中考数学重难点专题讲座 第四讲 一元二次方程与二次函数(含答案)
- 格式:doc
- 大小:321.36 KB
- 文档页数:14
专题四 二次函数综合题题型1 二次函数的实际应用二次函数的实际应用问题,在陕西中考2022,2023,2024年连续三年进行考查,其考查本质为二次函数表达式的应用,其主要为顶点式的考查,在表达式的基础上进行实践应用的考查,知x求y或知y求x,利用二次函数性质求最值,感受数学在实际问题中的应用.类型1 抛物线运动轨迹问题(2024·西安市莲湖区模拟)如图,在一场校园羽毛球比赛中,小华在点P选择吊球进行击球,当羽毛球飞行的水平距离是1 m时,达到最大高度3.2 m,建立如图所示的平面直角坐标系.羽毛球在空中的运行轨迹可以近似地看成抛物线的一部分,队友小乐则在点P选择扣球进行击球,羽毛球的飞行高度y1(单位:m)与水平距离x(单位:m)近似地满足一次函数关系y1=-0.4x+2.8.(1)根据如图所示的平面直角坐标系,求吊球时羽毛球满足的二次函数表达式.(2)在(1)的条件下,已知球网AB与y轴的水平距离OA=3 m,CA=2 m,且点A,C都在x轴上,实践发现击球和吊球这两种方式都能使羽毛球过网.要使球的落地点到点C的距离更近,请通过计算判断应该选择哪种击球方式?解题指南 (1)抓住最大高度这一特征,设出顶点式:y=a(x-h)2+k,然后将点P的坐标代入即可.(2)分别令一次函数与二次函数的y为0,对比两种方式在x轴的交点的横坐标到点C的横坐标的距离大小即可.类型2 以建筑为背景的“过桥”问题(2024·西工大模拟)陕北窑洞,具有十分浓厚的民俗风情和乡土气息.如图,某窑洞口的下部近似为矩形OABC,上部近似为一条抛物线.已知OA=3 m,AB=2 m,m.窑洞的最高点M(抛物线的顶点)离地面OA的距离为258(1)建立如图所示的平面直角坐标系,求抛物线的表达式.(2)若在窑洞口的上部要安装一个正方形窗户DEFG,使得点D,E在矩形OABC的边BC上,点F,G在抛物线上,那么这个正方形窗户DEFG的边长为多少米?解题指南 (1)借助点M为顶点,设出顶点式,然后将点B坐标代入顶点式即可.(2)设出小正方形DEFG的边长,然后用所设边长表示出点G的横坐标、纵坐标,最后代入(1)中抛物线的表达式解方程即可.(2024·西安新城区模拟)某地想将新建公园的正门设计为一个抛物线型拱门,设计部门给出了如下方案:将拱门图形放入平面直角坐标系中,如图,抛物线型拱门的跨度ON=24 m,拱高PE=8 m.其中,点N在x轴上,PE⊥ON,OE=EN.(1)求该抛物线的函数表达式.(2)现要在拱门中设置矩形框架,其周长越小越好(框架粗细忽略不计).设计部门给出了两个设计方案:方案一:矩形框架ABCD的周长记为C1,点A、D在抛物线上,边BC在ON上,其中AB=6 m.方案二:矩形框架A'B'C'D'的周长记为C2,点A',D'在抛物线上,边B'C'在ON上,其中A'B'=4 m.求这两个方案中,矩形框架的周长C1,C2,并比较C1,C2的大小.类型3 以“悬挂线”为背景解决高度问题如图,在一个斜坡上架设两个塔柱AB,CD(可看作两条竖直的线段),塔柱间挂起的电缆线下垂可以近似地看成抛物线的形状.两根塔柱的高度满足AB=CD=27 m,塔柱AB与CD之间的水平距离为60 m,且两个塔柱底端点D与点B的高度差为12 m.以点A为坐标原点,1 m为单位长度构建平面直角坐标系. (1)求点B,C,D的坐标.x2一样,且电(2)经过测量,AC段所挂电缆线对应的抛物线的形状与抛物线y=1100缆线距离斜坡面竖直高度至少为15.5 m时,才符合设计安全要求.请结合所学知识判断上述电缆线的架设是否符合安全要求?并说明理由.(2024·陕师大附中模拟)在元旦来临之际,学校安排各班在教室进行联欢.八(2)班同学准备装点一下教室.他们在屋顶对角A,B两点之间拉了一根彩带,彩带自然下垂后呈抛物线形状.若以两面墙交线AO为y轴,以点A正下方的墙角点O为原点建立平面直角坐标系,此时彩带呈现出的抛物线表达式为y=ax2-0.6x+3.5.已知屋顶对角线AB长12 m.(1)a= ,该抛物线的顶点坐标为.(2)小军想从屋顶正中心C(C为AB的中点)系一根绳子CD.将正下方彩带最低点向上提起,这样两侧的彩带就形成了两个对称的新抛物线形状(如图所示).要使两个新抛物线彩带最低点之间的水平距离为5 m,且比之前的最低点提高0.3 m.求这根绳子的下端D到地面的距离.题型2 图形面积探究类型1 面积、线段最值探究二次函数中面积问题,基本上都可以转化为线段相关问题,线段的三种表示方式:①水平型,②垂直型,③斜型.以边为分类标准,可采取不同方法进行面积的求解,现对不同类型线段的表示作以说明.(1)线段AB∥y轴时,点A,B横坐标相等,则AB=|y1-y2|=|y2-y1|=y1-y2.(2)线段BC∥x轴时,点B,C纵坐标相等,则BC=|x2-x1|=|x1-x2|=x2-x1.(3)线段AC与x轴,y轴不平行时,在Rt△ABC中,AC=AB2+BC2=(x1-x2)2+(y1-y2)2.第一步,过动点向x轴作垂线,与定边产生交点第二步,设动点坐标,表示交点坐标第三步,表示纵向线段长度|y上-y下|第四步,利用水平宽铅垂高表示三角形面积:S=12(y 上-y 下)(x 右-x 左)【原创好题】“水平宽”与“铅垂高”的运用:已知△ABC 的三个顶点坐标分别为A(x A ,y A ),B(x B ,y B ),C(x C ,y C ),用含有A,B,C 坐标的方式表示出△ABC 的面积.解题指南 (1)在平面直角坐标系中作△ABC,要求点A,B 在点C 的左、右两侧,经过点C 作x 轴的垂线交AB 于点D,则△ABC 被分成两部分,即S △ABC =S △ACD +S △BCD .(2)过点A 作△ADC 的高h 1,过点B 作△DBC 的高h 2,所以△ACD 与△BCD 的面积表示为S △ADC =12CD·h 1,S △BCD =12CD·h 2.(3)所以S △ABC =S △ADC +S △BCD =12CD·h 1+12CD·h 2=12CD·(h 1+h 2).(4)其中h 1与h 2的和可以看作点A 与点B 的水平间的距离,因此称之为“水平宽”,h 1+h 2=|x B -x A |,CD 是点C 与点D 的竖直间的距离,称之为“铅垂高”,即CD=|y D -y C |,故S △ABC =S △ACD +S △BCD =12|y D -y C |·|x B -x A |.1.如图,在平面直角坐标系xOy 中,直线y=x+4与坐标轴分别交于A,B 两点,抛物线y=-x 2+bx+c 过A,B 两点,D 为线段AB 上一动点,过点D 作CD ⊥x 轴于点C,交抛物线于点E.(1)求抛物线的表达式.(2)求△ABE 面积的最大值.2.如图,抛物线y=-x2+2x+3与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,连接BC.(1)求A,B,C三点的坐标.(2)若P为线段BC上的一点(不与点B,C重合),PM∥y轴,且PM交抛物线于点M,交x轴于点N.当线段PM的长度最大时,求点M的坐标.类型2 面积关系探究(2018.T24)x2+bx与x轴交于O,A 【改编】在平面直角坐标系xOy中,已知抛物线y=-43两点,B(1,4)在抛物线上.若P是抛物线上一点,且在直线AB的上方,且满足△OAB 的面积是△PAB面积的2倍,求点P的坐标.解题指南 (1)第一步,将点B的坐标代入抛物线的表达式,求出b的值,根据A,B两点的坐标,求出直线AB的表达式;(2)第二步,借助三角形的面积公式,求出△OAB的面积,根据△OAB与△PAB的面积关系求出△PAB的面积;(3)第三步,设点P的坐标为t,-43t2+163t,过点P作x轴的垂线,与AB交于点N,并结合直线AB的表达式,表示出点N的坐标;(4)第四步,借助“水平宽,铅垂高”,求出PN的长度,用含有t的式子表示出PN的长度,构造方程求解即可.1.如图,抛物线y=-x2+mx+3与x轴交于A,B两点,与y轴交于点C,点B的坐标为x+3交于C,D两点,连接BD,AD.(3,0),抛物线与直线y=-32(1)求m的值.(2)求A,D两点的坐标.(3)若抛物线上有一点P,满足S△ABP=4S△ABD,求点P的坐标.2.如图,在平面直角坐标系中,点A(0,-1),抛物线y=-x2+bx+c经过点B(4,5)和C(5,0).(1)求抛物线的表达式.(2)连接AB,BC,求∠ABC的正切值.(3)在抛物线的对称轴上,是否存在点D,使得S△ABD=S△ABC?若存在,直接写出点D 的坐标;若不存在,请说明理由.3.已知抛物线y=-x2+bx+c过点A(-1,0),B(3,0),与y轴交于点C.(1)求抛物线的解析式.(2)P为抛物线对称轴上一动点,当△PCB是以BC为底边的等腰三角形时,求点P 的坐标.(3)在(2)的条件下,是否存在M为抛物线第一象限上的点,使得S△BCM=S△BCP?若存在,求出点M的横坐标;若不存在,请说明理由.解题指南 (1)由交点式可直接得出抛物线的解析式.(2)设P(1,m),根据列出方程,进而求得点P的坐标.(3)作PQ∥BC交y轴于点Q,作MN∥BC交y轴于点N,先求出PQ的解析式,进而求得MN的解析式,进一步求得结果. 借助“同底等高”找等面积的方法在平面直角坐标系中有△ABC,分别在BC所在直线的两侧找出一点P和Q,使得S△PBC=S△QBC=S△ABC.操作方式:(1)根据要求可知△PBC和△QBC均与△ABC具有共同的底边BC,要使它们的面积相等,只需要它们的高相等即可,因此可以设△PBC与△QBC的高均为h;(2)确定高以后,过点A作BC的平行线,则在所作平行线上存在一点P满足S△PBC=S△ABC;(3)如图,将BC所在直线向下平移AO'个单位长度,过A'作BC的平行线,则该直线上存在一点Q满足S△QBC=S△ABC;(4)运用“同底等高”法时,务必考虑不同位置的情况;(5)进行面积计算时,可以直接利用三角形面积公式求解.题型3 特殊三角形问题探究类型1 等腰三角形问题探究等腰三角形存在问题,可以分为两个方向来解决,几何法和代数法,其中几何法的优势在于比较直观地得到结果,对几何图形要求较高;代数法以解析几何为背景可更快地找到等量关系,方法较为单一,等腰三角形问题做完之后一定要验证是否出现三点共线的情况.方法一 几何法(1)两圆一线找出点;(2)利用勾股、相似、三角函数等求线段长,由线段长求得点坐标方法二 代数法(1)表示出三个点坐标A,B,C;(2)由点坐标表示出三条线段AB,AC,BC;(3)分类讨论①AB=AC;②AB=BC;③AC=BC;(4)列出方程求解(2024·铁一中模拟)如图,在平面直角坐标系中,抛物线L的顶点E的坐标为(-2,8),且过点B(0,6),与x轴交于M,N两点.(1)求该抛物线L的表达式.(2)设抛物线L关于y轴对称后的抛物线为L',其顶点记为点D,连接MD,在抛物线L'对称轴上是否存在点Q,使得以点M,D,Q为顶点的三角形为等腰三角形?若存在,求出点Q的坐标;若不存在,请说明理由.(2024·西咸新区模拟)如图,抛物线L:y=ax2+bx-3(a、b为常数,且a≠0)与x轴交于点A(-1,0),B(3,0),与y轴交于点C.将抛物线L向右平移1个单位长度得到抛物线L'.(1)求抛物线L的函数表达式.(2)连接AC,探究抛物线L'的对称轴直线l上是否存在点P,使得以点A,C,P为顶点的三角形是等腰三角形?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.类型2 直角三角形问题探究直角三角形存在问题,菱形中对角线垂直,矩形中的内角为直角,有下列两个方向可以帮助解决问题,不同的方法适用不同方向的题目,注意区分其方法.一、勾股定理若AC2+BC2=AB2,则△ABC为直角三角形二、构造“K”字型相似过直角顶点作坐标轴的平行线,过其他两点向平行线作垂直,出现“一线三等角”模型,利用“一线三等角”的相似模型,构建方程解决问题已知抛物线L:y=ax2-2ax-8a(a≠0)与x轴交于点A,点B,且点A在点B的左侧,与y轴交于点C.(1)求出点A与点B的坐标.(2)当△ABC是以AB为斜边的直角三角形时,求抛物线L的表达式.如图,在平面直角坐标系中,抛物线C1:y=ax2+bx+c(a≠0)交x轴于点A(-5,0),B(-1,0),交y轴于点C(0,5).(1)求抛物线C1的表达式和顶点D的坐标.(2)将抛物线C1关于y轴对称的抛物线记作C2,E为抛物线C2上一点,若△DOE是以DO为直角边的直角三角形,求点E的坐标. 直角三角形中的找点方法和计算方法找点方法:示例:如图,在平面内有A,B两点,试着找出一点C,使得A,B,C三点构成的三角形为直角三角形.分两种情况讨论:当AB为直角边时,{过点A作AB的垂线l1,过点B作AB的垂线l2;当AB为斜边时,以AB为直径作圆.如图,在直线l1,l2上的点C满足△ABC为直角三角形,但要注意一点:点C不与A,B两点重合.我们将这种找点C的方法称为“两线一圆”.计算方法:(1)利用勾股定理构造方程求解;(2)以“K”字型搭建相似三角形,列比例式构造方程求解.类型3 等腰直角三角形问题探究等腰直角三角形相关问题,以等腰直角三角形和正方形问题,主要解题方法相对统一,注意如何构图能直观得到“K”字全等是解决问题的关键之处.(1)过直角顶点作坐标轴平行线,构造“K”字全等(2)方法一:设某小边长度.方法二:设点坐标,表示直角三角形中的直角边(3)利用某纵向或横向线段构建等式(x+1)(x-5)与x轴交于A,B两点,与y轴交于点C.如果P是如图,抛物线y=-25抛物线上一点,M是该抛物线对称轴上的点,当△OMP是以OM为斜边的等腰直角三角形时,求点P的坐标.解题指南 第一步,过直角顶点作平行y轴的垂线,分别过另两个顶点作垂直,构造“K”字全等;第二步,利用坐标分别表示两直角三角形的直角边;第三步,利用某边相等构造方程.(2024·高新一中模拟)如图,在平面直角坐标系中,抛物线L:y=x2+bx+c与x轴交于点A(1,0)和点B,与y轴交于点C(0,3).(1)求出抛物线L的表达式和顶点的坐标.(2)P是抛物线L的对称轴右侧图象上的一点,过点P作x的垂线交x轴于点Q,作抛物线L关于直线PQ对称抛物线L',则C关于直线PQ的对称点为C',若△PCC'为等腰直角三角形,求出抛物线L'的表达式.题型4 三角形关系问题类型1 与相似三角形结合问题三角形的关系问题是陕西考试中非常常见的一个类型,中考中多次连续出现,相似问题的处理方法也相对较为固定,以固定三角形为参照,找到定角,以边为分类标准,进行分类讨论.主要有两个方法.方法一:利用一角相等,邻边成比例证明相似方法二:两组角相等的三角形相似分析目标三角形:第一类:找一角相等,用邻边成比例.第二类:找一角相等(多为90°问题),找另一角相等.方法总结:(1)分动、定三角形;(2)找等角;(3)表示边或者找另一角相等.(2024·曲江一中模拟)如图,抛物线y=ax 2+bx 经过坐标原点O 与点A(3,0),正比例函数y=kx 与抛物线交于点B 72,74.(1)求该抛物线的函数表达式.(2)P 是第四象限抛物线上的一个动点,过点P 作PM ⊥x 轴于点N,交OB 于点M,是否存在点P,使得△OMN 与以点N,A,P 为顶点的三角形相似?若存在,请求出点P 的坐标;若不存在,请说明理由.(2024·陕师大附中模拟)已知抛物线L 1:y=x 2+bx+c 与x 轴交于点A,B(点A 在点B 的左侧),与y 轴交于点C(0,-3),对称轴为直线x=1.(1)求此二次函数表达式和点A,B 的坐标.(2)P 为第四象限内抛物线L 1上一动点,将抛物线L 1平移得到抛物线L 2,抛物线L 2的顶点为点P,抛物线L 2与y 轴交于点E,过点P 作y 轴的垂线交y 轴于点D.是否存在点P,使以点P,D,E 为顶点的三角形与△AOC 相似?如果存在,请写出平移过程,并说明理由.类型2 与全等三角形结合问题1.全等为特殊的相似,相似比为1,方法与相似一致.2.注意相等角的邻边分类情况.【改编】如图,抛物线y=-23x 2+103x+4的图象与x 轴交于A,B 两点,与y 轴的正半轴交于点C,过点C 的直线y=-43x+4与x 轴交于点D.若M 是抛物线上位于第一象限的一动点,过点M 作ME ⊥CD 于点E,MF ∥x 轴交直线CD 于点F,当△MEF ≌△COD 时,求出点M 的坐标.解题指南 当△MEF ≌△COD 时,(1)找准对应角、边.结合关系式可知,∠MEF=∠COD,∠MFE=∠CDO,MF=CD.(2)根据直线CD 的表达式求出线段CD 的长度.由点M 在抛物线上,可以设点M的坐标为m,-23m 2+103m+4,再由MF ∥x 轴,得点F 的纵坐标.根据全等三角形的对应边相等可以得出点F 的横坐标为m-5.(3)由点F 在直线CD 上,将点F 的坐标代入直线CD 的表达式中,求出m 的值.已知经过原点O 的抛物线y=-x 2+4x 与x 轴的另一个交点为A.(1)求点A 的坐标及抛物线的对称轴.(2)B 是OA 的中点,N 是y 轴正半轴上一点,在第一象限内的抛物线上是否存在点M,使得△OMN 与△OBM 全等,且点B 与点N 为对应点?若存在,请求出点M 的坐标;若不存在,请说明理由. 与全等三角形结合问题的求解步骤(1)全等三角形的问题与相似三角形的问题步骤类似,均是先列出三角形的对应关系式,再根据关系式找出对应边相等;(2)借助对应边相等,将边与边的长度关系用点的坐标进行表示,然后运用“两点间距离公式”构造方程求解.题型5 特殊四边形问题探究类型1 平行四边形问题探究平行四边形问题,一般分为三定一动,两定两动问题,选取固定的两个点为分类标准,①以某边为边时;②以某边为对角线时.第一步,寻找分类标准;第二步,平移点,找关系(注意:从A到B和从B到A);第三步,代入关系求值(2024·西工大附中模拟)如图,抛物线y=ax2-2x+c与直线y=kx+b都经过A(0,3),B(-3,0)两点,该抛物线的顶点为C.(1)求此抛物线和直线AB的表达式.(2)设直线AB与该抛物线的对称轴交于点E,在射线EB上是否存在一点M,过点M作x轴的垂线交抛物线于点N.使点M,N,C,E是平行四边形的四个顶点?若存在,求出点M的坐标;若不存在,请说明理由.【改编】已知点A(-1,0)在抛物线L:y=x2-x-2上,抛物线L'与抛物线L关于原点对称,点A的对应点为点A',是否在抛物线L上存在一点P,在抛物线L'上存在一点Q,使得以AA'为边,且以A,A',P,Q为顶点的四边形是平行四边形?若存在,求出点P 的坐标;若不存在,请说明理由. 平行四边形中坐标的计算如图1,在平行四边形ABDC 中,关于坐标的计算——平移法则:x B -x A =x D -x C ,y B -y A =y D -y C ,x A -x C =x B -x D ,y A -y C =y B -y D .如图2,在平行四边形ADBC 中,关于坐标的计算——中点坐标公式:x M =x A +x B 2=x C +x D 2,y M =y A +y B 2=y C +y D 2.类型2 菱形问题探究菱形存在问题,主要分两类. 第一类:以平行四边形为背景,在平行四边形的基础上增加对角线垂直或邻边相等即可得菱形.(1)选一定点,再将这一定点与另外点的连线作为对角线,分类讨论.(2)利用中点坐标公式列方程:x A +x C 2=x B +x D 2;y A +y C 2=y B +y D 2.(3)对角线垂直:可参照直角存在问题.邻边相等:可参照等腰存在问题.(4)平移型:先平行四边形,再菱形.翻折型:先等腰,再菱形.第二类:若出现在平面内任意一点存在性问题,则去掉此点,转化为等腰存在问题,可以利用等腰存在问题策略解决问题如图,抛物线y=x 2+bx+c 与x 轴交于A,B 两点,与y 轴交于点C,OA=2,OC=6,连接AC 和BC.