渣、气孔、焊渣等缺陷。
③各部件安装到位,联接牢固,同一型号的机架有互换性。
④用目测的方法检测整机铺设的直线度,应保证在任意2.5米长度内的中心线直线度偏差不大于5㎜。
2、带速检验:在外观检验合格后,做整机空载运行实验。
运行前应验看各传动部是否安装完好应无卡阻现象再次确认减速机已按要求加油,联轴节完好,各传动部件确认无误后,启动电动机,做运行试验。
①用观察法检验:整机启动是否平稳,不允许出现异常的振动和声响。
在启动与运行过程中输送带不允许有打滑和打带现象。
各传动件均能灵活转动。
②用秒表和钢卷尺测带速:用钢卷尺在机头和机尾间测量出AB60米的长度,并在中间架上做明显的标记A、B,在运行的皮带上的任意一点做一明显标记,用秒表测出皮带上的任一点从B点运行到A点的时间,用V=AB/T计算出带速。
空载运行的带速V应为额定带速Ve的(15%)Ve≤V≤(1+10%)Ve。
空载运行时带速偏差为+10%~-5%。
3、空载功率检测:用电机经济运行测试仪测出整机运行时的功率P,机长100米实测空载功率不大于设计值的15% P≤Pe·15%。
4. 设计参数本系统设计的基本参数为:输送机的额定输送能力为Q=600T/H ,运行速度为V=3.15M/S ,输送机长度L=1300M 的DTL 型钢丝绳芯带式输送机的结构设计。
4.1 根据实际输送量计算带宽⑴选取输送带带宽[13]考虑采区上山的工作条件,为保证给定的运输能力,输送带上必需具有的最大堆积横截面积 vKQ F γ6.3=(4-1)式中 Q ——输送量,(t/h );γ——物料松散密度,(5t/m ),见表4-1[1],本设计取550.910900kg/m ⨯=;V——运行速度,(m/s );K ——倾角系数,见表4-2[18],选倾角为 14。
表4-1 各种散状物料的特性表4-2 倾角系数则最大堆积横截面积FvK QF γ6.3=91.049006.3600⨯⨯⨯=2m 0510.= 物料的动堆积角一般是安息角的50%~70%,由原煤的安息角为50(由表4-1查取),所以动堆积角30~25=θ,本设计取 30=θ,选取输送机的承载托辊槽角为 35。
由表三选出带宽为800mm 的输送带上所以允许物料堆积的横截面积为20.07898m ,见表4-3[1]所示,此值大于计算所需的堆积横截面积,据此选用宽度为1000mm 的输送带能满足需要。
表4-3 平形和三节托辊槽形输送带上最大截面积F(㎡)查表4-4[18],带宽为1000mm 的输送带,能适用于运送最大块度为300mm 的原煤。
表4-4 部分带宽适用的最大块度(m )⑵胶带宽度的计算[13]KV K QB •••=γα(4-2)式中 B ——带宽,(m );αK ——货载断面系数,它与带面上的物料动堆积角有关,见表4-5[20]。
表4-5 货载断面系数则胶带宽度BKV K QB ⨯⨯⨯=γα91.015.39.0458600⨯⨯⨯=m 71250.≈考虑矿井的增产的能力,货载块度及胶带的性能,选用带宽为1000mm 的胶带合适。
胶带宽度算出后选择标准宽度应进行块度校核见表4-6[18]。