潍坊中考数学第一次模拟试题目
- 格式:doc
- 大小:403.00 KB
- 文档页数:7
山东省潍坊市中考一模数学考试卷(解析版)(初三)中考模拟姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)【题文】的立方根是()A.2 B.±2 C.4 D.±4【答案】A.【解析】试题解析:=8,8的立方根是2.故选A.考点:1.算术平方根;2.立方根.【题文】下列运算正确的是()A.a0=1 B.=±3 C.(ab)3=ab2 D.(-a2)3=﹣a6【答案】D.【解析】试题解析:A、a0=1(a≠0),故此选项错误;B、=3,故此选项错误;C、(ab)2=a2b2,故此选项错误;D、(﹣a2)3=﹣a6,正确.故选D.考点:1.非零数的零次幂;2.算术平方根;3.积的乘方与幂的乘方.【题文】王英同学从A地沿北偏西60°方向走100m到B地,再从B地向正南方向走200m到C地,此时王英同学离A地()A.m B.100m C.150m D.m 【答案】D.【解析】试题解析:AD=ABsin60°=;BD=ABcos60°=50,∴CD=150.∴AC=.故选D.考点:解直角三角形的应用—方向角问题.【题文】若关于x 的一元二次方程(m﹣2)2x2+(2m+1)x+1=0有解,那么m的取值范围是()A. B. C. 且m≠2 D. 且m≠2【答案】C【解析】试题解析:根据题意列出方程组,解之得m>且m≠2.故选C.考点:根的判别式.【题文】如图,组合体的俯视图是()【答案】A.【解析】试题解析:从上面看是两个同心圆,如图所示:.故选A.考点:简单组合体的三视图.【题文】在边长为2的小正方形组成的网格中,有如图所示的A,B两点,在格点上任意放置点C,恰好能使得△ABC的面积为2的概率为()A. B. C. D.【答案】B.【解析】试题解析:如图所示,∵在格点上任意放置点C,∴有关有16种可能,其中有6个点(见图)恰好能使得△ABC的面积为2,∴恰好能使得△ABC的面积为2的概率=.故选B.考点:概率公式.【题文】点P(a,b)是直线y=﹣x﹣5与双曲线的一个交点,则以a、b两数为根的一元二次方程是()A.x2﹣5x+6=0 B.x2+5x+6=0C.x2﹣5x﹣6=0 D.x2+5x﹣6=0【答案】B.【解析】试题解析:把P(a,b)分别代入y=﹣x﹣5和得b=﹣a﹣5,b=,所以a+b=﹣5,ab=6,而以a、b两数为根的一元二次方程为x2﹣(a+b)x+ab=0,所以所求的方程为x2+5x+6=0.故选B.考点:反比例函数与一次函数函数的交点问题.【题文】如图,AB的中垂线为CP交AB于点P,且AC=2CP.甲、乙两人想在AB上取D、E两点,使得AD=DC=CE=EB ,其作法如下:甲作∠ACP、∠BCP的角平分线,分别交AB于D、E两点,则D、E即为所求;乙作AC、BC 的中垂线,分别交AB于D、E两点,则D、E即为所求.对于甲、乙两人的作法,下列正确的是()A.两人都正确 B.两人都错误C.甲正确,乙错误 D.甲错误,乙正确【答案】A.【解析】试题解析:甲、乙都正确,理由是:∵CP是线段AB的垂直平分线,∴BC=AC,∠APC=∠BPC=90°,∵AC=2CP,∴∠A=30°,∴∠ACP=60°,∵CD平分∠ACP,∴∠ACD=∠ACP=30°,∴∠ACD=∠A,∴AD=DC,同理CE=BE,即D、E为所求;∵D在AC的垂直平分线上,∴AD=CD,同理CE=BE,即D、E为所求,故选A.考点:1.线段垂直平分线的性质;2.含30度角的直角三角形.【题文】某外贸公司要出口一批食品罐头,标准质量为每听454克,现抽去10听样品进行检测,它们的质量与标准质量的差值(单位:克)如下:﹣10,+5,0,+5,0,0,﹣5,0,+5,+10.则这10听罐头质量的平均数及众数为()A.454,454 B.455,454 C.454,459 D.455,0【答案】B.【解析】试题解析:平均数是:454+(﹣10+5+0+5+0+0﹣5+0+5+10)=454+1=455克,﹣10,+5,0,+5,0,0,﹣5,0,+5,+10的众数是0,因而这10听罐头的质量的众数是:454+0=454克.