(1)求抛物线的函数表达式.(2)若M是y轴上的动点,在坐标平面内是否存在点N,使以A,C,M,N为顶点的四边形是菱形?若存在,请直接写出点N的坐标;若不存在,请说明理由.类型3 矩形问题探究矩形存在性问题,主要分两类. 第一类:以平行四边形为背景,在平行四边形的基础上增加对角线相等或一内角为90°即可得到矩形.(1)选一定点,再将这一定点与另外点的连线作为对角线,分类讨论.(2)利用中点坐标公式列方程:x A+x C=x B+x D;y A+y C=y B+y D.(3)方向一 对角线相等:(x A-x C)2+(y A-y C)2=(x B-x D)2+(y B-y D)2.方向二 有一角为90°.第二类:若出现在平面内任意一点存在性问题,则去掉此点,转化为直角存在问题,可以利用直角存在问题策略解决问题已知抛物线L:y=ax2+bx(a≠0)经过点B(6,0),C(3,9).(1)求抛物线L的表达式.(2)若抛物线L'与抛物线L关于x轴对称,P,Q(点P,Q不与点O,B重合)分别是抛物线L,L'上的动点,连接PO,PB,QO,QB,问四边形OPBQ能否为矩形?若能,求出满足条件的点P和点Q的坐标;若不能,请说明理由.已知抛物线L:y=-x2+2x+3与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.(1)求A,B,C三点的坐标.(2)抛物线L平移后得到抛物线L',点A,C在抛物线L'上的对应点分别为点A',C',若以A,C,A',C'为顶点的四边形是面积为20的矩形,求平移后的抛物线L'的表达式.类型4 正方形问题探究(在菱形的基础上增加对角线相等)(1)选一定点,再将这一定点与另外点的连线作为对角线,分类讨论.(2)利用中点坐标公式列方程:x A+x C=x B+x D;y A+y C=y B+y D.(3)平行四边形题基础上加等腰直角三角形问题.,正方形ABCD的边AB 如图,一条抛物线y=ax2+bx(a≠0)的顶点坐标为2,83落在x轴的正半轴上,点C,D在这条抛物线上.(1)求这条抛物线的表达式.(2)求正方形ABCD的边长.解题指南 (1)已知顶点,可直接设抛物线的顶点式:y=a(x-h)2+k,将点的坐标代入计算即可.(2)①在正方形中,四条边均相等;②设出正方形的边长,并根据所设边长表示出正方形ABCD的顶点坐标;③注意观察正方形ABCD的顶点C,D在抛物线上;④代入相应点的坐标求出所设的边长即可.x2+bx+c的图象L经过原点,且与x轴的另一个交点为(8,0).已知二次函数y=-13(1)求该二次函数的表达式.(2)作x轴的平行线,交L于A,B两点(点A在点B的左侧),过A,B两点分别作x 轴的垂线,垂足分别为D,C.当以A,B,C,D为顶点的四边形是正方形时,求点A的坐标. 借助抛物线判定正方形的思路步骤1.明确在抛物线上的正方形的两个顶点;2.借助抛物线表达式y=ax2+bx+c(a≠0),设出其中一个顶点坐标为(x,ax2+bx+c),然后利用抛物线对称轴表示出另一个顶点坐标;3.根据正方形四条边相等构造一元二次方程求解即可.题型6 角度问题探究角相关问题是二次函数中相对较为综合性的问题,在近几年中考中也常出现在各个省市的中考题中,问题最终都会落到以下问题上来.等角问题,可直接用等角的性质来处理问题.解决策略:(1)寻找相似,出现等角;(2)利用三角函数找等角;(3)利用轴对称来找等角.【改编】在平面直角坐标系xOy中,已知抛物线y=-x2+4x-3与x轴分别交于A,B两点,且点A在点B的左侧.在抛物线上是否存在一点D,使得∠DOA=45°?若存在,求出点D的坐标;若不存在,请说明理由.解题指南 以平面直角坐标系为背景来探究角度问题,常用的思路为借助三角函数构造方程求解.本题具体步骤如下:第一步,根据∠DOA=45°,联想tan∠DOA=1;第二步,根据点D在抛物线上,可以过点D作x轴的垂线,记垂足为H,在△DOH中,tan∠DOH=DH OH;第三步,由点D在抛物线上,设点D的坐标为(t,-t2+4t-3);第四步,根据DH=|y D|=|-t2+4t-3|,OH=|t|,构造方程求解即可.已知抛物线L:y=-23x2+bx+c,与y轴的交点为C(0,2),与x轴的交点分别为A(3,0),B(点A在点B右侧).(1)求抛物线的表达式.(2)将抛物线沿x轴向左平移m(m>0)个单位长度,所得的抛物线与x轴的左交点为M,与y轴的交点为N,若∠NMO=∠CAO,求m的值.参考答案题型1 二次函数的实际应用类型1 抛物线运动轨迹问题例1 解析:(1)在y 1=-0.4x+2.8中,令x=0,则y 1=2.8,∴P (0,2.8).根据题意,二次函数图象的顶点坐标为(1,3.2).设二次函数的表达式为y=a (x-1)2+3.2,把P (0,2.8)代入y=a (x-1)2+3.2,得a+3.2=2.8,解得a=-0.4,∴吊球时羽毛球满足的二次函数表达式y=-0.4(x-1)2+3.2.(2)吊球时,令y=0,则-0.4(x-1)2+3.2=0,解得x 1=1+22,x 2=1-22(舍去),扣球时,令y=0,则-0.4x+2.8=0,解得x=7.∵OA=3 m,CA=2 m,∴OC=OA+AC=5.∵7-5=2,|22+1-5|=4-22<2,∴选择吊球时,球的落地点到点C 的距离更近.类型2 以建筑为背景的“过桥”问题例2 解析:(1)由题意得点M ,B 的坐标分别为32,258,(3,2).设抛物线的表达式为y=a x-322+258,将点B 的坐标代入上式得2=a 3-322+258,解得a=-12,∴抛物线的表达式为y=-12x-322+258.(2)设正方形的边长为2m.把点G 32-m ,2+2m 代入抛物线表达式,得2+2m=-1232-m-322+258,解得m=12(负值已舍去),∴正方形窗户DEFG 的边长为1 m .变式设问 解析:(1)由题意得抛物线的顶点坐标为(12,8),N (24,0).设y=a (x-12)2+8,把N (24,0)代入表达式中,得a=-118,∴该抛物线的函数表达式为y=-118(x-12)2+8.(2)方案一:令y=6,即6=-118(x-12)2+8.解得x 1=6,x 2=18,∴BC=AD=12.又∵AB=CD=6,∴矩形ABCD 的周长C 1=2×12+2×6=36(m).方案二:令y=4,即4=-118(x-12)2+8,解得x 1=12-62,x 2=12+62,∴B'C'=A'D'=12+62-(12-62)=122.又∵A'B'=C'D'=4,∴矩形A'B'C'D'的周长C 2=2×122+2×4=(242+8)m .∵C 1=36=28+8=4×7+8,C 2=242+8=4×62+8,∴36<242+8,即C 1<C 2.类型3 以“悬挂线”为背景解决高度问题例3 解析:(1)如图,过点C 作CE ⊥y 轴,垂足为E ,过点D 作DF ⊥y 轴,垂足为F.记CD 与x 轴相交于点G.根据题意,得点B 的坐标是(0,-27).∵FB=12,则GD=OF=OB-FB=27-12=15,OG=FD=EC=60,CG=CD-GD=27-15=12,∴点C 的坐标是(60,12),点D 的坐标是(60,-15).(2)符合安全要求.理由:设AC 段所挂电缆线对应的抛物线的函数表达式为y=1100x 2+bx ,将点C (60,12)代入表达式中,得12=1100×602+60b ,解得b=-25,∴y=1100x 2-25x.由点B (0,-27),D (60,-15)可知直线BD 的表达式为y=15x-27.记M 为抛物线上一点,过点M 作x 轴的垂线与BD 交于点N.设点M m ,1100m 2-25m ,则点N m ,15m-27,故MN=1100m 2-25m-15m-27=1100(m-30)2+18≥18>15.5,∴电缆线距离斜坡面竖直高度的最小值为18 m,高于安全需要的距离15.5 m,故符合安全要求.变式设问 解析:(1)0.05;(6,1.7).提示:由题意得抛物线的对称轴为直线x=6,则A (0,3.5),B (12,3.5),∴144a-7.2+3.5=3.5,解得a=0.05,∴抛物线的表达式为y=0.05x 2-0.6x+3.5.当x=6时,y=0.05x 2-0.6x+3.5=1.7,即该抛物线的顶点坐标为(6,1.7),(2)∵两个新抛物线彩带最低点之间的水平距离为5 m,且比之前的最低点提高0.3 m,∴左边新抛物线的顶点坐标为(3.5,2).设左边新抛物线的表达式为y=a'(x-3.5)2+2,将点A 的坐标代入上式得3.5=a'(0-3.5)2+2,解得a'=649,∴左侧抛物线的表达式为y=649(x-3.5)2+2.当x=6时,y=649(6-3.5)2+2=27198,∴这根绳子的下端D 到地面的距高为27198m .题型2 图形面积探究类型1 面积、线段最值探究例1 解析:如图,过点C 作垂直于x 轴的直线,与AB 交于点D ,分别过点A ,B 作CD 的垂线段h 1,h 2,即S △ABC =S △ACD +S △BCD .∵S △ADC =12CD ·h 1,S △BCD =12CD ·h 2,∴S △ABC =S △ACD +S △BCD =12CD ·(h 1+h 2).又∵CD=|y D -y C |,h 1+h 2=|x B -x A |,∴S △ABC =S △ACD +S △BCD =12(y D -y C)(x B -x A ).变式设问 1.解析:(1)在一次函数y=x+4中,令x=0,得y=4,令y=0,得x=-4,∴A (-4,0),B (0,4).∵点A (-4,0),B (0,4)在抛物线y=-x 2+bx+c 上,∴{-16-4b +c =0,c =4,解得{b =-3,c =4,∴抛物线的表达式为y=-x 2-3x+4.(2)设点C 的坐标为(m ,0)(-4≤m ≤0),则点E 的坐标为(m ,-m 2-3m+4),点D 的坐标为(m ,m+4),。
第04讲_二次函数与一元二次方程知识图谱二次函数与一元二次方程知识精讲一.二次函数与x 轴交点1.抛物线与x 轴的交点:二次函数2y ax bx c =++的图像与x 轴的两个交点的横坐标1x 、2x ,是对应一元二次方程20ax bx c ++=的两个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式判定: ①有两个交点⇔0∆>⇔抛物线与x 轴相交;②有一个交点(顶点在x 轴上)⇔0∆=⇔抛物线与x 轴相切; ③没有交点⇔0∆<⇔抛物线与x 轴相离.2.平行于x 轴的直线与抛物线的交点:可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为k ,则横坐标是2ax bx c k ++=的两个实数根.3.抛物线与x 轴两交点之间的距离.若抛物线2y ax bx c =++与x 轴两交点为()10A x ,,()20B x ,,由于1x 、2x 是方程20ax bx c ++=的两个根,故1212b cx x x x +=-⋅=,: ()()22221212121244+4b cb ac AB x x x x x x x x a a a a -∆⎛⎫=---=--=⎪⎝⎭判别式:24b ac ∆=-0∆>0∆= 0∆<二次函数2y ax bx c =++(0)a >的图象x 2x 1Oyxx 1=x 2O yxOxy一元二次方程:20ax bx c ++=(0)a ≠的根有两相异实根 12,x x =242b b aca -±-12()x x <有两相等实根122bx x a==-没有实根三点剖析一.考点:二次函数与x 轴交点问题,利用二次函数解决一元二次方程根的分布问题.二.重难点:1.二次函数与x 轴交点问题即当0y =时,转化为一元二次方程20ax bx c ++=;2.在利用二次函数分析一元二次方程根的分布问题时要结合函数图像的性质来分析.三.易错点:利用二次函数分析一元二次方程根的分布问题时首先确定开口方向,然后再结合函数的增减性,对称轴的位置,函数值等因素最终确定一元二次方程根的分布情况.二次函数与x 轴交点例题1、 抛物线y=x 2+2x+m ﹣1与x 轴有两个不同的交点,则m 的取值范围是( ) A.m <2 B.m >2 C.0<m≤2 D.m <﹣2 【答案】 A【解析】 ∵抛物线y=x 2+2x+m ﹣1与x 轴有两个交点, ∵∵=b 2﹣4ac >0, 即4﹣4m+4>0, 解得m <2,例题2、 二次函数2y x 6x n =-+的部分图像如图所示,若关于的一元二次方程2x 6x n 0-+=的一个解为x 1=1,则另一个解2x =__________.【答案】 5【解析】 暂无解析例题3、 已知关于x 的方程()231220mx m x m --+-=(1)求证:无论m 取任何实数时,方程恒有实数根. (2)若关于x 的二次函数()23122y mx m x m =--+-的图象与x 轴两交点间的距离为2时,求二次函数的表达式. 【答案】 (1)见解析;(2)函数解析式为22y x x =-或218233y x x =-+-【解析】 (1)①当0m =时,原方程可化为20x -=,解得2x =; ②当0m ≠时,方程为一元二次方程,()()231422m m m ∆=----⎡⎤⎣⎦ 221m m =++x()210m =+≥,故方程有两个实数根;故无论m 为何值,方程恒有实数根.(2)设1x ,2x 分别为抛物线()23122y mx m x m =--+-与x 轴两交点的横坐标, 令0y =,则()231220mx m x m --+-=,由求根公式得,12x =,21m x m-=∴抛物线()23122y mx m x m =--+-不论m 为任何不为0的实数时,恒过定点()2,0,∴20x =或24x =,即10m m -=或14m m-=, 解得11m =,213m =-则函数解析式为22y x x =-或218233y x x =-+-随练1、 二次函数与y =kx 2-8x +8的图象与x 轴有交点,则k 的取值范围是( ) A.k <2 B.k <2且k ≠0 C.k ≤2 D.k ≤2且k ≠0 【答案】 D【解析】 暂无解析随练2、 如图,平面直角坐标系中,点M 是直线y=2与x 轴之间的一个动点,且点M 是抛物线y=12x 2+bx+c 的顶点,则方程12x 2+bx+c=1的解的个数是( )A.0或2B.0或1C.1或2D.0,1或2【答案】 A【解析】 考查了二次函数的性质,本题涉及分类思想和方程思想的应用.分三种情况:点M 的纵坐标小于1;点M 的纵坐标等于1;点M 的纵坐标大于1;进行讨论即可得到方程12x 2+bx+c=1的解的个数. 分三种情况:点M 的纵坐标小于1,方程12x 2+bx+c=1的解是2个不相等的实数根; 点M 的纵坐标等于1,方程12x 2+bx+c=1的解是2个相等的实数根;点M 的纵坐标大于1,方程12x 2+bx+c=1的解的个数是0.故方程12x 2+bx+c=1的解的个数是0或2.故选:A .随练3、 实数a 在什么范围内取值时,关于x 的方程2(2)50x a x a --+-=的一个根大于0而小于2,另一个根大于4而小于6.【答案】 2955a -<<-【解析】 设2()(2)5f x x a x a =--+-;则有:(0)0(2)0(4)0(6)0f f f f >⎧⎪<⎪⎨<⎪⎪>⎩ 解得2955a -<<-.一元二次方程根的分布问题例题1、 “如果二次函数y=ax 2+bx+c 的图象与x 轴有两个公共点,那么一元二次方程ax 2+bx+c=0有两个不相等的实数根.”请根据你对这句话的理解,解决下面问题:若m 、n (m <n )是关于x 的方程1-(x -a )(x -b )=0的两根,且a <b ,则a 、b 、m 、n 的大小关系是( ) A.m <a <b <n B.a <m <n <b C.a <m <b <n D.m <a <n <b 【答案】 A【解析】 本题考查了二次函数与一元二次方程的关系,考查了数形结合的数学思想.解题时,画出函数草图,由函数图象直观形象地得出结论,避免了繁琐复杂的计算. 依题意画出函数y=(x -a )(x -b )图象草图,根据二次函数的增减性求解.依题意,画出函数y=(x -a )(x -b )的图象,如图所示.函数图象为抛物线,开口向上,与x 轴两个交点的横坐标分别为a ,b (a <b ). 方程1-(x -a )(x -b )=0 转化为(x -a )(x -b )=1,方程的两根是抛物线y=(x -a )(x -b )与直线y=1的两个交点. 由m <n ,可知对称轴左侧交点横坐标为m ,右侧为n .由抛物线开口向上,则在对称轴左侧,y 随x 增大而减少,则有m <a ;在对称轴右侧,y 随x 增大而增大,则有b <n .综上所述,可知m <a <b <n . 故选:A .例题2、 求实数a 的取值范围,使关于x 的方程()221260x a x a +-++=. (1)有两个实根x 1,x 2,且满足1204x x <<<; (2)如果至少有一个正根,求实数a 的取值范围.【答案】 (1)715a -<<-(2)1a ≤-【解析】 (1)设2()2(1)26f x x a x a =+-++;则有:0042(0)0(4)0b af f ∆>⎧⎪⎪<-<⎪⎨⎪>⎪>⎪⎩解得:715a -<<-(2)可以利用韦达定理来解决此题①由图1、图2,可得:1212000x x x x ∆≥⎧⎪+>⎨⎪⋅>⎩;解得:31a -<≤-②由图3,可得:121200x x x x ∆>⎧⎪+>⎨⎪⋅=⎩;解得:3a =-;③由图4,可得:1200x x ∆>⎧⎨⋅<⎩;解得:3a <-综上可得1a ≤-.随练1、 已知关于x 的方程()()2131220k x k x k ++-+-=.(1)讨论此方程根的情况;(2)若方程有两个整数根,求正整数k 的值;(3)若抛物线()()2131220k x k x k ++-+-=与x 轴的两个交点之间的距离为3,求k 的值. 【答案】 (1)见解析(2)1;3(3)0;3-【解析】 该题考查的是二次函数与一元二次方程的综合题.(1)当1k =-时,方程44x --=0为一元一次方程,此方程有一个实数根; 当1k ≠-时,方程2(1)(31)22k x k x k ++-+-=0是一元二次方程, ()()()()223141223k k k k ∆=--+-=-.∵()230k -≥,即0∆≥,∴ k 为除1-外的任意实数时,此方程总有两个实数根. 2分 综上,无论k 取任意实数,方程总有实数根.(2)13(3)2(1)k k x k -±-=+,11x =-,2x =421k -+.∵ 方程的两个根是整数根,且k 为正整数,∴ 当1k =时,方程的两根为1-,0; 当3k =时,方程的两根为1-,1-.∴ 1k =,3. 4分(3)∵ 抛物线()()213122y k x k x k =++-+-与x 轴的两个交点之间的距离为3, ∴,123x x -=,或213x x -=.当123x x -=时,3k =-;当213x x -=时,0k =.综上,0k =,-3. 6分随练2、 已知抛物线y =ax 2+bx +c (a 、b 、c 是常数,a≠0)的对称轴为直线x =-2. (1)b =________;(用含a 的代数式表示)(2)当a =-1时,若关于x 的方程ax 2+bx +c =0在-3<x <1的范围内有解,求c 的取值范围; (3)若抛物线过点(-2,-2),当-1≤x≤0时,抛物线上的点到x 轴距离的最大值为4,求a 的值. 【答案】 (1)4a (2)-4≤c <5(3)32a =或12a =-【解析】 (1)由2b x a =-得到:22ba-=-,则b =4a .(2)当a =-1时,∵关于x 的方程-x 2-4x +c =0在-3<x <1的范围内有解,即关于x 的方程x 2+4x -c =0在-3<x <1的范围内有解,图1图3∴b2-4ac=16+4c≥0,即c≥-4.方法一:∴抛物线y=x2+4x=(x+2)2-4与直线y=c在-3<x<1的范围内有交点.当x=-2时,y=-4,当x=1时,y=5.由图象可知:-4≤c<5.方法二:∴抛物线y=x2+4x-c=(x+2)2-4-c与x轴在-3<x<1的范围内有交点.当x=-2,y=0时,c=-4,当x=1,y=0时,c=5.由图象可知:-4≤c<5.方法三:∵c=x2+4x=(x+2)2-4.∴c是x的二次函数.当x=-2时,c=-4,当x=1时,c=5.由图象可知:-4≤c<5.(3)∵抛物线y=ax2+4ax+c过点(-2,-2),∴c=4a-2.∴抛物线解析式为:y=ax2+4ax+4a-2=a(x+2)2-2.方法一:①当a>0时,抛物线开口向上.∵抛物线对称轴为x=-2.∴当-1≤x≤0时,y随x增大而增大.∵抛物线上的点到x轴距离的最大值为4,由图象可知:4a-2=4.∴32a=.②当a<0时,抛物线开口向下.∵抛物线对称轴为x=-2.∴当-1≤x≤0时,y随x增大而减小.∵抛物线上的点到x轴距离的最大值为4,由图象可知:4a-2=-4.∴12a=-.方法二:∵-1≤x≤0,∴当x=0时,y=4a-2;当x=-1时,y=a-2.∵当-1≤x≤0时,抛物线上的点到x轴距离的最大值为4.∴有两种情况:①若|4a-2|=4,则32a=或12a=-.此时1|2|42a-=<或5|2|42a-=<,符合题意.②若|a-2|=4,则a=6或a=-2.此时|4a-2|=22>4或|4a-2|=10>4.∴a=6或a=-2不合题意,舍去.综上所述:32a=或12a=-.随练3、在平面直角坐标系中,一次函数y=x+3的图象与x轴交于点A,二次函数y=x2+mx+n的图象经过点A.(1)当m=4时,求n的值;(2)设m=-2,当-3≤x≤0时,求二次函数y=x2+mx+n的最小值;(3)当-3≤x≤0时,若二次函数-3≤x≤0时的最小值为-4,求m、n的值.【答案】(1)3(2)-15(3)2;-3【解析】(1)当y=x+3=0时,x=-3,∴点A的坐标为(-3,0).∵二次函数y =x 2+mx +n 的图象经过点A , ∴0=9-3m +n ,即n =3m -9, ∴当m =4时,n =3m -9=3.(2)抛物线的对称轴为直线2mx =-,当m =-2时,对称轴为x =1,n =3m -9=-15, ∴当-3≤x≤0时,y 随x 的增大而减小,∴当x =0时,二次函数y =x 2+mx +n 的最小值为-15.(3)①当对称轴32m-≤-,即m≥6时,如图1所示.在-3≤x≤0中,y =x 2+mx +n 的最小值为0, ∴此情况不合题意;②当302m-<-<,即0<m <6时,如图2,有2444930n m m n ⎧-=-⎪⎨⎪-+=⎩, 解得:23m n =⎧⎨=-⎩或1021m n =⎧⎨=⎩(舍去),∴m =2、n =-3; ③当02m-≥,即m≤0时,如图3,有4930n m n =-⎧⎨-+=⎩,解得:534m n ⎧=⎪⎨⎪=-⎩(舍去). 综上所述:m =2,n =-3.拓展1、 抛物线y=2x 2﹣2x+1与坐标轴的交点个数是( ) A.0 B.1 C.2 D.3【答案】 C【解析】 抛物线y=2x 2﹣2,显然抛物线与y 轴有一个交点, 令y=0,得到2x 2﹣2x+1=0, ∵△=8﹣8=0,∴抛物线与x 轴有一个交点,则抛物线与坐标轴的交点个数是2,2、 已知二次函数y =x 2-3x +m (m 为常数)的图象与x 轴的一个交点为(1,0),则关于x 的一元二次方程x 2-3x +m =0的两实数根是( )A.x 1=1,x 2=-1B.x 1=1,x 2=2C.x 1=1,x 2=0D.x 1=1,x 2=3【答案】 B【解析】 ∵二次函数的解析式是y =x 2-3x +m (m 为常数),∴该抛物线的对称轴是:32x =.又∵二次函数y =x 2-3x +m (m 为常数)的图象与x 轴的一个交点为(1,0), ∴根据抛物线的对称性质知,该抛物线与x 轴的另一个交点的坐标是(2,0), ∴关于x 的一元二次方程x 2-3x +m =0的两实数根分别是:x 1=1,x 2=2. 3、 已知函数y=mx 2﹣6x+1(m 是常数).(1)求证:不论m 为何值,该函数的图象都经过y 轴上的一个定点; (2)若该函数的图象与x 轴只有一个交点,求m 的值. 【答案】 (1)见解析(2)m 的值为0或9 【解析】 (1)当x=0时,y=1.所以不论m 为何值,函数y=mx 2﹣6x+1的图象都经过y 轴上一个定点(0,1); (2)①当m=0时,函数y=mx 2﹣6x+1的图象与x 轴只有一个交点;②当m≠0时,若函数y=mx 2﹣6x+1的图象与x 轴只有一个交点,则方程mx 2﹣6x+1=0有两个相等的实数根, 所以△=(﹣6)2﹣4m=0,m=9.综上,若函数y=mx 2﹣6x+1的图象与x 轴只有一个交点,则m 的值为0或9. 4、 若关于x 的一元二次方程(x -2)(x -3)=m 有实数根x 1,x 2,且x 1≠x 2. (1)求m 的取值范围;(2)如果这个方程的两个实根分别为x 1=α,x 2=β,且α<β,当m >0时,试比较α,β,2,3的大小,并用“<”连接;(3)求二次函数y =(x -x 1)(x -x 2)+m 的图像与x 轴的交点坐标. 【答案】 (1)m >41- (2)α<2<3<β (3)(2,0)和(3,0) 【解析】 (1)m >41-(2)α<2<3<β(3)因为一元二次方程(x -2)(x -3)=m 有实数根1x ,2x ,且1x ≠2x , 所以该一元二次方程可以写成(x -1x )(x -2x )=0或者(x -2)(x -3)-m =0 即:(x -1x )(x -2x )=(x -2)(x -3)-m所以y =(x -1x )(x -2x )+m 可以表示成y =(x -2)(x -3)-m +m 即:y =(x -2)(x -3) 二次函数的图像与x 轴的交点坐标为(2,0)和(3,0) 5、 已知二次函数2316y x bx c =-++的图象经过A (0,3),9(4,)2B --两点. (1)求b ,c 的值;(2)二次函数2316y x bx c =-++的图象与x 轴是否有公共点?若有,求公共点的坐标;若没有,请说明情况. 【答案】 (1)983b c ⎧=⎪⎨⎪=⎩(2)(-2,0)或(8,0)【解析】 (1)把A (0,3),9(4,)2B --分别代入2316y x bx c =-++,得 339164162c b c =⎧⎪⎨-⨯-+=-⎪⎩,解得983b c ⎧=⎪⎨⎪=⎩;(2)由(1)可得,该抛物线解析式为:2393168y x x =-++. 293225()4()3081664∆=-⨯-⨯=>,所以二次函数2316y x bx c =-++的图象与x 轴有公共点.∵23930168x x -++=的解为:x 1=-2,x 2=8 ∵公共点的坐标是(-2,0)或(8,0).6、 已知()20y ax bx c a =++≠的图象如图,方程2(0,02)ax bx c n a n ++=≠<<的两个实根是1212,()x x x x <,则两实根满足( )A.1213x x <<<B.1213x x <<<C.1213x x <<<D.1201,34x x <<<<【答案】 D【解析】 该题考查的是二次函数综合.由图象可知,二次函数过()0,2、()1,0、()3,0三点.设二次函数的交点式为()()13y a x x =--,将()0,2代入解析式,可得23a =. 故方程2ax bx c n ++=即2282033x x n -+-=.记()228233f x x x n =-+-,则()020f n =->,()10f n =-<,()30f n =-<,()420f n =->.结合()f x 的图象可知101x <<,234x <<.故答案选D .7、 设二次方程()22120x a x a +-+-=有一根比1大,另一根比1-小,试确定实数a 的范围. 【答案】 20a -<<【解析】 设()22()12f x x a x a =+-+-;则有(1)0(1)0f f <⎧⎨-<⎩,即2211201120a a a a ⎧+-+-<⎪⎨-++-<⎪⎩,解得20a -<<. 8、 二次函数y=ax 2+bx 的图象如图,若一元二次方程ax 2+bx+m=0有实数根,则m 的最大值为_____.【答案】 3【解析】 先根据抛物线的开口向上可知a >0,由顶点纵坐标为﹣3得出b 与a 关系,再根据一元二次方程ax 2+bx+m=0有实数根可得到关于m 的不等式,求出m 的取值范围即可. 解:∵抛物线的开口向上,顶点纵坐标为﹣3,yxO 213∴a>0.﹣24ba=﹣3,即b2=12a,∵一元二次方程ax2+bx+m=0有实数根,∴△=b2﹣4am≥0,即12a﹣4am≥0,即12﹣4m≥0,解得m≤3,∴m的最大值为3。
中考数学重难点专题讲座第四讲 一元二次方程与二次函数【前言】前三讲,笔者主要是和大家探讨中考中的几何综合问题,在这一类问题当中,尤以第三讲涉及的动态几何问题最为艰难。
几何问题的难点在于想象,构造,往往有时候一条辅助线没有想到,整个一道题就卡壳了。
相比几何综合题来说,代数综合题倒不需要太多巧妙的方法,但是对考生的计算能力以及代数功底有了比较高的要求。
中考数学当中,代数问题往往是以一元二次方程与二次函数为主体,多种其他知识点辅助的形式出现的。
所以在接下来的专题当中,我们将对代数综合问题进行仔细的探讨和分析。
一元二次方程与二次函数问题当中,纯粹的一元二次方程解法通常会以简单解答题的方式考察。
但是在后面的中难档大题当中,通常会和根的判别式,整数根和抛物线等知识点结合,所以我们继续通过真题来看看此类问题的一般解法。
第一部分 真题精讲【例1】2010,西城,一模已知:关于x 的方程23(1)230mx m x m --+-=.⑴求证:m 取任何实数时,方程总有实数根;⑵若二次函数213(1)21=--+-y mx m x m 的图象关于y 轴对称.①求二次函数1y 的解析式;②已知一次函数222=-y x ,证明:在实数范围内,对于x 的同一个值,这两个函数所对应的函数值12y y ≥均成立;⑶在⑵条件下,若二次函数23y ax bx c =++的图象经过点(50)-,,且在实数范围内,对于x 的同一个值,这三个函数所对应的函数值132y y y ≥≥,均成立,求二次函数23=++y ax bx c 的解析式.【思路分析】本题是一道典型的从方程转函数的问题,这是比较常见的关于一元二次方程与二次函数的考查方式。
由于并未说明该方程是否是一元二次方程,所以需要讨论M=0和M ≠0两种情况,然后利用根的判别式去判断。
第二问的第一小问考关于Y 轴对称的二次函数的性质,即一次项系数为0,然后求得解析式。
第二问加入了一个一次函数,证明因变量的大小关系,直接相减即可。
专题22.4 二次函数与一元二次方程【六大题型】【人教版】【题型1 抛物线与x 轴的交点情况】....................................................................................................................1【题型2 抛物线与x 轴交点上的四点问题】........................................................................................................3【题型3 由二次函数解一元二次方程】................................................................................................................6【题型4 由二次函数的图象求一元二次方程的近似解】....................................................................................9【题型5 由二次函数的图象解不等式】..............................................................................................................11【题型6 由二次函数与一次函数交点个数求范围】 (13)【题型1 抛物线与x 轴的交点情况】【例1】(2022春•西湖区校级期末)抛物线y =(x ﹣x 1)(x ﹣x 2)+mx +n 与x 轴只有一个交点(x 1,0).下列式子中正确的是( )A.x1﹣x2=m B.x2﹣x1=m C.m(x1﹣x2)=n D.m(x1+x2)=n【分析】由抛物线与x轴只有一个交点(x1,0)可得抛物线顶点式,从而可得x1,x2与m的关系.【解答】解:∵抛物线经过(x1,0),且抛物线与x轴只有一个交点,∴抛物线顶点坐标为(x1,0),y=(x﹣x1)2,∴x2﹣2x1x+x21=(x﹣x1)(x﹣x2)+mx+n=x2﹣(x1+x2﹣m)x+x1x2+n,∴x1+x2﹣m=2x1,即x2﹣x1=m,故选:B.【变式1-1】(2022春•澧县校级月考)抛物线y=x2+2x﹣3与坐标轴的交点个数有( )A.0个B.1个C.2个D.3个【分析】由b2﹣4ac的大小可判断抛物线与x轴交点个数,由c的大小可判断抛物线与y轴的交点,进而求解.【解答】解:∵y=x2+2x﹣3,∴a=1,b=2,c=﹣3,∴b2﹣4ac=22+12=16>0,∴抛物线与x轴有2个交点,∵c=﹣3,∴抛物线与y轴交点为(0.﹣3),∴抛物线与坐标轴有3个交点,故选:D.【变式1-2】(2022•广阳区一模)已知抛物线y=﹣3x2+bx+c与x轴只有一个交点,且过点A(m﹣2,n),B(m+4,n),则n的值为( )A.﹣9B.﹣16C.﹣18D.﹣27【分析】根据点A、B的坐标易求该抛物线的对称轴是直线x=m+1.故设抛物线解析式为y=﹣3(x﹣m ﹣1)2,直接将A(m﹣2,n)代入,通过解方程来求n的值.【解答】解:∵抛物线y=﹣3x2+bx+c过点A(m﹣2,n)、B(m+4,n),∴对称轴是直线x=m+1,又∵抛物线y=x2+bx+c与x轴只有一个交点,∴顶点为(m+1,0),∴设抛物线解析式为y=﹣3(x﹣m﹣1)2,把A(m﹣2,n)代入,得:n=﹣3(m﹣2﹣m﹣1)2=﹣27,即n=﹣27.故选:D.【变式1-3】(2022春•汉滨区期中)已知抛物线y=x2+bx+c与x轴的两个交点之间的距离为6,对称轴为x =3,则抛物线的顶点P关于x轴对称的点P'的坐标是( )A.(3,9)B.(3,﹣9)C.(﹣3,9)D.(﹣3,﹣9)【分析】根据抛物线y=x2+bx+c与x轴两个交点间的距离为6.对称轴为直线x=3,可以得到b、c的值,然后即可得到该抛物线的解析式,再将函数解析式化为顶点式,即可得到点P的坐标,然后根据关于x 轴对称的点的特点横坐标不变,纵坐标互为相反数,即可得到点P关于x轴的对称点的坐标.【解答】解:设抛物线y=x2+bx+c与x轴两个交点坐标为(x1,0),(x2,0),∵抛物线y=x2+bx+c与x轴两个交点间的距离为6,对称轴为直线x=3,=3,∴(x1﹣x2)2=(x1+x2)2﹣4x1x2=36,−b2×1∴(﹣b)2﹣4×c=36,b=﹣6,解得:c=0,∴抛物线的解析式为y=x2﹣6x=(x﹣3)2﹣9,∴顶点P的坐标为(3,﹣9),∴点P关于x轴的对称点的坐标是(3,9),故选:A.【题型2 抛物线与x轴交点上的四点问题】【例2】(2022•武汉模拟)二次函数与一元二次方程有着紧密的联系,一元二次方程问题有时可以转化为二次函数问题.请你根据这句话所提供的思想方法解决如下问题:若s,t(s<t)是关于x的方程1+(x﹣m)(x﹣n)=0的两根,且m<n,则m,n,s,t的大小关系是( )A.s<m<n<t B.m<s<n<t C.m<s<t<n D.s<m<t<n【分析】由y=(x﹣m)(x﹣n)可得抛物线与x轴交点坐标为(m,0),(n,0),开口向上,则抛物线y=(x﹣m)(x﹣n)与直线y=﹣1的交点坐标为(s,﹣1),(t,﹣1),从而可得m,n,s,t 的大小关系.【解答】解:由1+(x﹣m)(x﹣n)=0可得(x﹣m)(x﹣n)=﹣1,由y=(x﹣m)(x﹣n)可得抛物线y=(x﹣m)(x﹣n)与x轴交点坐标为(m,0),(n,0),抛物线开口向上,则抛物线y=(x﹣m)(x﹣n)与直线y=﹣1的交点在x轴下方,坐标为(s,﹣1),(t,﹣1),∴m<s<t<n.故选:C.【变式2-1】(2022•定远县模拟)二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,方程a(x+1)(x﹣5)=﹣3的两根为x1和x2,且x1<x2,则下列结论正确的是( )A.x1<﹣1<5<x2B.x1<﹣1<x2<5C.﹣1<x1<5<x2D.﹣1<x1<x2<5【分析】方程a(x+1)(x﹣5)=﹣3的两根即为抛物线y=a(x+1)(x﹣5)与直线y=﹣3交点的横坐标,据此可判断选项.【解答】解:令y=a(x+1)(x﹣5),则抛物线y=a(x+1)(x﹣5)与y=ax2+bx+c形状相同、开口方向相同,且与x轴的交点为(﹣1,0)、(5,0),函数图象如图所示,由函数图象可知方程a(x+1)(x﹣5)=﹣3的两根即为抛物线y=a(x+1)(x﹣5)与直线y=﹣3交点的横坐标,∴x1<﹣1<5<x2,故选:A.【变式2-2】(2022•张店区期末)已知二次函数y=(x﹣1)2﹣t2(t是常数,且t≠0),方程(x﹣1)2﹣t2﹣1=0的两根分别为m,n(m<n),方程(x﹣1)2﹣t2﹣3=0的两根分别为p,q(p<q),判断m,n,p,q的大小关系是( )A.p<q<m<n B.p<m<n<q C.m<p<q<n D.m<n<p<q【分析】在平面直角坐标系中画出二次函数y=(x﹣1)2﹣t2(t是常数,且t≠0)的图象,再作出直线y =1,y=3,它们与抛物线交于A,B和C,D,分别过交点作x轴的垂线,则垂足对应的数值为题干中方程的根,利用数形结合的方法即可得出结论.【解答】解:在平面直角坐标系中画出二次函数y=(x﹣1)2﹣t2(t是常数,且t≠0)的图象如下图:作直线y=1与抛物线y=(x﹣1)2﹣t2(t是常数,且t≠0)交于A,B,分别经过A,B作x轴的垂线,垂足对应的数值分别为m,n,∴m,n是方程(x﹣1)2﹣t2﹣1=0的两根;作直线y=3与抛物线y=(x﹣1)2﹣t2(t是常数,且t≠0)交于C,D,分别经过AC,D作x轴的垂线,垂足对应的数值分别为p,q,∴p,q是方程(x﹣1)2﹣t2﹣3=0的两根.由图象可知m,n,p,q的大小关系是:p<m<n<q.故选:B.【变式2-3】(2022•河东区期末)已知抛物线y=x2+bx+c的图象与x轴的两交点的横坐标分别α,β(α<β),而x2+bx+c﹣2=0的两根为M、N(M<N),则α、β、M、N的大小顺序为( )A.α<β<M<N B.M<α<β<N C.α<M<β<N D.M<α<N<β【分析】依题意画出函数y=(x﹣α)(x﹣β)和y=2的图象草图,根据二次函数的图象可直接求解.