故选B.考点:1.众数;2.算术平均数.【题文】二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx+a的图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限【答案】D.【解析】试题解析:由图象开口向上可知a>0,对称轴x=﹣<0,得b>0.所以一次函数y=bx+a的图象经过第一、二、三象限,不经过第四象限.故选D.考点:1.一次函数图象与系数的关系;2.二次函数图象与系数的关系.【题文】如图,在Rt△ABC中,∠C=90°,∠B=30°,BC=4cm,以点C为圆心,以2cm的长为半径作圆,则⊙C与AB的位置关系是()A.相离 B.相切 C.相交 D.相切或相交【答案】B.【解析】试题解析:作CD⊥AB于点D.∵∠B=30°,BC=4cm,∴CD=BC=2cm,即CD等于圆的半径.∵CD⊥AB,∴AB与⊙C相切.故选B.考点:直线与圆的位置关系【题文】已知如图,等腰三角形ABC的直角边长为a,正方形MNPQ的边为b(a<b),C、M、A、N在同一条直线上,开始时点A与点M重合,让△ABC向右移动,最后点C与点N重合.设三角形与正方形的重合面积为y,点A移动的距离为x,则y关于x的大致图象是()【答案】B.【解析】试题解析:设三角形与正方形的重合面积为y,点A移动的距离为x,∴y关于x的函数关系式为:y=x2,①当x<a时,重合部分的面积的y随x的增大而增大,②当a<x<b时,重合部分的面积等于直角三角形的面积,且保持不变,③第三部分函数关系式为y=﹣当x>b时,重合部分的面积随x的增大而减小.故选B.考点:动点问题的函数图象.【题文】分解因式:﹣x﹣x3+x2=.【答案】﹣x(x﹣)2.【解析】试题解析:﹣x﹣x3+x2=﹣x(x2﹣x+)=﹣x(x﹣)2.考点:提公因式与公式法的综合运用.【题文】关于x、y的方程组,那么=.【答案】10.【解析】试题解析:①-②,得:=10.考点:解二元一次方程组.【题文】如图,已知△ABC,AC=BC,∠C=90°.O是AB的中点,⊙O与AC,BC分别相切于点D与点E.点F是⊙O与AB的一个交点,连DF并延长交CB的延长线于点G.则∠CDG=,若AB=,则BG=.【答案】67.5°,2﹣2.【解析】试题解析:连接OD.∵CD切⊙O于点D,∴∠ODA=90°,∠DOA=45°,∵OD=OF,∴∠ODF=∠OFD=∠DOA=22.5°,∴∠CDG=∠CDO﹣∠ODF=90°﹣22.5°=67.5°.∵AC为圆O的切线,∴OD⊥AC,又O为AB的中点,∴AO=BO=AB=2,∴圆的半径DO=FO=AOsinA=2×=2,∴BF=OB﹣OF=2﹣2.∵GC⊥AC,OD⊥AC,∴OD∥CG,∴∠ODF=∠G,又∠OFD=∠BFG,∴△ODF∽△BGF,∴,即∴BG=2﹣2.考点:圆的综合题.【题文】若关于x的不等式组有实数解,则a的取值范围是.【答案】a<4.【解析】试题解析:,由①得,x<3,由②得,x>,∵此不等式组有实数解,∴<3,解得a<4.考点:解一元一次不等式组.【题文】如图,正方形ABCD边长为4,以BC为直径的半圆O交对角线BD于E.阴影部分面积为(结果保留π).【答案】8﹣π.【解析】试题解析:∵四边形ABCD为正方形,∴BC=CD=4,∴OC=2,∴S阴影=S△BCD﹣S扇形OCE=×4×4﹣=8﹣π.考点:1.扇形面积的计算;2.正方形的性质.【题文】式子“1+2+3+4+5+…+100”表示从1开始的100个连续自然数的和,由于上述式子比较长,书写也不方便,为了简便起见,我们可以将“1+2+3+4+5+…+100”表示为,这里的符号“”是求和的符号,如“1+3+5+7+…+99”即从1开始的100以内的连续奇数的和,可表示为.通过对以上材料的阅读,请计算:=(填写最后的计算结果).【答案】.【解析】试题解析:==1-=.考点:分式的加减法.【题文】下表为抄录北京奥运会官方票务网公布的三种球类比赛的部分门票价格,某公司购买的门票种类、数量绘制的条形统计图如图.比赛项目票价(元/张)男篮1000足球800乒乓球x依据上列图、表,回答下列问题:(1)其中观看男篮比赛的门票有张;观看乒乓球比赛的门票占全部门票的 %;(2)公司决定采用随机抽取的方式把门票分配给100名员工,在看不到门票的条件下,每人抽取一张(假设所有的门票形状、大小、质地等完全相同且充分洗匀),问员工小亮抽到足球门票的概率是;(3)若购买乒乓球门票的总款数占全部门票总款数的,试求每张乒乓球门票的价格.【答案】(1)30;20;(2);(3)500元.【解析】试题分析:(1)由条形统计图可得购买男篮比赛的门票数为30张,购买乒乓球比赛的门票数为20张,然后计算观看乒乓球比赛的门票所占的百分比;(2)根据概率的公式求解;(3)根据题意列方程,然后解方程即可.试题解析:(1)某公司购买男篮比赛的门票张数为30(张),观看乒乓球比赛的门票所占的百分比=;(2)员工小亮抽到足球门票的概率=;(3)根据题意得.解得x=500.即每张乒乓球门票的价格为500元.考点:1.条形统计图;2.统计表;3.概率公式.【题文】如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.【答案】(1)证明见解析;(2)6.5;(3)当点O在边AC上运动到AC中点时,四边形AECF是矩形.【解析】试题分析:(1)根据平行线的性质以及角平分线的性质得出∠1=∠2,∠3=∠4,进而得出答案;(2)根据已知得出∠2+∠4=∠5+∠6=90°,进而利用勾股定理求出EF的长,即可得出CO的长;(3)根据平行四边形的判定以及矩形的判定得出即可.(1)证明:∵MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F,∴∠2=l∵∠ECF=90°,∴平行四边形AECF是矩形.【题文】小明坐于堤边垂钓,如图,河堤AC的坡角为30°,AC长米,钓竿AO的倾斜角是60°,其长为3米,若AO与钓鱼线OB的夹角为60°,求浮漂B与河堤下端C之间的距离.【答案】浮漂B与河堤下端C之间的距离为1.5米.【解析】试题分析:延长OA交BC于点D.先由倾斜角定义及三角形内角和定理求出∠CAD=180°﹣∠ODB﹣∠ACD=90°,解Rt△ACD,得出AD=ACtan∠ACD=米,CD=2AD=3米,再证明△BOD是等边三角形,得到BD=OD=OA+AD=4.5米,然后根据BC=BD﹣CD即可求出浮漂B与河堤下端C 之间的距离.试题解析:延长OA交BC于点D.∵AO的倾斜角是60°,∴∠ODB=60°.∵∠ACD=30°,∴∠CAD=180°﹣∠ODB﹣∠ACD=90°.在Rt△ACD中,AD=ACtan∠ACD=(米),∴CD=2AD=3米,又∵∠O=60°,∴△BOD是等边三角形,∴BD=OD=OA+AD=3+=4.5(米),∴BC=BD﹣CD=4.5﹣3=1.5(米).答:浮漂B与河堤下端C之间的距离为1.5米.考点:解直角三角形的应用—坡度坡角问题.【题文】如图,在△ABC中,∠ABC=∠ACB,以AC为直径的⊙O分别交AB、BC于点M、N,点P在AB的延长线上,且∠CAB=2∠BCP.(1)求证:直线CP是⊙O的切线;(2)若BC=2,sin∠BCP=,求点B到AC的距离.【答案】(1)证明见解析;(2)4.【解析】试题分析:(1)利用直径所对的圆周角为直角,2∠CAN=∠CAB,∠CAB=2∠BCP判断出∠ACP=90°即可;(2)利用锐角三角函数,即勾股定理即可.试题解析:(1)∵∠ABC=∠ACB,∴AB=AC,∵AC为⊙O的直径,∴∠ANC=90°,∴∠CAN+∠ACN=90°,2∠BAN=2∠CAN=∠CAB,∵∠CAB=2∠BCP,∴∠BCP=∠CAN,∴∠ACP=∠ACN+∠BCP=∠ACN+∠CAN=90°,∵点D在⊙O上,∴直线CP是⊙O的切线;(2)如图,作BF⊥AC∵AB=AC,∠ANC=90°,∴CN=CB=,∵∠BCP=∠CAN,sin∠BCP=,∴sin∠CAN=,∴∴AC=5,∴AB=AC=5,设AF=x,则CF=5﹣x,在Rt△ABF中,BF2=AB2﹣AF2=25﹣x2,在Rt△CBF中,BF2=BC2﹣CF2=2O﹣(5﹣x)2,∴25﹣x2=2O﹣(5﹣x)2,∴x=3,∴BF2=25﹣32=16,∴BF=4,即点B到AC的距离为4.