【解答】解:依题意,画出函y=(x﹣α)(x﹣β)的图象,如图所示.函数图象为抛物线,开口向上,与x轴两个交点的横坐标分别为α,β(α<β),方程x2+bx+c﹣2=0的两根是抛物线y=(x﹣α)(x﹣β)与直线y=2的两个交点.由M<N,可知对称轴左侧交点横坐标为M,右侧为N.由图象可知,M<α<β<N,故选:B.【题型3 由二次函数解一元二次方程】【例3】(2022•娄底一模)已知二次函数y=ax2+bx+c的图象经过(﹣1,0)与(3,0)两点,关于x的方程ax2+bx+c+m=0(m>0)有两个根,其中一个根是5.则关于x的方程ax2+bx+c+n=0(0<n<m)有两个整数根,这两个整数根是( )A.﹣2或4B.﹣2或0C.0或4D.﹣2或5【分析】根据二次函数y=ax2+bx+c的图象经过(﹣1,0)与(3,0)两点求对称轴,后面两个方程二次项、一次项系数没变,所以两根的和也不变还是2.【解答】解:∵二次函数y=ax2+bx+c的图象经过(3,0)与(﹣1,0)两点,∴当y=0时,0=ax2+bx+c的两个根为3和﹣1,函数y=ax2+bx+c的对称轴是直线x=1,又∵关于x的方程ax2+bx+c+m=0(m>0)有两个根,其中一个根是5.∴方程ax2+bx+c+m=0(m>0)的另一个根为﹣3,函数y=ax2+bx+c的图象开口向下,如图,∵0<n<m,∴﹣m>﹣m,∵关于x的方程ax2+bx+c+n=0 (0<n<m)有两个整数根,∴直线y=﹣n与y=ax2+bx+c的交点的横坐标为﹣2,4,∴这关于x的方程ax2+bx+c+n=0 (0<n<m)有两个整数根,是﹣2或4,故选:A.【变式3-1】(2022•潮南区模拟)已知二次函数y=ax2﹣2ax+c(a≠0)的图象与x轴的一个交点为(﹣1,0),则关于x的一元二次方程ax2﹣2ax+c=0的根是 x1=﹣1,x2=3 .【分析】利用二次函数y=ax2﹣2ax+c的解析式求得抛物线的顶点坐标,利用抛物线的对称性求得抛物线与x轴的另一个交点,再利用抛物线与x轴的交点的横坐标与一元二次方程的根的关系得出结论.【解答】解:∵y=ax2﹣2ax+c,=1.∴抛物线的对称轴为直线x=−−2a2a∵二次函数y=ax2﹣2ax+c(a≠0)的图象与x轴的一个交点为(﹣1,0),∴该抛物线与x轴的另一个交点为(3,0).∴关于x的一元二次方程ax2﹣2ax+c=0的根是:x1=﹣1,x2=3.故答案为:x1=﹣1,x2=3.【变式3-2】(2022•咸宁一模)已知二次函数y=ax2+bx+c(a、b、c为常数,且a≠0)的y与x的部分对应值如下表:x﹣5﹣4﹣202y60﹣6﹣46则关于x的一元二次方程ax2+bx+c=0的根是 x1=﹣4,x2=1 .【分析】由抛物线经过点(﹣5,6),(2,6)可得抛物线对称轴,根据抛物线对称性及抛物线经过(﹣4,0)求解.【解答】解:由抛物线经过点(﹣5,6),(2,6)可得抛物线抛物线对称轴为直线x=−522=−32,∵抛物线经过(﹣4,0),对称轴为直线x=−32,∴抛物线经过(1,0),∴一元二次方程ax2+bx+c=0的根是x1=﹣4,x2=1.故答案为:x1=﹣4,x2=1.【变式3-3】(2022•永嘉县校级模拟)已知二次函数y=﹣x2+bx+c的图象经过(﹣1,0)与(5,0)两点,且关于x的方程﹣x2+bx+c+d=0有两个根,其中一个根是6,则d的值为( )A.5B.7C.12D.﹣7【分析】先由二次函数y=﹣x2+bx+c的图象经过(﹣1,0)与(5,0)两点,求出b、c,再把b、c代入方程﹣x2+bx+c+d=0后,由方程的根是6求出d.【解答】解:∵二次函数y=﹣x2+bx+c的图象经过(﹣1,0)与(5,0)两点,∴−1−b+c=0−25+5b+c=0,解得:b=4 c=5,将b=4,c=5代入方程﹣x2+bx+c+d=0,可得:﹣x2+4x+5+d=0,又∵关于x的方程﹣x2+4x+5+d=0有两个根,其中一个根是6,∴把x=6代入方程﹣x2+4x+5+d=0,得:﹣36+4×6+5+d=0,解得:d=7,经验证d=7时,Δ>0,符合题意,∴d=7.故选:B.【题型4 由二次函数的图象求一元二次方程的近似解】【例4】(2022•平度市期末)如表给出了二次函数y=x2+2x﹣10中x,y的一些对应值,则可以估计一元二次方程x2+2x﹣10=0的一个近似解为( )x… 2.1 2.2 2.3 2.4 2.5…y…﹣1.39﹣0.76﹣0.110.56 1.25…A.2.2B.2.3C.2.4D.2.5【分析】根据函数值,可得一元二次方程的近似根.【解答】解:如图:x=2.3,y=﹣0.11,x=2.4,y=0.56,x2+2x﹣10=0的一个近似根是2.3.故选:B.【变式4-1】(2022•灌云县期末)已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表,则方程ax2+bx+c=0的一个解的范围是 6.18<x<6.19 .x 6.17 6.18 6.19 6.20y﹣0.03﹣0.010.020.04【分析】根据表格中自变量、函数的值的变化情况,得出当y=0时,相应的自变量的取值范围即可.【解答】解:由表格数据可得,当x=6.18时,y=﹣0.01,当x=6.19时,y=0.02,于是可得,当y=0时,相应的自变量x的取值范围为6.18<x<6.19,故答案为:6.18<x<6.19.【变式4-2】(2022•渠县一模)如图,是二次函数y=ax2+bx﹣c的部分图象,由图象可知关于x的一元二次方程ax2+bx=c的两个根可能是 x1=0.8,x2=3.2合理即可 .(精确到0.1)【分析】直接利用抛物线与x 轴交点的位置估算出两根的大小.【解答】解:由图象可知关于x 的一元二次方程ax 2+bx =c 的两个根可能是:x 1=0.8,x 2=3.2合理即可.故答案为:x 1=0.8,x 2=3.2合理即可.【变式4-3】(2022秋•萍乡期末)代数式ax 2+bx +c (a ≠0,a ,b ,c 是常数)中,x 与ax 2+bx +c 的对应值如下表: x ﹣1−12 0121 322 523ax 2+bx +c﹣2−141742741−14 ﹣2请判断一元二次方程ax 2+bx +c =0(a ≠0,a ,b ,c 是常数)的两个根x 1,x 2的取值范围是下列选项中的( )A .−12<x 1<0,32<x 2<2B .﹣1<x 1<−12,2<x 2<52C .−12<x 1<0,2<x 2<52D .﹣1<x 1<−12,32<x 2<2【分析】观察表格可知,在x <1时,随x 值的增大,代数式ax 2+bx +c 的值逐渐增大,x 的值在−12~0之间,代数式ax 2+bx +c 的值由负到正,故可判断ax 2+bx +c =0时,对应的x 的值在−12~0之间,在x >1时,随x 的值增大,代数式ax 2+bx +c 逐渐减小,x 的值在2~52之间,代数式ax 2+bx +c 的值由正到负,故可判断ax 2+bx +c =0时,对应的x 的值在2~52之间,【解答】解:根据表格可知,代数式ax 2+bx +c =0时,对应的x 的值在−12~0和2~52之间,即:一元二次方程ax2+bx+c=0(a≠0,a,b,c是常数)的两个根x1,x2的取值范围是−12<x1<0,2<x2<52故选:C.【题型5 由二次函数的图象解不等式】【例5】(2022秋•垦利区期末)如图,抛物线y=ax2+c与直线y=mx+n交于A(﹣1,p),B(3,q)两点,则不等式ax2﹣mx+c<n的解集为( )A.x>﹣1B.x<3C.﹣1<x<3D.x<﹣3或x>1【分析】由抛物线与直线交点横坐标确定直线在抛物线上方时x的取值范围.【解答】解:∵A(﹣1,p),B(3,q),∴﹣1<x<3时,直线在抛物线上方,即﹣1<x<3时,ax2+c<mx+n,∴不等式ax2﹣mx+c<n的解集为﹣1<x<3.故选:C.【变式5-1】(2022•定远县二模)抛物线y=ax2+bx+c(a≠0)上部分点的横坐标x,纵坐标y的对应值如下表:x…﹣2﹣1012…y…04664…请求出当y<0时x的取值范围 x<﹣2或x>3 .【分析】把点(0,6)代入求出c,把点(﹣1,4)和(1,6)代入抛物线的解析式列方程组,解出可得a、b,即可得抛物线的解析式,进而可列不等式求出y<0时x的取值范围.【解答】解:由表得,抛物线y=ax2+bx+c(a≠0)过点(0,6),∴c=6,∵抛物线y=ax2+bx+6过点(﹣1,4)和(1,6),∴a−b+6=4a+b+6=6,解得:a=−1 b=1,∴二次函数的表达式为:y=﹣x2+x+6,所以令﹣x2+x+6<0,解得:x<﹣2或x>3.故答案为:x<﹣2或x>3.【变式5-2】(2022•工业园区校级模拟)若二次函数y=ax2+bx+c(a、b、c为常数)的图象如图所示,则关于x的不等式a(x+2)2+b(x+2)+c<0的解集为 x<﹣1或x>1 .【分析】根据图象可得x<1或x>3时ax2+bx+c<0,则a(x+2)2+b(x+2)+c<0时x+2<1或x+2>3,进而求解.【解答】解:由图象可得x<1或x>3时ax2+bx+c<0,∴当a(x+2)2+b(x+2)+c<0时,x+2<1或x+2>3,解得x<﹣1或x>1,故答案为:x<﹣1或x>1.【变式5-3】(2022•驿城区校级期末)如图,二次函数y=x2﹣4x+m的图象与y轴交于点C,点B是点C 关于该二次函数图象的对称轴对称的点.已知一次函数y=kx+b的图象经过该二次函数图象上点A(1,0)及点B.则满足kx+b≥x2﹣4x+m的x的取值范围是( )A.x≤1或x≥4B.1≤x≤4C.x≤1或x≥5D.1≤x≤5【分析】由二次函数解析式可得抛物线对称轴为直线x=2,从而可得点B横坐标,进而求解.【解答】解:∵y=x2﹣4x+m,∴抛物线对称轴为直线x=2,∵点B和点C关于直线x=2对称,∴点B横坐标为4,∵点A横坐标为1,∴1≤x≤4时,kx+b≥x2﹣4x+m,故选:B.【题型6 由二次函数与一次函数交点个数求范围】【例6】(2022•虞城县三模)已知抛物线y=a(x﹣2)2+c(a>0).(1)若抛物线与直线y=mx+n交于(1,0),(5,8)两点.①求抛物线和直线的函数解析式;②直接写出当a(x﹣2)2+c>mx+n时自变量x的取值范围.(2)若a=c,线段AB的两个端点坐标分别为A(0,3),B(3,3),当抛物线与线段AB有唯一公共点时,直接写出a的取值范围.【分析】(1)①利用待定系数法求解析式即可,②抛物线开口向上,数形结合直接写出答案;(2)结合抛物线和线段AB,分情况讨论求a的取值范围.【解答】解:(1)①∵抛物线y=a(x﹣2)2+c与直线y=mx+n交于(1,0),(5,8)两点,∴a+c=09a+c=8,m+n=05m+n=8,解得a=1c=−1,m=2n=−2,∴抛物线和直线的函数解析式分别为y=(x﹣2)2﹣1,y=2x﹣2.②∵a>0,抛物线开口向上,抛物线与直线y=mx+n交于(1,0),(5,8)两点,∴当a(x﹣2)2+c>mx+n时自变量x的取值范围为x<1或x>5.(2)若a=c,则抛物线y=a(x﹣2)2+a(a>0),∴开口向上,对称轴为x=2,顶点坐标为(2,a),当抛物线顶点在线段AB上时有唯一公共点,此时a=3,当抛物线顶点在线段AB下方时,当经过B(3,3)时,a+a=3,解得a=32,当经过A(0,3)时,4a+a=3,解得a=35,∴当抛物线与线段AB有唯一公共点时,a的取值范围为35≤a<32或a=3.【变式6-1】(2022•余姚市一模)已知:一次函数y1=2x﹣2,二次函数y2=﹣x2+bx+c(b,c为常数),(1)如图,两函数图象交于点(3,m),(n,﹣6).求二次函数的表达式,并写出当y1<y2时x的取值范围.(2)请写出一组b,c的值,使两函数图象只有一个公共点,并说明理由.【分析】(1)将(3,m),(n,﹣6)代入直线解析式求出点坐标,然后通过待定系数法求解,根据图象可得y1<y2时x的取值范围.(2)﹣x2+bx+c=2x﹣2,由Δ=0求解.【解答】解:(1)将(3,m)代入y1=2x﹣2得m=6﹣2=4,将(n,﹣6)代入y1=2x﹣2得﹣6=2n﹣2,解得n=﹣2,∴抛物线经过点(3,4),(﹣2,﹣6),将(3,4),(﹣2,﹣6)代入y2=﹣x2+bx+c得4=−9+3b+c−6=−4−2b+c,解得b=3 c=4,∴y=﹣x2+3x+4,由图象可得﹣2<x<3时,抛物线在直线上方,∴y1<y2时x的取值范围是﹣2<x<3.(2)令﹣x2+bx+c=2x﹣2,整理得x2+(2﹣b)x﹣(2+c)=0,当Δ=(2﹣b)2+4(2+c)=0时,两函数图象只有一个公共点,∴b=2,c=﹣2,满足题意.【变式6-2】(2022•河南模拟)小新对函数y=a|x2+bx|+c(a≠0)的图象和性质进行了探究.已知当自变量x的值为0或4时,函数值都为﹣3;当自变量x的值为1或3时,函数值都为0.探究过程如下,请补充完整.(1)这个函数的表达式为 y=|x2﹣4x|﹣3 ;(2)在给出的平面直角坐标系中,画出这个函数的图象并写出这个函数的一条性质: 函数关于直线x=2对称 ;(3)进一步探究函数图象并解决问题:①直线y=k与函数y=a|x2+bx|+c有三个交点,则k= 1 ;②已知函数y=x﹣3的图象如图所示,结合你所画的函数图象,写出不等式a|x2+bx|+c≤x﹣3的解集: x=0或3≤x≤5 .【分析】(1)将x=0,y=﹣3;x=4,y=﹣3;x=1,y=0代入y=a|x2+bx|+c(a≠0),得到:c=﹣3,b=﹣4,a=1,即可求解析式为y=|x2﹣4x|﹣3;(2)描点法画出函数图象,函数关于x=2对称;(3)①从图象可知:当x=2时,y=1,k=1时直线y=k与函数y=|x2﹣4x|﹣3有三个交点;②y=x﹣3与y=x2﹣4x﹣3的交点为x=0或x=5,结合图象,y=|x2﹣4x|﹣3≤x﹣3的解集为3≤x≤5.【解答】解:(1)将x=0,y=﹣3;x=4,y=﹣3;x=1,y=0代入y=a|x2+bx|+c(a≠0),得到:c=﹣3,b=﹣4,a=1,∴y=|x2﹣4x|﹣3,故答案为:y=|x2﹣4x|﹣3;(2)如图:函数关于直线x=2对称,故答案为:函数关于直线x=2对称;(3)①当x=2时,y=1,∴k=1时直线y=k与函数y=|x2﹣4x|﹣3有三个交点,故答案为1;②y=x﹣3与y=|x2﹣4x|﹣3的交点为x=0或x=3,结合图象,y=|x2﹣4x|﹣3≤x﹣3的解集为x=0或3≤x≤5,故答案为:x=0或3≤x≤5.x+t与函数y=【变式6-3】(2022•海珠区一模)令a、b、c三个数中最大数记作max{a,b,c},直线y=12 max{﹣x2+4,x﹣2,﹣x﹣2}的图象有且只有3个公共点,则t的值为 1或65 .16【分析】只需画出函数y=max{﹣x2+4,x﹣2,﹣x﹣2}的图象,然后结合图象并运用分类讨论的思想,就可解决问题.【解答】解:在直角坐标系中画出函数y=max{﹣x2+4,x﹣2,﹣x﹣2}的图象,如图所示.当直线y =12x +t 经过(﹣2,0)或与抛物线y =﹣x 2+4相切时,直线y =12x +t 与函数y =max {﹣x 2+4,x ﹣2,﹣x ﹣2}的图象有且只有3个公共点.①若直线y =12x +t 经过(﹣2,0),则有0=12×(﹣2)+t ,解得t =1;②若直线y =12x +t 与抛物线y =﹣x 2+4相切,则关于x 的方程12x +t =﹣x 2+4即x 2+12x +t ﹣4=0有两个相等的实数根,则△=(12)2﹣4×1×(t ﹣4)=0,解得t =6516.综上所述:t =1或6516.故答案为1或6516.。
学生做题前请先回答以下问题问题1:二次函数与一元二次方程之间的关系:①一元二次方程的根是二次函数的图象与_____________;当时,二次函数图象与x轴有_____个交点;当时,二次函数图象与x轴有_____个交点;当时,二次函数图象与x轴_______交点.②方程的根是对应的________________,求两个函数交点的坐标就是求对应方程组的解.问题2:结合一次函数、反比例函数以及二次函数的性质,思考函数y值比大小,主要利用函数的________和数形结合;两函数值比大小,借助数形结合,_____________________.二次函数与一元二次方程一、单选题(共10道,每道10分)1.若关于x的二次函数的图象与x轴仅有一个公共点,则k的取值范围是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:二次函数图象与方程、不等式2.如图是二次函数(a,c为常数,)与一次函数(k,b为常数,)的图象,方程的解为_______;不等式的解集为_________.( )A.;B.;C.;D.;答案:A解题思路:试题难度:三颗星知识点:数形结合思想3.已知二次函数中,函数y与自变量x的部分对应值如下表:则当时,x的取值范围是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:二次函数的对称性4.若一元二次方程的两个实数根分别为,则实数的大小关系为( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:二次函数图象上点的坐标特征5.已知二次函数的图象与x轴交于两点,且,则实数的大小关系为( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:二次函数图象平移6.方程的根有( )个.A.0B.1C.2D.3答案:B解题思路:试题难度:三颗星知识点:数形结合思想7.方程的根的个数为( )个A.1B.2C.3D.4答案:C解题思路:试题难度:三颗星知识点:数形结合思想8.已知函数,当直线y=k与此图象有两个公共点时,k的取值范围是( )A. B.C. D.或k=-1答案:D解题思路:试题难度:三颗星知识点:数形结合思想9.关于x的一元二次方程的两个不相等的实数根都在-1和0之间(不包括-1和0),则a取值范围是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:数形结合的思想10.方程(k是实数)有两个实根,且,那么k的取值范围是( ) A. B. C. D.无解答案:C解题思路:试题难度:三颗星知识点:数形结合的思想第11页共11页。