考点:切线的判定【题文】某公司销售一种新型节能产品,现准备从国内和国外两种销售方案中选择一种进行销售.若只在国内销售,销售价格y(元/件)与月销量x(件)的函数关系式为y=x+150,成本为20元/件,无论销售多少,每月还需支出广告费62500元,设月利润为w内(元).若只在国外销售,销售价格为150元/件,受各种不确定因素影响,成本为a元/件(a为常数,10≤a≤40),当月销量为x(件)时,每月还需缴纳x2元的附加费,设月利润为w外(元).(1)当x=1000时,y=元/件,w内=元;(2)分别求出w内,w外与x间的函数关系式(不必写x的取值范围);(3)当x为何值时,在国内销售的月利润最大?若在国外销售月利润的最大值与在国内销售月利润的最大值相同,求a的值.【答案】(1)140;57500;(2)w内= x2+130x﹣62500,w外=x2+(150﹣a)x.(3)30.【解析】试题分析:(1)将x=1000代入函数关系式求得y,并根据等量关系“利润=销售额﹣成本﹣广告费”求得w内;(2)根据等量关系“利润=销售额﹣成本﹣广告费”“利润=销售额﹣成本﹣附加费”列出两个函数关系式;(3)对w内函数的函数关系式求得最大值,再求出w外的最大值并令二者相等求得a值.试题解析:(1)∵销售价格y(元/件)与月销量x(件)的函数关系式为y=l所以a=30.考点:二次函数的应用.【题文】如图,⊙C的内接△AOB中,AB=AO=4,tan∠AOB=,抛物线y=ax2+bx经过点A(4,0)与点(﹣2,6).(1)求抛物线的函数解析式;(2)直线m与⊙C相切于点A,交y轴于点D.动点P在线段OB上,从点O出发向点B运动;同时动点Q 在线段DA上,从点D出发向点A运动;点P的速度为每秒一个单位长,点Q的速度为每秒2个单位长,当PQ⊥AD时,求运动时间t的值;(3)点R在抛物线位于x轴下方部分的图象上,当△ROB面积最大时,求点R的坐标.【答案】(1) y=x2﹣2x.(2) t=1.8秒;(3) R(,).【解析】试题分析:(1)根据抛物线y=ax2+bx经过点A(4,0)与点(﹣2,6),利用待定系数法求抛物线解析式;(2)如图1,由已知条件,可以计算出OD、AE等线段的长度.当PQ⊥AD时,过点O作OF⊥AD于点F,此时四边形OFQP、OFAE均为矩形.则在Rt△ODF中,利用勾股定理求出DF的长度,从而得到时间t的数值;(3)因为OB为定值,欲使△ROB面积最大,只需OB边上的高最大即可.按照这个思路解决本题.如图2,当直线l平行于OB,且与抛物线相切时,OB边上的高最大,从而△ROB的面积最大.联立直线l 和抛物线的解析式,利用一元二次方程判别式等于0的结论可以求出R点的坐标.试题解析:(1)∵抛物线y=ax2+bx经过点A(4,0)与点(﹣2,6),∴,解得∴抛物线的解析式为:y=x2﹣2x.(2)如图1,连接AC交OB于点E,由垂径定理得AC⊥OB.∵AD为切线,∴AC⊥AD,∴AD∥OB.过O点作OF⊥AD于F,∴四边形OFAE是矩形,∵tan∠AOB=,∴sin∠AOB=,∴AE=OAsin∠AOB=4×=2.4,OD=OAtan∠OAD=OAtan∠AOB=4×=3.当PQ⊥AD时,OP=t,DQ=2t.在Rt△ODF中,∵OD=3,OF=AE=2.4,DF=DQ﹣FQ=DQ﹣OP=2t﹣t=t,由勾股定理得:DF=,∴t=1.8秒;(3)如图2,设直线l平行于OB,且与抛物线有唯一交点R(相切),此时△ROB中OB边上的高最大,所以此时△ROB面积最大.∵tan∠AOB=,∴直线OB的解析式为y=x,由直线l平行于OB,可设直线l解析式为y=x+b.∵点R既在直线l上,又在抛物线上,∴x2﹣2x=x+b,化简得:2x2﹣11x﹣4b=0.∵直线l与抛物线有唯一交点R(相切),∴判别式△=0,即112+32b=0,解得b=﹣,此时原方程的解为x=,即xR=,而yR=xR2﹣2xR=∴点R的坐标为R(,).考点:1.二次函数综合题2.根的判别式;3.勾股定理的应用;4.圆的综合题;5.解直角三角形的应用.。
潍坊市初三中考数学第一次模拟试卷【含答案】一.选择题(每小题3分,共30分1.(3分)﹣的绝对值是()A.2B.C.﹣D.﹣22.(3分)俗话说:“水滴石穿”,水滴不断的落在一块石头的同一个位置,经过若干年后,石头上形成了一个深度为0.000000039cm的小洞,则0.000000039用科学记数法可表示为()A.3.9×10﹣8B.﹣3.9×10﹣8C.0.39×10﹣7D.39×10﹣93.(3分)如图,将一个圆柱体放置在长方体上,其中圆柱体的底面直径与长方体的宽相平,则该几何体的左视图是()A.B.C.D.4.(3分)下列运算正确的是()A.a2+a2=a4B.a6÷a2=a3C.(﹣2a)3=﹣8a3D.(a+1)2=a2+15.(3分)如图,把一块含有45°的直角三角形的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.15°B.20°C.25°D.30°6.(3分)在“经典诵读”比赛活动中,某校10名学生参赛成绩如图所示,对于这10名学生的参赛成绩,下列说法正确的是()A.众数是90分B.中位数是95分C.平均数是95分D.方差是157.(3分)如图,P A、PB分别与⊙O相切于A、B两点,若∠C=65°,则∠P的度数为()A.65°B.130°C.50°D.100°8.(3分)若函数y=(m﹣1)x2﹣6x+m的图象与x轴有且只有一个交点,则m的值为()A.﹣2或3B.﹣2或﹣3C.1或﹣2或3D.1或﹣2或﹣3 9.(3分)如图,点A在双曲线y═(x>0)上,过点A作AB⊥x轴,垂足为点B,分别以点O和点A为圆心,大于OA的长为半径作弧,两弧相交于D,E两点,作直线DE 交x轴于点C,交y轴于点F(0,2),连接AC.若AC=1,则k的值为()A.2B.C.D.10.(3分)如图,点A在x轴上,点B,C在反比例函数y=(k>0,x>0)的图象上.有一个动点P从点A出发,沿A→B→C→O的路线(图中“→”所示路线)匀速运动,过点P作PM⊥x轴,垂足为M,设△POM的面积为S,点P的运动时间为t,则S关于t 的函数图象大致为()A.B.C.D.二.填空题(每题3分,共15分)11.(3分)计算:+(﹣1)0﹣()﹣2=.12.(3分)如图,随机闭合开关S1,S2,S3中的两个,能够让灯泡发光的概率为.13.(3分)不等式组的解集是.14.(3分)如图,在Rt△ABC中,∠ACB=90°,AC=BC=2,以点A为圆心,AC的长为半径作交AB于点E,以点B为圆心,BC的长为半径作交AB于点D,则阴影部分的面积为.15.(3分)如图,已知Rt△ABC中,∠B=90°,∠A=60°,AC=2+4,点M、N分别在线段AC、AB上,将△ANM沿直线MN折叠,使点A的对应点D恰好落在线段BC 上,当△DCM为直角三角形时,折痕MN的长为.三.解答题16.(8分)先化简,再求值:(﹣)÷,其中x满足x2﹣2x﹣2=0.17.(9分)某校在一次社会实践活动中,组织学生参观了虎园、烈士陵园、博物馆和植物园,为了解本次社会实践活动的效果,学校随机抽取了部分学生,对“最喜欢的景点”进行了问卷调查,并根据统计结果绘制了如下不完整的统计图.其中最喜欢烈士陵园的学生人数与最喜欢博物馆的学生人数之比为2:1,请结合统计图解答下列问题:(1)本次活动抽查了名学生;(2)请补全条形统计图;(3)在扇形统计图中,最喜欢植物园的学生人数所对应扇形的圆心角是度;(4)该校此次参加社会实践活动的学生有720人,请求出最喜欢烈士陵园的人数约有多少人?18.(9分)如图,AB是半圆O的直径,点P是半圆上不与点A,B重合的动点,PC∥AB,点M是OP中点.(1)求证:四边形OBCP是平行四边形;(2)填空:①当∠BOP=时,四边形AOCP是菱形;②连接BP,当∠ABP=时,PC是⊙O的切线.19.