2023年人教版数学中考复习重难点专练——二次函数的最值一、单选题1.二次函数的最小值是A .1-B .1C .2-D .2 2.已知二次函数的图象(0≤x≤3)如图所示,关于该函数在所给自变量取值范围内,下列说法正确的是( )A .有最小值0,有最大值3B .有最小值﹣1,有最大值0C .有最小值﹣1,有最大值3D .有最小值﹣1,无最大值 3.二次函数()215y x =--+,当m x n ≤≤且0mn <时,y 的最小值为2m ,最大值为2n ,则m n +的值为( )A .52B .2C .12D .32 4.二次函数y=(x-1)2+2的最小值是( )A .-2B .2C .-1D .1 5.二次函数 22y x x c =--+ 在 32x -≤≤ 的范围内有最小值 5- ,则 c 的值是( )A .6-B .2C .2-D .3 6.二次函数y=x 2﹣8x+1的最小值是( )A .4B .﹣15C .﹣4D .15 7.二次函数y=3(x ﹣1)2+2的最小值是( )A .2B .1C .﹣1D .﹣2 8.已知关于x 的二次函数y =x 2﹣2x ﹣2,当a≤x≤a+2时,函数有最大值1,则a 的值为( )A .﹣1或1B .1或﹣3C .﹣1或3D .3或﹣39.二次函数223y x mx =+-,当01x ≤≤时,若图象上的点到x 轴距离的最大值为4,则m 的值为( )A .-1或1B .-1或1或3C .1或3D .-1或3 10.已知二次函数y=(x-m+2)(x+m-4)+n ,其中m ,n 为常数,则( )A .m>1,n<0时,二次函数的最小值大于0B .m=1,n>0时,二次函数的最小值大于0C .m<1,n>0时,二次函数的最小值小于0D .m=1,n<0时,二次函数的最小值小于0二、填空题11.二次函数 22y x =-+ 的最大值为 .12.二次函数y=x 2+(2m+1)x+(m 2﹣1)有最小值﹣2,则m= . 13.二次函数y=2x 2﹣2x+6的最小值是 .14.如图,在平面直角坐标系中,点A 、B 的坐标分别为 ()11--, 、 ()21-, ,抛物线 ()20y ax bx c a =++≠ 的顶点P 在线段 AB 上,与x 轴相交于C 、D 两点,设点C 、D 的横坐标分别为 1x 、 2x ,且 12x x < .若 1x 的最小值是 2- ,则 2x 的最大值是 .15.已知二次函数y=x 2﹣2mx (m 为常数),当﹣2≤x≤1时,函数值y 的最小值为﹣2,则m 的值为 .三、解答题16.用总长为60的篱笆围成的矩形场地,矩形面积S 随矩形一边长L 的变化而变化,L 是多少时,场地的面积S 最大?17.已知抛物线l 1的最高点为P (3,4),且经过点A (0,1),求l 1的解析式. 18.如图,二次函数的图象与x 轴交于点A (-3,0)和点B ,以AB 为边在x 轴上方作正方形ABCD ,点P 是x 轴上一动点,连接DP ,过点P 作DP 的垂线与y轴交于点E.(1)请直接写出点D的坐标:(2)当点P在线段AO(点P不与A、O重合)上运动至何处时,线段OE的长有最大值,求出这个最大值;(3)是否存在这样的点P,使△PED是等腰三角形?若存在,请求出点P的坐标及此时△PED与正方形ABCD重叠部分的面积;若不存在,请说明理由.19.四边形ABCD的两条对角线AC,BD互相垂直,AC+BD=10,当AC,BD的长是多少时,四边形的面积最大?20.甲、乙两人分别站在相距6米的A、B两点练习打羽毛球,已知羽毛球飞行的路线为抛物线的一部分,甲在离地面1米的C处发出一球,乙在离地面1.5米的D处成功击球,球飞行过程中的最高点H与甲的水平距离AE为4米,现以A为原点,直线AB为x轴,建立平面直角坐标系(如图所示).求羽毛球飞行的路线所在的抛物线的表达式及飞行的最高高度.答案解析部分1.【答案】D2.【答案】C3.【答案】C4.【答案】B5.【答案】D6.【答案】B7.【答案】A8.【答案】A9.【答案】D10.【答案】D11.【答案】212.【答案】34 13.【答案】9214.【答案】315.【答案】32 或-16.【答案】解:由题意S=,当 时,S 有最大值.17.【答案】解:∵抛物线l 1的最高点为P (3,4),∴设抛物线的解析式为y=a (x ﹣3)2+4,把点(0,1)代入得,1=a (0﹣3)2+4,解得,a=﹣ 13, ∴抛物线的解析式为y=﹣13 (x ﹣3)2+4 18.【答案】(1)(﹣3,4);(2)设PA=t ,OE=l由△DAP=△POE=△DPE=90°得△DAP△△POE∴∴l=﹣∴当t=时,l有最大值即P为AO中点时,OE的最大值为;(3)存在.①点P点在y轴左侧时,P点的坐标为(﹣4,0)由△PAD△△OEG得OE=PA=1∴OP=OA+PA=4∵△ADG△△OEG∴AG:GO=AD:OE=4:1∴AG=,∴重叠部分的面积=;②当P点在y轴右侧时,P点的坐标为(4,0),此时重叠部分的面积为.19.【答案】解:设四边形ABCD的面积为y,AC的长为x,BD的长为(10-x)∴根据题意可得,y=102x x-()=-12x2+5x=-12(x-5)2+12.5根据题意可得,当x=5时,四边形的面积最大此时AC=BD=520.【答案】解:由题意得:C(0,1),D(6,1.5),抛物线的对称轴为直线x=4,设抛物线的表达式为:y=ax2+bx+1(a≠0),则据题意得:421.53661baa b⎧-=⎪⎨⎪=++⎩,解得:12413ab⎧=-⎪⎪⎨⎪=⎪⎩,∴羽毛球飞行的路线所在的抛物线的表达式为:y=﹣124x2+13x+1,∵y=﹣124(x﹣4)2+53,∴飞行的最高高度为53米。
二次函数与一元二次方程(讲义)知识点睛___________是研究函数、方程、不等式等的一种重要手段.1. 方程的根是对应的两个____________交点的___________.特别地,一元二次方程ax 2+bx +c =0的根是二次函数________的图象与________交点的横坐标,当0Δ>时,二次函数图象与x 轴有________个交点;当0Δ=时,与x 轴有_____个交点;当<0Δ时,与x 轴______交点.2. 函数间求交点坐标,函数值比大小等问题通常是借助数形结合,以构造的方法将函数问题转化为方程问题解决.精讲精练1. 如图,在同一平面直角坐标系中,二次函数y =ax 2+bx +c 的图象与x 轴分别交于A (-1,0),B (3,0)两点,与y 轴交于点C (0,-3),一次函数3y x =-的图象与抛物线交于B ,C 两点. (1)一元二次方程ax 2+bx +c =0的根为______________. 当ax 2+bx +c >0时,x 的取值范围为______________. 当ax 2+bx +c ≤0时,x 的取值范围为______________. (2)方程23ax bx c x ++=-的根为_______________. 当___________时,一次函数值大于二次函数值. (3)该二次函数的表达式为__________________.2. (1)一元二次方程-x 2+8x -12=3的根为_____________,直线y =3与抛物线y =-x 2+8x -12的交点坐标为________,不等式-x 2+8x -12>3的解集为_______________.(2)直线y =2x -1与抛物线y =x 2-x +1的交点坐标为________,不等式x 2-x +1≥2x -1的解集为_________________.(3)若二次函数的图象经过点A (4,0),B (-2,0),C (0,4),则该二次函数的表达式为__________.3. 已知二次函数22y x x m =++的图象C 1与x 轴有且只有一个交点,则m 的值为______;若二次函数22y x x m =++的图象与坐标轴有三个交点,则m 的取值范围为_________;若22y x x m =++的函数值总为正数,则图象顶点在第____象限,m 的取值范围是_________.4. 若二次函数2(1)2y m x x =-+的图象与直线1y x =-没有交点,则m 的取值范围是________.5. 如图,二次函数2y ax bx =+与反比例函数ky x =-的图象交于一点P ,那么关于x 的方程20k ax bx x ++=的解为________;若一元二次方程20ax bx m ++=有实数根,则m 的取值范围为__________.6. 用“描点法”画二次函数2y ax bx c =++的图象时,列了如下表格:根据表格上的信息回答问题:一元二次方程5ax bx c ++=-的解为_____________. 7. 设一元二次方程(1)(2)x x m --=(0m >)的两根分别为α,β,且αβ<,则α,β满足( )A .12αβ<<<B .12αβ<<<C .12αβ<<<D .1α<且2>β8. 已知二次函数()()1y x m x n =--+(m n <)的图象与x 轴交于A (x 1,0),B (x 2,0)两点,且12x x <,则实数x 1,x 2,m ,n 的大小关系为_______________________.9. 若关于x 的一元二次方程(2)(3)x x m --=有实数根12x x ,,且12x x ≠,有下列结论:①1223x x ==,;②14m >-;③二次函数12()()y x x x x m =--+的图象与x 轴交点的坐标为(2,0)和(3,0).其中正确的是__________.10. 已知抛物线y =x 2-(4m +1)x +2m -1与x 轴交于两点,如果有一个交点的横坐标大于2,另一个交点的横坐标小于2,并且抛物线与y 轴的交点在点(0,12-)的下方,那么m 的取值范围是_____________.11. 已知抛物线y =x 2+bx +c 的对称轴为直线x =1,若关于x 的一元二次方程x 2-bx -c =0在-3<x <2的范围内有解,则c 的取值范围是( ) A .c ≥-1 B .-1≤c <3 C .3<c <8D .-1≤c <812. 函数2y x x m =-+(0m >)的图象如图所示,如果x a =时0y <,那么1x a =-时,函数值( ) A .0y < B .0y m << C .y m >D .y m =13. 已知二次函数,当自变量x 取m 时,对应的函数值大于0,当自变量x 分别取m -1,m +1时,对应的函数值分别为y 1,y 2,则y 1_____0,y 2_____0.(选填“>”“<”)14. 已知二次函数2y x bx c =++,当x ≤1时,总有y ≥0,当1≤x ≤3时,总有y ≤0,那么c 的取值范围是_______________.215y x x =-+-二次函数与一元二次方程(习题)例题示范例:若一元二次方程(x -a )(x -b )()的两个实数根分别为x 1,x 2,则实数a ,b ,x 1,x 2的大小关系为( )A .B .C .D .巩固练习1. 二次函数y =x 2-2x -3的图象如图所示,当时,自变量x 的取值范围是( )A .B .C .D .或第1题图 第2题图 第3题图 第4题图2. 二次函数(a ≠0)的图象如图所示,若(k ≠0)有两个不相等的实数根,则k 的取值范围是( ) A .B .C .D .3. 抛物线的部分图象如图所示,若,则x 的取值范围是( )A .B .C .或D .或4. 函数的图象如图所示,根据该图象提供的信息,可求得使成立的x 的取值范围是( ) A .B .C .D .或5. 如图是二次函数的部分图象,由图象可知不等式的解集是( )A .B .C .D .32=-a b <12x x <()12a x b x <<<12a x x b <<<12x a x b <<<12x a b x <<<0y <13x-<<1x <-3x >1x <-3x >2y ax bx c =++20ax bx c k +++=3k <-3k >-3k <3k >c bx x y ++-=20>y 14<<-x 13<<-x 4x <-1>x 3-<x 1>x 222y x x =--1y ≥13x -≤≤31<<-x 13x x <->或1x -≤3x ≥2y ax bx c =++20ax bx c ++<15x -<<5x >15x x <->且15x x <->或6. 如图,若抛物线与双曲线的交点A 的横坐标为1,则关于x 的不等式的解集是( ) A . B . C . D .7. 坐标平面上,若平移二次函数y =2(x -175)(x -176)+6的图象,使其与x轴交于两点,且此两点的距离为1个单位,则平移方式可为下列哪一种( ) A .向上平移3个单位B .向下平移3个单位C .向上平移6个单位D .向下平移6个单位8. 设一元二次方程()的两根分别为α,β,且,则α,β,1,3之间的大小关系为___________;的解集为_____________.9. 若二次函数的图象与直线没有交点,求的取值范围.10. 已知P (-3,m )和Q (1,m )是抛物线上的两点.(1)求b 的值;(2)将抛物线的图象先向上平移2个单位,再向左平移1个单位,请判断新抛物线与x 轴的交点情况.11. 已知二次函数的图象C 1与x 轴有且只有一个交点,则C 1的顶点坐标为__________.12. 若关于x 的一元二次方程无实数根,则函数的图象顶点在第____象限. 13. 抛物线上部分点的横坐标x ,纵坐标y 的对应值如下表:①一元二次方程的根为_________________. ②抛物线经过点(-3,_____);③在对称轴右侧,y 随x 的增大而_________.(2)确定抛物线的解析式,并求出该函数的最值.21y x =+k y x =210kx x ++<1x >1x <-01x <<10x -<<(1)(3)x x k --=0k <αβ<(1)(3)x xk --<2(2)y m x x =-+21y x =-m 221y x bx =++221y x bx =++m x x y ++=2220x x n --=n x x y --=22y ax bx c =++0ax bx c ++=2y ax bx c =++巩固练习1.某市人民广场上要建造一个圆形的喷水池,并在水池中央垂直安装一个柱子OP,柱子顶端P处装上喷头,由P处向外喷出的水流(在各个方向上)沿形状相同的抛物线路径落下(如图所示).已知OP=3米,喷出的水流的最高点A距水平面的高度是4米,离柱子OP的水平距离为1米.(1)在如图所示的平面直角坐标系中,求这条抛物线的解析式;(2)若不计其他因素,水池的半径至少要多少米,才能使喷出的水流不至于落在池外?2.如图,有一座抛物线型的拱桥,在正常水位时,桥下水面宽AB=20 m,当水位上升3 m时,水面宽CD=10 m.(1)在如图所示的平面直角坐标系中,求此抛物线的函数表达式;(2)有一条船以5 km/h的速度向此桥驶来,当船距离此桥35 km时,桥下水位正好在AB处,之后水位每小时上涨0.25 m,当水位达到CD处时,将禁止船只通行.如果该船按原来的速度行驶,那么它能否安全通过此桥?3.某商店经营儿童益智玩具,已知成批购进时的单价是20元.调查发现:销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,但每件玩具售价不能高于40元.设每件玩具的销售单价上涨了x元时(x为正整数),月销售利润为y元.(1)求y与x之间的函数关系式,并直接写出自变量x的取值范围.(2)当每件玩具的售价定为多少元时,月销售利润恰好为2 520元?(3)每件玩具的售价定为多少元时,可使月销售利润最大?最大的月销售利润是多少?4.某商家经销一种绿茶,用于装修门面已投资3 000元,已知绿茶每千克的成本为50元,在第一个月的试销时间内发现,销量w(kg)随销售单价x(元/kg)的变化而变化,具体变化规律如下表所示:(销售利润=单价×销售量-成本-投资).(1)请根据上表,写出w与x之间的函数关系式(不必写出自变量x的取值范围);(2)求y与x之间的函数关系式(不必写出自变量x的取值范围),并求出当x为何值时,y的值最大;(3)若在第一个月里,按使y获得最大值的销售单价进行销售后,在第二个月里受物价部门的干预,销售单价不得高于90元/kg,要想在全部收回投资的基础上使第二个月的利润达到1 700元,那么第二个月里应该确定销售单价为多少元?。
第08讲二次函数与一元二次方程、不等式模块一思维导图串知识模块二基础知识全梳理(吃透教材)模块三核心考点举一反三模块四小试牛刀过关测1.能借助一元二次函数求解一元二次不等式,并能用集合表示一元二次不等式的解集;2.借助一元二次函数的图象,了解一元二次不等式与相应函数、方程的联系3.掌握一元二次不等式的实际应用;4.会解一元二次不等式中的恒成立问题.知识点1一元二次不等式1、定义:一般地,只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式.2、一般形式:ax2+bx+c>0(≥0),ax2+bx+c<0(≤0),(其中a≠0,a,b,c均为常数).3、一元二次不等式的解与解集使某一个一元二次不等式成立的x的值,叫做这个一元二次不等式的解;一元二次不等式的所有的解组成的集合,叫做这个一元二次不等式的解集;将一个不等式转化为另一个与它解集相同的不等式,叫做不等式的同解变形.知识点2二次函数与一元二次方程、不等式的关系1、二次函数的零点一般地,对于二次函数y=ax2+bx+c,我们把使ax2+bx+c=0的实数x叫做二次函数的零点.2、三个“二次”之间的关系对于一元二次方程20(0)ax bx c a ++=>的两根为12x x 、且12x x ≤,设ac b 42-=∆,它的解按照0>∆,0=∆,0<∆可分三种情况,相应地,二次函数2y ax bx c =++(0)a >的图像与x 轴的位置关系也分为三种情况.因此我们分三种情况来讨论一元二次不等式20ax bx c ++>(0)a >或20ax bx c ++<(0)a >的解集.知识点3一元二次不等式的解法1、解一元二次不等式的一般步骤(1)判号:检查二次项的系数是否为正值,若是负值,则利用不等式的性质将二次项系数化为正值;(2)求根:计算判别式∆,求出相应方程的实数根;①0∆>时,求出两根12x x 、,且12x x <(注意灵活运用因式分解和配方法);②0∆=时,求根abx x 221-==;③0∆<时,方程无解.(3)标根:将所求得的实数根标在数轴上(注意两实数根的大小顺序,尤其是当实数根中含有字母时),并画出开口向上的抛物线示意图;(4)写解集:根据示意图以及一元二次不等式解集的几何意义,写出解集.口诀:大于零取(根)两边,小于零取(根)中间2、含参一元二次不等式的讨论依据(1)对二次项系数进行大于0,小于0,等于0分类讨论;(2)当二次项系数不等于0时,再对判别式进行大于0,小于0,等于0的分类讨论;(3)当判别式大于0时,再对两根的大小进行讨论,最后确定出解集.考点一:解不含参的一元二次不等式例1.(23-24高一上·北京·期中)不等式2230x x --<的解集为()A .()1,3-B .()3,1-C .(1)(3)∞∞--⋃+,,D .(3)(1)∞∞--⋃+,,【变式1-1】(23-24高一上·吉林延边·月考)不等式29124x x -≤-的解集为()A .RB .∅C .3|2x x ⎧⎫=⎨⎬⎩⎭D .3|2x x ⎧⎫≠⎨⎬⎩⎭【变式1-2】(23-24高一上·江苏徐州·期中)不等式()()231x x x x +<-+的解集为()A .1,12⎛⎫- ⎪⎝⎭B .11,2⎛⎫- ⎪⎝⎭C .()1,1,2∞∞⎛⎫--⋃+ ⎪⎝⎭D .()1,1,2∞∞⎛⎫--⋃+ ⎪⎝⎭【变式1-3】(23-24高一上·广东广州·期中)下列不等式解集为R 的是()A .23710x x -≤B .21122x x -+-≤C .()()230x x +->D .223x x -+<-考点二:解含参一元二次不等式例2.(22-23高一上·江苏宿迁·月考)若01a <<,则不等式1(0)(x a x a --<的解集是()A .1}|{x a x a<<B .1{|}x x x a a><或C .1{|}x x a a <<D .1{|}x x a x a><或【变式2-1】(23-24高一下·广东潮州·开学考试)(多选)对于给定的实数a ,关于实数x 的一元二次不等式()(2)0x a x --<的解集可能为()A .(2)()a -∞+∞ ,,B .()(2)a -∞+∞ ,,C .(),2a D .∅【变式2-2】(23-24高一上·安徽马鞍山·月考)解关于x 的不等式:()2330x m x m --->.【变式2-3】(23-24高一上·湖南长沙·期末)当1a <时,解关于x 的不等式(1)(1)0ax x --<.考点三:由一元二次不等式解集求参例3.(23-24高一下·广东湛江·开学考试)关于x 的不等式2102x mx n -++>的解集为{}|12x x -<<,则m n +的值为()A .12-B .32-C .32D .12【变式3-1】(23-24高一上·云南昭通·期末)不等式230ax bx +-<的解集是()(),13,-∞⋃+∞,则b a -的值是()A .3-B .3C .5-D .5【变式3-2】(23-24高一上·吉林延边·月考)已知不等式20ax bx c ++<的解集为{|13}x x x <->或,则下列结论错误的是()A .0a <B .20a b c ++>C .0a b c ++>D .20cx bx a -+<的解集为1{|1}3x x x <->或【变式3-3】(23-24高一下·云南·月考)若关于x 的不等式()210x m x m -++<的解集中恰有三个整数,则实数m 的取值范围为()A .[)(]3,24,5--⋃B .[)(]2,14,5--⋃C .()()3,14,5-⋃D .[]3,5-考点四:三个“二次”关系的应用例4.(23-24高一上·湖南长沙·月考)不等式20ax bx c -+>的解集为{}21x x -<<,则函数2y ax bx c =-+的图象大致为()A .B .C.D.【变式4-1】(23-24高一上·江苏苏州·月考)(多选)关于x 的不等式20ax bx c ++>,下列说法不正确的是()A .若关于x 的不等式20ax bx c ++>解集为{1x x >或}3x <-,则二次函数2y ax bx c =++的零点为()30A -,,()10B ,B .若关于x 的不等式20ax bx c ++<解集为{3x x >或}1x <-,则20cx bx a ++>的解集为113x x ⎧⎫-<<⎨⎬⎩⎭C .若关于x 的一元二次不等式20ax bx c ++>解集为R ,则0a >且240b ac -<D .若关于x 的不等式()200ax bx c abc ++>≠的解集与关于x 的二次不等式()211111100a x b x c a b c ++>≠的解集相同都是R ,则111a b c a b c ==【变式4-2】(22-23高一上·宁夏石嘴山·期中)关于x 的不等式22280x ax a --<的解集为()12,x x ,且221215x x -=,则实数=a .【变式4-3】(23-24高一上·山西临汾·月考)已知二次函数()211y x a x a =----的图象与x 轴交于()1,0A x ,()2,0B x 两点.(1)当3a =时,求2212x x +的值;(2)求关于x 的不等式10y +≥的解集.考点五:一元二次不等式恒成立与有解例5.(23-24高一下·黑龙江绥化·开学考试)(多选)若对于R x ∀∈,都有220x mx m -+≥,则m 的值可以是()A .0B .1C .2D .3【变式5-1】(23-24高一下·贵州贵阳·期中)对任意的()0,x ∈+∞,2210x mx -+>恒成立,则m 的取值范围为()A .[)1,+∞B .()1,1-C .(],1-∞D .(),1-∞【变式5-2】(23-24高一下·河北保定·开学考试)(多选)若关于x 的不等式2420ax x -+<有实数解,则a 的值可能为()A .0B .3C .1D .2-【变式5-3】(23-24高一上·陕西商洛·期中)若关于x 的不等式240x mx +->在区间[]2,4上有解,则实数m 的取值范围为()A .()3,-+∞B .()0,∞+C .(),0∞-D .(),3-∞-考点六:一元二次不等式的实际应用例6.(23-24高一下·河南·开学考试)河南是华夏文明的主要发祥地之一,众多的文物古迹和著名的黄河等自然风光构成了河南丰富的旅游资源,在旅游业蓬勃发展的带动下,餐饮、酒店、工艺品等行业持续发展.某连锁酒店共有500间客房,若每间客房每天的定价是200元,则均可被租出;若每间客房每天的定价在200元的基础上提高10x 元(110x ≤≤,x ∈Z ),则被租出的客房会减少15x 套.若要使该连锁酒店每天租赁客房的收入超过106600元,则该连锁酒店每间客房每天的定价应为()A .250元B .260元C .270元D .280元【变式6-1】(23-24高一上·陕西·月考)某礼服租赁公司共有300套礼服供租赁,若每套礼服每天的租价为200元,则所有礼服均被租出;若将每套礼服每天的租价在200元的基础上提高10x 元(120x ≤≤,x ∈Z ),则被租出的礼服会减少10x 套.若要使该礼服租赁公司每天租赁礼服的收入超过6.24万元,则该礼服租赁公司每套礼服每天的租价应定为()A .220元B .240元C .250元D .280元【变式6-2】(23-24高一上·北京·月考)某市有块三角形荒地,如图ABC 所示,90,200A AB AC ∠=== (单位:米),现市政府要在荒地中开辟一块矩形绿地ADEF ,其中,,D E F点分别在线段,,AB BC CA 上,若要求绿地的面积不少于7500平方米,则AD 的长度(单位:米)范围是()A .[]40,160B .[]50,150C .[]55,145D .[]60,140【变式6-3】(23-24高一上·陕西宝鸡·月考)如图,在长为8m ,宽为6m 的矩形地面的四周种植花卉,中间种植草坪,如果要求草坪外侧四周的花卉带的宽度都相同,且草坪的面积不超过总面积的一半,则花卉带的宽度至少应为多少米?一、单选题1.(23-24高一下·湖南株洲·开学考试)不等式2450x x --+<的解集是()A .(5,1)-B .(1,5)-C .(,5)(1,)-∞-+∞ D .(,1)(5,)-∞-+∞ 2.(23-24高一上·河南商丘·期中)不等式2230x x --<的解集是()A .{|1x x <-或3}2x >B .3|2x x ⎧⎫>⎨⎬⎩⎭C .3|12x x ⎧⎫-<<⎨⎬⎩⎭D .{}|1x x <-3.(23-24高一上·河南濮阳·月考)已知关于x 的一元二次不等式20ax bx c +-<的解集为{}|35x x <<,则不等式20cx bx a +->的解集为()A .15x x ⎧<⎨⎩或13x ⎫>⎬⎭B .13x x ⎧<-⎨⎩或15x ⎫>-⎬⎭C .1153x x ⎧⎫<<⎨⎬⎩⎭D .1135x x ⎧⎫-<<-⎨⎬⎩⎭4.(23-24高一上·甘肃·期末)若关于x 的不等式()222800x ax a a --<>的解集为()12,x x ,且221220x x +=,则=a ()A .2B .1C .D5.(23-24高一上·安徽马鞍山·月考)若关于x 的不等式()2220x a x a ---<的解集中,恰有3个整数,则实数a 的取值集合是()A .{56}aa <≤∣B .{65}aa -≤<-∣C .{21aa -<≤-∣或56}a ≤<D .{65aa -≤<-∣或12}a <≤6.(23-24高一上·江苏南京·期末)设a 为实数,则关于x 的不等式(2)(24)0ax x --<的解集不可能是()A .2,2a ⎛⎫ ⎪⎝⎭B .2(,2)a ⎛⎫-∞⋃+∞ ⎪⎝⎭C .(2,)+∞D .22,a ⎛⎫⎪⎝⎭二、多选题7.(23-24高一上·吉林延边·期中)下列不等式的解集不是R 的是()A .210x x -++≥B .20x ->C .26100x x ++>D .22340x x -+<8.(23-24高一上·湖北·月考)若不等式20ax bx c -+<的解集是{21}xx -<<∣,则下列说法正确的是()A .0b <且0c <B .<0a b c -+C .0a b c ++<D .不等式20ax bx c ++<的解集是()1,2-三、填空题9.(23-24高一上·河北石家庄·月考)已知二次方程20(0)ax bx c a ++=>的两根分别为2和4,则不等式20ax bx c ++<的解集为.10.(23-24高一上·安徽亳州·期末)若关于x 的不等式210mx x ++>的解集为R ,则实数m 的取值范围为.11.(23-24高一上·安徽蚌埠·期末)已知正数x y ,满足2x y +=,若211m m x y+>-恒成立,则实数m 的取值范围为.四、解答题12.(23-24高一上·河南濮阳·月考)解下列一元二次不等式:(1)23710x x -≤;(2)2104x x -+<.13.(23-24高一上·江苏镇江·期中)(1)解关于x 的不等式()210x m x m -++<.(2)若对任意的[]()21,2,10x x m x m ∈-++≤恒成立,求实数m 的取值范围.第08讲二次函数与一元二次方程、不等式模块一思维导图串知识模块二基础知识全梳理(吃透教材)模块三核心考点举一反三模块四小试牛刀过关测1.能借助一元二次函数求解一元二次不等式,并能用集合表示一元二次不等式的解集;2.借助一元二次函数的图象,了解一元二次不等式与相应函数、方程的联系3.掌握一元二次不等式的实际应用;4.会解一元二次不等式中的恒成立问题.知识点1一元二次不等式1、定义:一般地,只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式.2、一般形式:ax2+bx+c>0(≥0),ax2+bx+c<0(≤0),(其中a≠0,a,b,c均为常数).3、一元二次不等式的解与解集使某一个一元二次不等式成立的x的值,叫做这个一元二次不等式的解;一元二次不等式的所有的解组成的集合,叫做这个一元二次不等式的解集;将一个不等式转化为另一个与它解集相同的不等式,叫做不等式的同解变形.知识点2二次函数与一元二次方程、不等式的关系1、二次函数的零点一般地,对于二次函数y=ax2+bx+c,我们把使ax2+bx+c=0的实数x叫做二次函数的零点.2、三个“二次”之间的关系对于一元二次方程20(0)ax bx c a ++=>的两根为12x x 、且12x x ≤,设ac b 42-=∆,它的解按照0>∆,0=∆,0<∆可分三种情况,相应地,二次函数2y ax bx c =++(0)a >的图像与x 轴的位置关系也分为三种情况.因此我们分三种情况来讨论一元二次不等式20ax bx c ++>(0)a >或20ax bx c ++<(0)a >的解集.知识点3一元二次不等式的解法1、解一元二次不等式的一般步骤(1)判号:检查二次项的系数是否为正值,若是负值,则利用不等式的性质将二次项系数化为正值;(2)求根:计算判别式∆,求出相应方程的实数根;①0∆>时,求出两根12x x 、,且12x x <(注意灵活运用因式分解和配方法);②0∆=时,求根abx x 221-==;③0∆<时,方程无解.(3)标根:将所求得的实数根标在数轴上(注意两实数根的大小顺序,尤其是当实数根中含有字母时),并画出开口向上的抛物线示意图;(4)写解集:根据示意图以及一元二次不等式解集的几何意义,写出解集.口诀:大于零取(根)两边,小于零取(根)中间2、含参一元二次不等式的讨论依据(1)对二次项系数进行大于0,小于0,等于0分类讨论;(2)当二次项系数不等于0时,再对判别式进行大于0,小于0,等于0的分类讨论;(3)当判别式大于0时,再对两根的大小进行讨论,最后确定出解集.考点一:解不含参的一元二次不等式例1.(23-24高一上·北京·期中)不等式2230x x --<的解集为()A .()1,3-B .()3,1-C .(1)(3)∞∞--⋃+,,D .(3)(1)∞∞--⋃+,,【答案】A【解析】不等式2230x x --<,即()()130x x +-<,解得13x -<<,所以不等式2230x x --<的解集为()1,3-.故选:A【变式1-1】(23-24高一上·吉林延边·月考)不等式29124x x -≤-的解集为()A .RB .∅C .3|2x x ⎧⎫=⎨⎬⎩⎭D .3|2x x ⎧⎫≠⎨⎬⎩⎭【答案】C【解析】由29124x x -≤-,得241290x x -+≤,得2(23)0x -≤,解得32x =,所以不等式的解集为3|2x x ⎧⎫=⎨⎬⎩⎭,故选:C【变式1-2】(23-24高一上·江苏徐州·期中)不等式()()231x x x x +<-+的解集为()A .1,12⎛⎫- ⎪⎝⎭B .11,2⎛⎫- ⎪⎝⎭C .()1,1,2∞∞⎛⎫--⋃+ ⎪⎝⎭D .()1,1,2∞∞⎛⎫--⋃+ ⎪⎝⎭【答案】A【解析】不等式()()231x x x x +<-+,化为2210x x --<,即(21)(1)0x x +-<,解得112x -<<,所以不等式()()231x x x x +<-+的解集为1,12⎛⎫- ⎪⎝⎭.故选:A【变式1-3】(23-24高一上·广东广州·期中)下列不等式解集为R 的是()A .23710x x -≤B .211022x x -+-≤C .()()230x x +->D .223x x -+<-【答案】B【解析】对于A ,()()23710,13100x x x x -≤+-≤,解得1013x -≤≤,A 错;对于B ,211022x x -+-≤,()210x -≥,解集为R ,B 对;对于C ,()()230x x +->,解得<2x -或3x >,C 错;对于D ,223x x -+<-,()()1230x x +->,解得1x <-或32x >,D 错.故选:B.考点二:解含参一元二次不等式例2.(22-23高一上·江苏宿迁·月考)若01a <<,则不等式1(0)(x a x a --<的解集是()A .1}|{x a x a<<B .1{|}x x x a a><或C .1{|}x x a a <<D .1{|}x x a x a><或【答案】A【解析】由01a <<,得110a a>>>,解不等式1(0)(x a x a --<,得1a x a <<,所以不等式1(0)()x a x a --<的解集是1}|{x a x a<<.故选:A【变式2-1】(23-24高一下·广东潮州·开学考试)(多选)对于给定的实数a ,关于实数x 的一元二次不等式()(2)0x a x --<的解集可能为()A .(2)()a -∞+∞ ,,B .()(2)a -∞+∞ ,,C .(),2a D .∅【答案】CD【解析】当2a <时,此时解集为(),2a ;当2a =时,此时解集为∅;当2a >时,此时解集为()2,a ;故选:CD.【变式2-2】(23-24高一上·安徽马鞍山·月考)解关于x 的不等式:()2330x m x m --->.【答案】答案见解析【解析】不等式()2330x m x m --->,即()()30x x m +->,当3m =-时,原不等式即()230x +>,解得3x ≠-,即不等式的解集为{}|3x x ≠-;当3m >-时,解得x >m 或3x <-,即不等式的解集为{|x x m >或3}x <-;当3m <-时,解得3x >-或x m <,即不等式的解集为{|3x x >-或}x m <;综上可得:当3m =-时不等式的解集为{}|3x x ≠-,当3m >-时不等式的解集为{|x x m >或3}x <-,当3m <-时不等式的解集为{|3x x >-或}x m <.【变式2-3】(23-24高一上·湖南长沙·期末)当1a <时,解关于x 的不等式(1)(1)0ax x --<.【答案】答案见解析【解析】当0a =时,代入不等式可得10x -+<,解得1x >;当01a <<时,化简不等式可得1(1)0a x x a ⎛⎫--< ⎪⎝⎭即1(1)0x x a ⎛⎫--< ⎪⎝⎭,由11a>得不等式的解为11x a <<,当a<0时,化简不等式可得1(1)0a x x a ⎛⎫--< ⎪⎝⎭即1(1)0x x a ⎛⎫--> ⎪⎝⎭,由11a <得不等式的解为1x >或1x a<,综上可知,当0a =时,不等式(1)(1)0ax x --<的解集为{|1}x x >;当01a <<时,不等式(1)(1)0ax x --<的解集为11x x a ⎧⎫<<⎨⎬⎩⎭;当a<0时,不等式(1)(1)0ax x --<的解集为1x x a ⎧<⎨⎩或}1x >.考点三:由一元二次不等式解集求参例3.(23-24高一下·广东湛江·开学考试)关于x 的不等式2102x mx n -++>的解集为{}|12x x -<<,则m n +的值为()A .12-B .32-C .32D .12【答案】C【解析】因为不等式2102x mx n -++>的解集为{}|12x x -<<,所以1,2-是方程2102x mx n -++=的两个实根,所以()()221110212202m n m n ⎧-⨯-+⨯-+=⎪⎪⎨⎪-⨯++=⎪⎩,解得121m n ⎧=⎪⎨⎪=⎩,所以32m n +=.故选:C.【变式3-1】(23-24高一上·云南昭通·期末)不等式230ax bx +-<的解集是()(),13,-∞⋃+∞,则b a -的值是()A .3-B .3C .5-D .5【答案】D【解析】因为不等式230ax bx +-<的解集是()(),13,-∞⋃+∞,所以a<0,1x =和3x =是方程230ax bx +-=的根,所以13313b a a ⎧+=-⎪⎪⎨⎪⨯=-⎪⎩,即1a =-,4b =,则5b a -=.故选:D .【变式3-2】(23-24高一上·吉林延边·月考)已知不等式20ax bx c ++<的解集为{|13}x x x <->或,则下列结论错误的是()A .0a <B .20a b c ++>C .0a b c ++>D .20cx bx a -+<的解集为1{|1}3x x x <->或【答案】D【解析】根据题意,可以知道,20ax bx c ++=的两根为1,3-.由根与系数的关系得到:2233b b a ac c a a ⎧=-⎪=-⎧⎪⇒⎨⎨=-⎩⎪-=⎪⎩.因为2()f x ax bx c =++开口向下,则a<0,故A 正确.22(2)(3)30a b c a a a a ++=+-+-=->,故B 正确.且(1)(3)0f f -==,对称轴为1x =,(1)40f a b c a =++=->,故C 正确.22320cx bx a ax ax a -+=-++<,两边同时除以a -,得到23210x x --<,解得1|13{}x x -<<,故D 错误.故选:D.【变式3-3】(23-24高一下·云南·月考)若关于x 的不等式()210x m x m -++<的解集中恰有三个整数,则实数m 的取值范围为()A .[)(]3,24,5--⋃B .[)(]2,14,5--⋃C .()()3,14,5-⋃D .[]3,5-【答案】A【解析】原不等式可化为(1)()0x x m --<,当1m >时,得1x m <<,此时解集中的整数为2,3,4,则45m <≤;当1m <时,得1m x <<,此时解集中的整数为2-,1-,0,则32m -≤<-,综上所述,m 的取值范围是[)(]3,24,5--⋃.故选:A考点四:三个“二次”关系的应用例4.(23-24高一上·湖南长沙·月考)不等式20ax bx c -+>的解集为{}21x x -<<,则函数2y ax bx c =-+的图象大致为()A .B .C.D.【答案】A【解析】因为20ax bx c -+>的解集为{}21x x -<<,所以方程20ax bx c -+=的两根分别为2-和1,且a<0,则()21,21,b ac a ⎧-+=⎪⎪⎨⎪-⨯=⎪⎩变形可得,2,b a c a =-⎧⎨=-⎩故函数()()22221y ax bx c ax ax a a x x =-+=+-=+-的图象开口向下,且与x 轴的交点坐标为()1,0和()2,0-,故A 选项的图象符合.故选:A【变式4-1】(23-24高一上·江苏苏州·月考)(多选)关于x 的不等式20ax bx c ++>,下列说法不正确的是()A .若关于x 的不等式20ax bx c ++>解集为{1x x >或}3x <-,则二次函数2y ax bx c =++的零点为()30A -,,()10B ,B .若关于x 的不等式20ax bx c ++<解集为{3x x >或}1x <-,则20cx bx a ++>的解集为113x x ⎧⎫-<<⎨⎬⎩⎭C .若关于x 的一元二次不等式20ax bx c ++>解集为R ,则0a >且240b ac -<D .若关于x 的不等式()200ax bx c abc ++>≠的解集与关于x 的二次不等式()211111100a x b x c a b c ++>≠的解集相同都是R ,则111a b c a b c ==【答案】BC【解析】A 选项:若关于x 的不等式20ax bx c ++>解集为{1x x >或}3x <-,则0a >,且其对应方程20ax bx c ++=有两个解11x =,23x =-,所以对应函数2y ax bx c =++的两个零点为1和3-,A 选项错误;B 选项:若关于x 的不等式20ax bx c ++<解集为{3x x >或}1x <-,则a<0,且其对应方程20ax bx c ++=有两个解13x =,21x =-,且122b x x a=-+=,123cx x a=-=,即2b a =-,3c a =-,所以22320cx bx a ax ax a ++=--+>,即()()23213110x x x x +-=-+<,解得113x -<<,所以不等式的解集为113x x ⎧⎫-<<⎨⎬⎩⎭,B 选项正确;C 选项:若关于x 的一元二次不等式20ax bx c ++>解集为R ,则0a >且其对应方程20ax bx c ++=无解,即240b ac -<,C 选项正确;D 选项:若关于x 的不等式()200ax bx c abc ++>≠的解集为R ,则0a >,且240b ac -<,关于x 的二次不等式()211111100a x b x c a b c ++>≠的解集是R ,则10a >,且211140b a c -<,无法确定其比例关系,D 选项错误;故选:BC.【变式4-2】(22-23高一上·宁夏石嘴山·期中)关于x 的不等式22280x ax a --<的解集为()12,x x ,且221215x x -=,则实数=a .【答案】/【解析】由题意,22280x ax a --=的两根为12,x x ,所以212122,8x x a x x a +=⋅=-,解得124,2x a x a ==-,或122,4x a x a =-=,当124,2x a x a ==-时,故222121215x x a -==,由12x x <知a<0,所以解得2a =,当122,4x a x a =-=时,222121215x x a -=-=不合题意.故答案为:2-【变式4-3】(23-24高一上·山西临汾·月考)已知二次函数()211y x a x a =----的图象与x 轴交于()1,0A x ,()2,0B x 两点.(1)当3a =时,求2212x x +的值;(2)求关于x 的不等式10y +≥的解集.【答案】(1)12;(2)答案见解析【解析】(1)当3a =时,224y x x =--.由题意可知12,x x 是方程2240x x --=的两个不同实根,则122x x +=,124x x =-,故()()2222121212222412x x x x x x +=+-=-⨯-=.(2)不等式10y +≥可转化为()()10x a x -+≥.当1a >-时,不等式1y ≥的解集是{}1x x x a ≤-≥或;当1a =-时,不等式1y ≥的解集是{}R x x ∈;当1a <-时,不等式1y ≥的解集是{}1x x a x ≤≥-或.考点五:一元二次不等式恒成立与有解例5.(23-24高一下·黑龙江绥化·开学考试)(多选)若对于R x ∀∈,都有220x mx m -+≥,则m 的值可以是()A .0B .1C .2D .3【答案】AB【解析】依题意,命题等价于220x mx m -+≥恒成立,所以2440m m ∆=-≤,解得01m ≤≤,即[]0,1m ∈,故AB 正确,CD 错误.故选:AB.【变式5-1】(23-24高一下·贵州贵阳·期中)对任意的()0,x ∈+∞,2210x mx -+>恒成立,则m 的取值范围为()A .[)1,+∞B .()1,1-C .(],1-∞D .(),1-∞【答案】D【解析】因为对任意的()0,x ∈+∞,2210x mx -+>恒成立,所以对任意的()0,x ∈+∞,2112x m x x x+<=+恒成立,又12x x +≥=,当且仅当1x x =,即1x =时取等号,所以22m <,解得1m <,即m 的取值范围为(),1-∞.故选:D【变式5-2】(23-24高一下·河北保定·开学考试)(多选)若关于x 的不等式2420ax x -+<有实数解,则a 的值可能为()A .0B .3C .1D .2-【答案】ACD【解析】当0a =时,不等式420x -+<有解,符合题意;当a<0时,得Δ1680a =->,则不等式2420ax x -+<有解;当0a >时,由Δ1680a =->,解得02a <<.综上,a 的取值范围为(),2∞-,对照选项,选项ACD 中a 的值符合题意.故选:ACD【变式5-3】(23-24高一上·陕西商洛·期中)若关于x 的不等式240x mx +->在区间[]2,4上有解,则实数m 的取值范围为()A .()3,-+∞B .()0,∞+C .(),0∞-D .(),3-∞-【答案】A【解析】易知2160m ∆=+>恒成立,即240x mx +-=有两个不等实数根12,x x ,又1240x x =-<,即二次函数24y x mx =+-有两个异号零点,所以要满足不等式240x mx +->在区间[]2,4上有解,所以只需24440m +->,解得3m >-,所以实数m 的取值范围是()3,-+∞.故选A .考点六:一元二次不等式的实际应用例6.(23-24高一下·河南·开学考试)河南是华夏文明的主要发祥地之一,众多的文物古迹和著名的黄河等自然风光构成了河南丰富的旅游资源,在旅游业蓬勃发展的带动下,餐饮、酒店、工艺品等行业持续发展.某连锁酒店共有500间客房,若每间客房每天的定价是200元,则均可被租出;若每间客房每天的定价在200元的基础上提高10x 元(110x ≤≤,x ∈Z ),则被租出的客房会减少15x 套.若要使该连锁酒店每天租赁客房的收入超过106600元,则该连锁酒店每间客房每天的定价应为()A .250元B .260元C .270元D .280元【答案】C【解析】依题意,每天有()50015x -间客房被租出,该连锁酒店每天租赁客房的收入为()()250015200101502000100000x x x x -+=-++.因为要使该连锁酒店每天租赁客房的收入超过106600元,所以21502000100000106600x x -++>,即23401320x x -+<,解得2263x <<.因为110x ≤≤且x ∈Z ,所以7x =,即该连锁酒店每间客房每天的租价应定为270元.故选:C .【变式6-1】(23-24高一上·陕西·月考)某礼服租赁公司共有300套礼服供租赁,若每套礼服每天的租价为200元,则所有礼服均被租出;若将每套礼服每天的租价在200元的基础上提高10x 元(120x ≤≤,x ∈Z ),则被租出的礼服会减少10x 套.若要使该礼服租赁公司每天租赁礼服的收入超过6.24万元,则该礼服租赁公司每套礼服每天的租价应定为()A .220元B .240元C .250元D .280元【答案】C【解析】依题意,每天有30010x -套礼服被租出,该礼服租赁公司每天租赁礼服的收入为()()23001020010100100060000x x x x -⋅+=-++元.因为要使该礼服租赁公司每天租赁6.24万元,所以2100100060000x x -++62400>,即210240x x -+<,解得46x <<.因为120x ≤≤且x ∈Z ,所以5x =,即该礼服租赁公司每套礼服每天的租价应定为250元.故选:C.【变式6-2】(23-24高一上·北京·月考)某市有块三角形荒地,如图ABC 所示,90,200A AB AC ∠=== (单位:米),现市政府要在荒地中开辟一块矩形绿地ADEF ,其中,,D E F点分别在线段,,AB BC CA 上,若要求绿地的面积不少于7500平方米,则AD 的长度(单位:米)范围是()A .[]40,160B .[]50,150C .[]55,145D .[]60,140【答案】B【解析】ABC 中,90,A AB AC ∠== ,ABC 为等腰直角三角形,设AD x =米,则EF FC AD x ===米,200FA x =-米,依题意有()2007500x x -≥,解得50150x ≤≤.即AD 的长度(单位:米)范围是[]50,150.故选:B.【变式6-3】(23-24高一上·陕西宝鸡·月考)如图,在长为8m ,宽为6m 的矩形地面的四周种植花卉,中间种植草坪,如果要求草坪外侧四周的花卉带的宽度都相同,且草坪的面积不超过总面积的一半,则花卉带的宽度至少应为多少米?【答案】花卉的宽度至少为1m【解析】设花卉带的宽度为m x ,则028026x x <<⎧⎨<<⎩,可得03x <<,所以,草坪的长为()82m x -,宽为()62m x -,则草坪的面积为()()()()8262443x x x x --=--,因为草坪的面积不超过总面积的一半,则()()1443682x x --≤⨯⨯,整理可得2760x x -+≤,解得16x ≤≤,又因为03x <<,可得13x ≤<.所以,花卉的宽度至少为1m .一、单选题1.(23-24高一下·湖南株洲·开学考试)不等式2450x x --+<的解集是()A .(5,1)-B .(1,5)-C .(,5)(1,)-∞-+∞ D .(,1)(5,)-∞-+∞ 【答案】C【解析】由2450x x --+<可得2450x x +->,故()()510x x +->,解得1x >或5x <-,故不等式的解为()(),51,-∞-⋃+∞故选:C2.(23-24高一上·河南商丘·期中)不等式2230x x --<的解集是()A .{|1x x <-或3}2x >B .3|2x x ⎧⎫>⎨⎬⎩⎭C .3|12x x ⎧⎫-<<⎨⎬⎩⎭D .{}|1x x <-【答案】C【解析】不等式2230x x --<可化为()()1230x x +-<,所以312x -<<,即原不等式的解集为3|12x x ⎧⎫-<<⎨⎬⎩⎭.故选:C.3.(23-24高一上·河南濮阳·月考)已知关于x 的一元二次不等式20ax bx c +-<的解集为{}|35x x <<,则不等式20cx bx a +->的解集为()A .15x x ⎧<⎨⎩或13x ⎫>⎬⎭B .13x x ⎧<-⎨⎩或15x ⎫>-⎬⎭C .1153x x ⎧⎫<<⎨⎬⎩⎭D .1135x x ⎧⎫-<<-⎨⎬⎩⎭【答案】D【解析】因为关于x 的一元二次不等式20ax bx c +-<的解集为{}|35x x <<,所以0a >且方程20ax bx c +-=的解为3,5,所以8,15b ca a-=-=,所以8,15b a c a =-=-,则不等式20cx bx a +->,即为不等式21580ax ax a --->,则215810x x ++<,解得1135x -<<-,所以不等式20cx bx a +->的解集为1135x x ⎧⎫-<<-⎨⎬⎩⎭.故选:D.4.(23-24高一上·甘肃·期末)若关于x 的不等式()222800x ax a a --<>的解集为()12,x x ,且221220x x +=,则=a ()A .2B .1C.D【答案】B【解析】因为关于x 的不等式()222800x ax a a --<>的解集为()12,x x ,所以1x 和2x 是方程()222800x ax a a --=>的两根,则1221228x x a x x a +=⎧⎨⋅=-⎩.又因为221220x x +=,()2221212122x x x x x x +=+-,所以()()2222820a a --=,解得1a =±.又因为0a >,所以1a =.故选:B5.(23-24高一上·安徽马鞍山·月考)若关于x 的不等式()2220x a x a ---<的解集中,恰有3个整数,则实数a 的取值集合是()A .{56}aa <≤∣B .{65}aa -≤<-∣C .{21aa -<≤-∣或56}a ≤<D .{65aa -≤<-∣或12}a <≤【答案】D【解析】()()()222020x a x a x x a ---<⇒-+<,当2a >-时,不等式解集为{}2x a x -<<,此时恰有3个整数解,则3个整数解分别为1,0,1-,故21a -≤-<-,解得12a <≤,当2a <-时,不等式解集为{}2x x a <<-,此时恰有3个整数解,则3个整数解分别为3,4,5,故56a <-≤,解得65a -≤<-,当2a =-时,不等式解集为∅,不合要求,故实数a 的取值集合为{65aa -≤<-∣或12}a <≤.故选:D 6.(23-24高一上·江苏南京·期末)设a 为实数,则关于x 的不等式(2)(24)0ax x --<的解集不可能是()A .2,2a ⎛⎫⎪⎝⎭B .2(,2)a ⎛⎫-∞⋃+∞ ⎪⎝⎭C .(2,)+∞D .22,a ⎛⎫⎪⎝⎭【答案】B【解析】关于x 的不等式(2)(24)0ax x --<,若0a =,不等式为2(24)0x --<,解得2x >,此时解集为(2,)+∞;若0a ≠,方程(2)(24)0ax x --=,解得2x a=或2x =,a<0时,不等式(2)(24)0ax x --<解得2x a <或2x >,此时解集为()2,2,a ⎛⎫-∞+∞ ⎪⎝⎭ ;01a <<时,22a >,不等式(2)(24)0ax x --<解得22x a <<,此时解集为22,a ⎛⎫ ⎪⎝⎭;1a =时,22a=,不等式(2)(24)0ax x --<解集为∅,1a >时,22a <,不等式(2)(24)0ax x --<解得22x a <<,此时解集为2,2a ⎛⎫ ⎪⎝⎭;所以不等式(2)(24)0ax x --<的解集不可能是2(,2),a ⎛⎫-∞⋃+∞ ⎪⎝⎭.故选:B二、多选题7.(23-24高一上·吉林延边·期中)下列不等式的解集不是R 的是()A .210x x -++≥B .20x ->C .26100x x ++>D .22340x x -+<【答案】ABD【解析】对于A ,由210x x -++≥,得210x x --≤,解得1122x ≤≤,所以A 正确,对于B ,由20x ->,解得x <x >,所以B 正确,对于C ,26100x x ++>,因为364040∆=-=-<,所以不等式26100x x ++>的解集为R ,所以C 错误,对于D ,22340x x -+<,因为932230∆=-=-<,所以不等式22340x x -+<的解集为∅,所以D 正确,故选:ABD8.(23-24高一上·湖北·月考)若不等式20ax bx c -+<的解集是{21}xx -<<∣,则下列说法正确的是()A .0b <且0c <B .<0a b c -+C .0a b c ++<D .不等式20ax bx c ++<的解集是()1,2-【答案】ACD【解析】不等式20ax bx c -+<的解集是{21}xx -<<∣,则对应的方程20ax bx c -+=的两根为2-和1,211,212b ca a∴=-+=-=-⨯=-,且0a >,故0,2a b c a +==-,且0a >,故0,0c b <<,故A 正确;20a b c a a a -+=+-=,故B 错误;0a b c c ++=<,故C 正确;20ax bx c ++<,220ax ax a --<,即()()22120x x x x --=+-<的解集是()1,2-,故D 正确.故选:ACD三、填空题9.(23-24高一上·河北石家庄·月考)已知二次方程20(0)ax bx c a ++=>的两根分别为2和4,则不等式20ax bx c ++<的解集为.【答案】{}|24x x <<【解析】二次方程20(0)ax bx c a ++=>的两根分别为2和4,可得2424b a c a ⎧+=-⎪⎪⎨⎪⨯=⎪⎩,即68b a c a =-⎧⎨=⎩,由()200ax bx c a ++<>可得2680x x -+<,解得24x <<,所以不等式2680x x -+<的解集为{}|24x x <<.故答案为:{}|24x x <<.10.(23-24高一上·安徽亳州·期末)若关于x 的不等式210mx x ++>的解集为R ,则实数m 的取值范围为.【答案】14m >【解析】当0m =时,10x +>,1x >-,不满足题意;当0m ≠时,0Δ140m m >⎧⎨=-<⎩,所以14m >,综上,实数m 的取值范围为14m >.故答案为:14m >11.(23-24高一上·安徽蚌埠·期末)已知正数x y ,满足2x y +=,若211m m x y+>-恒成立,则实数m 的取值范围为.【答案】(1,2)-【解析】因为0,0x y >>且2x y +=,所以111111()222y x x y x y x y x y ⎛⎫⎛⎫+=++=++ ⎪ ⎪⎝⎭⎝⎭1222⎛≥⨯+= ⎝,当且仅当1y x ==时取等号.因为不等式211m m x y+>-恒成立,所以22m m -<,解得12m -<<.故答案为:(1,2)-.四、解答题12.(23-24高一上·河南濮阳·月考)解下列一元二次不等式:(1)23710x x -≤;(2)2104x x -+<.【答案】(1)1013x x ⎧⎫-≤≤⎨⎬⎩⎭;(2)∅【解析】(1)由23710x x -≤,得237100x x --≤,即()()31010x x -+≤,所以1013x -≤≤,所以不等式得解集为1013x x ⎧⎫-≤≤⎨⎬⎩⎭;(2)由2104x x -+<,得2102x ⎛⎫-< ⎪⎝⎭,无解,所以不等式的解集为∅.13.(23-24高一上·江苏镇江·期中)(1)解关于x 的不等式()210x m x m -++<.(2)若对任意的[]()21,2,10x x m x m ∈-++≤恒成立,求实数m 的取值范围.【答案】(1)分类讨论,答案见解析;(2)2m ≥.【解析】(1)不等式()210x m x m -++<化为:()(1)0x m x --<,当1m <时,解得1m x <<;当0m =时,不等式无解;当1m >时,解得1x m <<,所以当1m <时,原不等式的解集为(,1)m ;当0m =时,原不等式的解集为∅;当1m >时,原不等式的解集为(1,)m .(2)当1x =时,2(1)0x m x m -++≤恒成立,则m ∈R ,当(1,2]x ∈时,不等式2(1)0(1)(1)x m x m m x x x m x -++≤⇔-≥-⇔≥,依题意,(1,2]x ∀∈,m x ≥,而x 最大值为2,因此2m ≥,所以实数m 的取值范围是2m ≥.。
二次函数与一元二次方程(习题)➢例题示范例:若一元二次方程(x-a)(x-b)()的两个实数根分别为x1,x2,则实数a,b,x1,x2的大小关系为()A.B.C.D.思路分析a,b可以看做抛物线y=(x-a)(x-b)与x轴交点的横坐标,x1,x2可以看做抛物线y=(x-a)(x-b)与直线的交点的横坐标.如图所示,结合图象可得,.故选B.➢巩固练习1.二次函数y=x2-2x-3的图象如图所示,当时,自变量x的取值范围是()A.B.C.D.或第1题图第2题图2.二次函数(a≠0)的图象如图所示,若(k≠0)有两个不相等的实数根,则k的取值范围是()A.B.C.D.3.抛物线的部分图象如图所示,若,则x的取值范围是()A.B.C.或D.或第3题图第4题图4.函数的图象如图所示,根据该图象提供的信息,可求得使成立的x的取值范围是()A.B.C.D.或5.如图是二次函数的部分图象,由图象可知不等式的解集是()A.B.C.D.第5题图第6题图6.如图,若抛物线与双曲线的交点A的横坐标为1,则关于x的不等式的解集是()A.B.C.D.7.坐标平面上,若平移二次函数y=2(x-175)(x-176)+6的图象,使其与x轴交于两点,且此两点的距离为1个单位,则平移方式可为下列哪一种()A.向上平移3个单位B.向下平移3个单位C.向上平移6个单位D.向下平移6个单位8.设一元二次方程()的两根分别为α,β,且,则α,β,1,3之间的大小关系为___________;的解集为_____________.9.若二次函数的图象与直线没有交点,求的取值范围.10.已知P(-3,m)和Q(1,m)是抛物线上的两点.(1)求b的值;(2)将抛物线的图象先向上平移2个单位,再向左平移1个单位,请判断新抛物线与x轴的交点情况.11.已知二次函数的图象C1与x轴有且只有一个交点,则C1的顶点坐标为__________.12.若关于x的一元二次方程无实数根,则函数的图象顶点在第______象限.13.抛物线上部分点的横坐标x,纵坐标y的对应值如下表:①一元二次方程的根为_________________.②抛物线经过点(-3,_____);③在对称轴右侧,y随x的增大而_________.(2)确定抛物线的解析式,并求出该函数的最值.➢思考小结1.对于二次函数和一元二次方程的关系,尝试着进行总结:①函数与x轴交点坐标,与方程的根:__________________________________________.②函数与x轴交点个数,与方程解的个数:当时,函数与x轴有____个交点,方程有______根;当时,函数与x轴有_____个交点,方程有_______根;当时,函数与x轴______交点,方程________根.【参考答案】➢巩固练习1. A2. C3. B4. D5. D6. D7. D8.1<α<β<3;α<x<β9.10.(1)b=4 (2)无交点11.(-1,0)12.一13.(1)①x1=-2,x2=1 ②8 ③增大(2)y=2x2+2x-4,最小值:➢思考小结1.①函数与轴交点的横坐标即为方程的根②两,两;一,一;无,无.。
2023年中考数学重难点专题复习-特殊三角形问题(二次函数综合)1.综合与探究如图,抛物线2y ax bx c =++经过()1,0A -,()3,0B ,()0,3C 三点,与y 轴交于点C ,作直线BC .(1)求抛物线和直线BC 的函数解析式.(2)D 是直线BC 上方抛物线上一点,求BDC 面积的最大值及此时点D 的坐标.(3)在抛物线对称轴上是否存在一点P ,使得以点P ,B ,C 为顶点的三角形是等腰三角形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.2.如图,在平面直角坐标系中,抛物线2y ax x m =++(a ≠0)的图象与x 轴交于A 、C 两点,与y 轴交于点B ,其中点B 坐标为(0,-4),点C 坐标为(2,0).(1)求此抛物线的函数解析式.(2)点D 是直线AB 下方抛物线上一个动点,连接AD 、BD ,探究是否存在点D ,使得△ABD 的面积最大?若存在,请求出点D 的坐标;若不存在,请说明理由.(3)点P 为该抛物线对称轴上的动点,使得△P AB 为直角三角形,请求出点P 的坐标.3.已知,如图,抛物线2y x bx c =-++经过直线3y x =-+与坐标轴的两个交点A ,B ,此抛物线与x 轴的另一个交点为C ,抛物线的顶点为D .(1)求此抛物线的解析式;(2)设点Q 是线段AB 上的动点,作QM x ⊥轴交抛物线于点M ,求线段QM 长度的最大值;(3)在x 轴上是否存在点N 使ADN △为直角三角形?若存在,确定点N 的坐标;若不存在,请说明理由.4.已知抛物线2y ax bx c =++与x 轴交于()2,0A -、()6,0B 两点,与y 轴交于点()0,3C -.(1)求抛物线的表达式;(2)点P 在直线BC 下方的抛物线上,连接AP 交BC 于点M ,过点P 作x 轴的垂线l ,垂线l 交BC 于点E ,AD ∥垂线l ,求证ADM PEM ∽;当PM AM 最大时,求点P 的坐标及PM AM的最大值; (3)在(2)的条件下,在l 上是否存在点D ,使BCD 是直角三角形,若存在,请直接写出点D 的坐标;若不存在,请说明理由.5.如图,已知抛物线2y x bx c =++与x 轴交于点1,0A 和点()3,0B -.(1)求此抛物线的解析式;(2)点M 在抛物线的对称轴上,点Q 在x 轴下方的抛物线上,当MAQ 是以AQ 为斜边的等腰直角三角形时,求点M 的坐标.6.如图,抛物线223y ax x =++与x 轴的一个交点是()3,0A ,与y 轴交于B 点,点P 在拋物线上.(1)求a 的值;(2)过点P 作x 轴的垂线交直线AB 于点E ,设点P 的横坐标为(03)m m <<,PE l =,求l 关于m 的函数关系式;(3)当PAB 是直角三角形时,求点P 的坐标.7.如图1,在平面直角坐标系中,抛物线2143y x bx =-++经过()13A -,,与y 轴交于点C ,经过点C 的直线与抛物线交于另一点()6,E m ,点M 为抛物线的顶点,抛物线的对称轴与x 轴交于点D .(1)求直线CE的解析式;(2)如图2,点P为直线CE上方抛物线上一动点,连接PC,PE,当PCE的面积最大时,求点P的坐标以及PCE 面积的最大值;(3)如图3,将点D右移一个单位到点N,连接AN,将(1)中抛物线沿射线NA平移得到新抛物线y',y'经过点N,y'的顶点为点G,在新抛物线y'的对称轴上是否存在点H,使得MGH是等腰三角形?若存在,请直接写出点H 的坐标:若不存在,请说明理由.30,,8.如图,在平面直角坐标系中,二次函数2=-++的图象与坐标轴相交于A、B、C三点,其中A点坐标为()y x bx cB 点坐标为10,,连接AC、BC.动点P从点A出发,在线段AC个单位长度向点C做匀速运动;同时,动点Q从点B出发,在线段BA上以每秒1个单位长度向点A做匀速运动,当其中一点到达终点时,另一点随之停止运动,连接PQ,设运动时间为t秒.(1)求b、c的值.(2)在P、Q运动的过程中,当t为何值时,四边形BCPQ的面积最小,最小值为多少?(3)在线段AC上方的抛物线上是否存在点M,使MPQ是以点P为直角顶点的等腰直角三角形?若存在,请求出点9.如图,已知直线y =x +3与x 轴交于点A ,与y 轴交于点B ,抛物线2y x bx c =-++经过A 、B 两点,与x 轴交于另一个点C ,对称轴与直线AB 交于点E ,抛物线顶点为D .(1)点A 的坐标为 ,点B 的坐标为 .(2)①求抛物线的解析式;② 点M 是抛物线在第二象限图象上的动点,是否存在点M ,使得△MAB 的面积最大?若存在,请求这个最大值并求出点M 的坐标;若不存在,请说明理由;(3)点P 从点D 出发,沿对称轴向下以每秒1个单位长度的速度匀速运动,设运动的时间为t 秒,当t 为何值时,以P 、B 、C 为顶点的三角形是等腰三角形?直接写出所有符合条件的t 值.10.如图,抛物线1C :()2120y ax ax a =+>与x 轴交于点A ,顶点为点P .(1)直接写出抛物线1C 的对称轴是______,用含a 的代数式表示顶点P 的坐标______;(2)把抛物线1C 绕点(),0M m 旋转180°得到抛物线2C (其中0m >),抛物线2C 与x 轴右侧的交点为点B ,顶点为点Q .②在①的条件下,是否存在ABP 为等腰三角形,若存在请求出a 的值,若不存在,请说明理由.11.如图,关于x 的二次函数y =x 2+bx +c 的图象与x 轴交于点A (1,0)和点B ,与y 轴交于点C (0,3),抛物线的对称轴与x 轴交于点D .(1)求二次函数的解析式.(2)有一个点M 从点A 出发,以每秒1个单位的速度在AB 上向点B 运动,另一个点N 从点D 与点M 同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M 到达点B 时,点M 、N 同时停止运动,问点M 、N 运动到何处时,△MNB 面积最大,试求出最大面积.(3)在y 轴上是否存在一点P ,使△PBC 为等腰三角形?若存在,请直接写出点P 的坐标,若不存在请说明理由.12.如图,抛物线212y ax x c =-+的图象与x 轴交点为A 和B ,与y 轴交点为()0,3D ,与直线23y x =--交点为A 和C .(1)求抛物线的解析式;(2)在直线23y x =--上是否存在一点M ,使得ABM 是等腰直角三角形,如果存在,求出点M 的坐标,如果不存在请说明理由.(3)若点E 是x 轴上一个动点,把点E 向下平移4个单位长度得到点F ,点F 向右平移4个单位长度得到点G ,点G 向上平移4个单位长度得到点H ,若四边形EFGH 与抛物线有公共点,请直接写出点E 的横坐标E x 的取值范围.。
中考数学重难点专题讲座第四讲 一元二次方程与二次函数【前言】前三讲,笔者主要是和大家探讨中考中的几何综合问题,在这一类问题当中,尤以第三讲涉及的动态几何问题最为艰难。
几何问题的难点在于想象,构造,往往有时候一条辅助线没有想到,整个一道题就卡壳了。
相比几何综合题来说,代数综合题倒不需要太多巧妙的方法,但是对考生的计算能力以及代数功底有了比较高的要求。
中考数学当中,代数问题往往是以一元二次方程与二次函数为主体,多种其他知识点辅助的形式出现的。
所以在接下来的专题当中,我们将对代数综合问题进行仔细的探讨和分析。
一元二次方程与二次函数问题当中,纯粹的一元二次方程解法通常会以简单解答题的方式考察。
但是在后面的中难档大题当中,通常会和根的判别式,整数根和抛物线等知识点结合,所以我们继续通过真题来看看此类问题的一般解法。
第一部分 真题精讲【例1】2010,西城,一模已知:关于x 的方程23(1)230mx m x m --+-=. ⑴求证:m 取任何实数时,方程总有实数根;⑵若二次函数213(1)21=--+-y mx m x m 的图象关于y 轴对称. ①求二次函数1y 的解析式;②已知一次函数222=-y x ,证明:在实数范围内,对于x 的同一个值,这两个函数所对应的函数值12y y ≥均成立;⑶在⑵条件下,若二次函数23y ax bx c =++的图象经过点(50)-,,且在实数范围内,对于x 的同一个值,这三个函数所对应的函数值132y y y ≥≥,均成立,求二次函数23=++y ax bx c 的解析式.【思路分析】本题是一道典型的从方程转函数的问题,这是比较常见的关于一元二次方程与二次函数的考查方式。
由于并未说明该方程是否是一元二次方程,所以需要讨论M=0和M ≠0两种情况,然后利用根的判别式去判断。
第二问的第一小问考关于Y 轴对称的二次函数的性质,即一次项系数为0,然后求得解析式。
第二问加入了一个一次函数,证明因变量的大小关系,直接相减即可。
事实上这个一次函数2y 恰好是抛物线1y 的一条切线,只有一个公共点(1,0)。
根据这个信息,第三问的函数如果要取不等式等号,也必须过该点。
于是通过代点,将3y 用只含a 的表达式表示出来,再利用132y y y ≥≥,构建两个不等式,最终分析出a 为何值时不等式取等号,于是可以得出结果.【解析】解:(1)分两种情况:当0m =时,原方程化为033=-x ,解得1x =, (不要遗漏) ∴当0m =,原方程有实数根.当0≠m 时,原方程为关于x 的一元二次方程,∵()()()222[31]4236930m m m m m m =----=-+=-△≥.∴原方程有两个实数根. (如果上面的方程不是完全平方式该怎样办?再来一次根的判定,让判别式小于0就可以了,不过中考如果不是压轴题基本判别式都会是完全平方式,大家注意就是了)综上所述,m 取任何实数时,方程总有实数根.(2)①∵关于x 的二次函数32)1(321-+--=m x m mx y 的图象关于y 轴对称, ∴0)1(3=-m .(关于Y 轴对称的二次函数一次项系数一定为0) ∴1=m .∴抛物线的解析式为121-=x y .②∵()()221212210y y x x x -=---=-≥,(判断大小直接做差) ∴12y y ≥(当且仅当1x =时,等号成立). (3)由②知,当1x =时,120y y ==.∴1y 、2y 的图象都经过()1,0. (很重要,要对那个等号有敏锐的感觉) ∵对于x 的同一个值,132y y y ≥≥, ∴23y ax bx c =++的图象必经过()1,0. 又∵23y ax bx c =++经过()5,0-,∴()()231545y a x x ax ax a =-+=+-. (巧妙的将表达式化成两点式,避免繁琐计算)设)22(54223---+=-=x a ax ax y y y )52()24(2a x a ax -+-+=.∵对于x 的同一个值,这三个函数所对应的函数值132y y y ≥≥均成立, ∴320y y -≥,图7-1-2-3-3-2-1-4-5-621123∴2(42)(25)0y ax a x a =+-+-≥. 又根据1y 、2y 的图象可得 0a >, ∴24(25)(42)04a a a y a---=最小≥.(a>0时,顶点纵坐标就是函数的最小值)∴2(42)4(25)0a a a ---≤. ∴2(31)0a -≤. 而2(31)0a -≥.只有013=-a ,解得13a =. ∴抛物线的解析式为35343123-+=x x y .【例2】2010,门头沟,一模关于x 的一元二次方程22(1)2(2)10m x m x ---+=. (1)当m 为何值时,方程有两个不相等的实数根;(2)点()11A --,是抛物线22(1)2(2)1y m x m x =---+上的点,求抛物线的解析式; (3)在(2)的条件下,若点B 与点A 关于抛物线的对称轴对称,是否存在与抛物线只交于点B 的直线,若存在,请求出直线的解析式;若不存在,请说明理由.【思路分析】第一问判别式依然要注意二次项系数不为零这一条件。
第二问给点求解析式,比较简单。
值得关注的是第三问,要注意如果有一次函数和二次函数只有一个交点,则需要设直线y=kx+b 以后联立,新得到的一元二次方程的根的判别式是否为零,但是这样还不够,因为y=kx+b 的形式并未包括斜率不存在即垂直于x 轴的直线,恰恰这种直线也是和抛物线仅有一个交点,所以需要分情况讨论,不要遗漏任何一种可能.【解析】:(1)由题意得[]22224(1)0m m ∆=---->()解得54m < 210m -≠解得1m ≠± 当54m <且1m ≠±时,方程有两个不相等的实数根. (2)由题意得212(2)11m m -+-+=-解得31m m =-=,(舍) (始终牢记二次项系数不为0) 28101y x x =++(3)抛物线的对称轴是58x =由题意得114B ⎛⎫-- ⎪⎝⎭, (关于对称轴对称的点的性质要掌握) 14x =-与抛物线有且只有一个交点B (这种情况考试中容易遗漏)另设过点B 的直线y kx b =+(0k ≠)把114B ⎛⎫-- ⎪⎝⎭,代入y kx b =+,得14k b -+=-,114b k =-114y k x k =+- 28101114y x x y kx k ⎧=++⎪⎨=+-⎪⎩ 整理得218(10)204x k x k +--+=有且只有一个交点,21(10)48(2)04k k ∆=--⨯⨯-+=解得6k = 162y x =+综上,与抛物线有且只有一个交点B 的直线的解析式有14x =-,162y x =+【例3】已知P (3,m -)和Q (1,m )是抛物线221y x bx =++上的两点. (1)求b 的值;(2)判断关于x 的一元二次方程221x bx ++=0是否有实数根,若有,求出它的实数根;若没有,请说明理由;(3)将抛物线221y x bx =++的图象向上平移k (k 是正整数)个单位,使平移后的图象与x 轴无交点,求k 的最小值.【思路分析】 拿到题目,很多同学不假思索就直接开始代点,然后建立二元方程组, 十分麻烦,计算量大,浪费时间并且可能出错。
但是仔细看题,发现P,Q 纵坐标是一样的,说明他们关于抛物线的对称轴对称。
而抛物线只有一个未知系数,所以轻松写出对称轴求出b 。
第二问依然是判别式问题,比较简单。
第三问考平移,也是这类问题的一个热点,在其他区县的模拟题中也有类似的考察。
考生一定要把握平移后解析式发生的变化,即左加右减(单独的x),上加下减(表达式整体)然后求出结果。
【解析】(1)因为点P 、Q 在抛物线上且纵坐标相同,所以P 、Q 关于抛物线对称轴对称并且到对称轴距离相等.所以,抛物线对称轴3142b x -+=-=,所以,4b =. (2)由(1)可知,关于x 的一元二次方程为2241x x ++=0. 因为,24b ac =- =16-8=8>0. 所以,方程有两个不同的实数根,分别是 12122b x a -+==-+ ,22122b x a --==--. (3)由(1)可知,抛物线2241y x x =++的图象向上平移k (k 是正整数)个单位后的解析式为2241y x x k =+++.若使抛物线2241y x x k =+++的图象与x 轴无交点,只需22410x x k +++= 无实数解即可.由24b ac =- =168(1)k -+=88k -<0,得1k > 又k 是正整数,所以k 得最小值为2.【例4】2010,昌平,一模已知抛物线2442y ax ax a =-+-,其中a 是常数. (1)求抛物线的顶点坐标; (2)若25a >,且抛物线与x 轴交于整数点(坐标为整数的点),求此抛物线的解析式.【思路分析】本题第一问较为简单,用直接求顶点的公式也可以算,但是如果巧妙的将a 提出来,里面就是一个关于X 的完全平方式,从而得到抛物线的顶点式,节省了时间.第二问则需要把握抛物线与X 轴交于整数点的判别式性质.这和一元二次方程有整数根是一样的.尤其注意利用题中所给25a >,合理变换以后代入判别式,求得整点的可能取值. (1)依题意,得0a ≠,∴2442y ax ax a =-+- ()()224422 2.a x x a x =-+-=--∴抛物线的顶点坐标为(2,2)-(2)∵抛物线与x 轴交于整数点, ∴24420ax ax a -+-=的根是整数.∴24164(42)222a a a a a x a a±--==±是整数. ∵0a >, ∴22x a=±是整数. ∴2a是整数的完全平方数. ∵25a >, ∴25a<. (很多考生想不到这种变化而导致后面无从下手) ∴2a取1,4, 当21a =时,2a =; 当24a =时,12a = . ∴a 的值为2或12. ∴抛物线的解析式为2286y x x =-+或2122y x x =-.【例5】2010,平谷,一模已知:关于x 的一元二次方程()()21210m x m x -+--=(m 为实数)(1)若方程有两个不相等的实数根,求m 的取值范围;(2)在(1)的条件下,求证:无论m 取何值,抛物线()()2121y m x m x =-+--总过x轴上的一个固定点;(3)若m 是整数,且关于x 的一元二次方程()()21210m x m x -+--=有两个不相等的整数根,把抛物线()()2121y m x m x =-+--向右平移3个单位长度,求平移后的解析式.【思路分析】本题第一问比较简单,直接判别式≥0就可以了,依然不能遗漏的是m -1≠0。