(9分)某数学活动小组实地测量湛河两岸互相平行的一段东西走向的河的宽度,在河的北岸边点A处,测得河的南岸边点B处在其南偏东45°方向,然后向北走20米到达点C处,测得点B在点C的南偏东33°方向,求出这段河的宽度.(结果精确到1米,参考数据:sin33°=0.54,cos33°≈0.84,tan33°=0.65,≈1.41)20.(9分)如图,已知反比例函数y=(m≠0)的图象经过点(1,4),一次函数y=﹣x+b的图象经过反比例函数图象上的点Q(﹣4,n).(1)求反比例函数与一次函数的表达式;(2)一次函数的图象分别与x轴、y轴交于A、B两点,与反比例函数图象的另一个交点为P点,连结OP、OQ,求△OPQ的面积.21.(10分)“京东电器”准备购进A、B两种品牌台灯,其中A每盏进价比B每盏进价贵30元,A售价120元,B售价80元已知用1040元购进的A数量与用650元购进B的数量相同.(1)求A、B的进价;(2)超市打算购进A、B台灯共100盏,要求A、B的总利润不得少于3400元,不得多于3550元,问有多少种进货方案?(3)在(2)的条件下,该超市决定对A台灯进行降价促销,A台灯每盏降价m(8<m <15),B的售价不变,超市如何进货获利最大?22.(10分)(1)问题发现在△ABC中,AC=BC,∠ACB=α,点D为直线BC上一动点,过点D作DF∥AC交AB于点F,将AD绕点D顺时针旋转α得到ED,连接BE.如图(1),当α=90°时,试猜想:①AF与BE的数量关系是;②∠ABE=;(2)拓展探究如图(2),当0°<α<90°时,请判断AF与BE的数量关系及∠ABE的度数,并说明理由.(3)解决问题如图(3),在△ABC中,AC=BC,AB=8,∠ACB=α,点D在射线BC上,将AD绕点D顺时针旋转α得到ED,连接BE,当BD=3CD时,请直接写出BE的长度.23.(11分)如图,已知直线y=﹣3x+c与x轴相交于点A(1,0),与y轴相交于点B,抛物线y=﹣x2+bx+c经过点A,B,与x轴的另一个交点是C.(1)求抛物线的解析式;(2)点P是对称轴的左侧抛物线上的一点,当S△P AB=2S△AOB时,求点P的坐标;(3)连接BC抛物线上是否存在点M,使∠MCB=∠ABO?若存在,请直接写出点M的坐标;否则说明理由.参考答案与试题解析一.选择题(每小题3分,共30分1.(3分)﹣的绝对值是()A.2B.C.﹣D.﹣2【分析】根据绝对值的定义进行计算.【解答】解:||=,故选:B.【点评】本题考查了绝对值.一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(3分)俗话说:“水滴石穿”,水滴不断的落在一块石头的同一个位置,经过若干年后,石头上形成了一个深度为0.000000039cm的小洞,则0.000000039用科学记数法可表示为()A.3.9×10﹣8B.﹣3.9×10﹣8C.0.39×10﹣7D.39×10﹣9【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000000039=3.9×10﹣8.故选:A.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.(3分)如图,将一个圆柱体放置在长方体上,其中圆柱体的底面直径与长方体的宽相平,则该几何体的左视图是()A.B.C.D.【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.【解答】解:从左面看易得左视图为:.故选:A.【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.4.(3分)下列运算正确的是()A.a2+a2=a4B.a6÷a2=a3C.(﹣2a)3=﹣8a3D.(a+1)2=a2+1【分析】直接利用积的乘方运算法则以及同底数幂的乘除运算法则、完全平方公式分别计算得出答案.【解答】解:A、a2+a2=2a2,故此选项错误;B、a6÷a2=a4,故此选项错误;C、(﹣2a)3=﹣8a3,正确;D、(a+1)2=a2+2a+1,故此选项错误;故选:C.【点评】此题主要考查了积的乘方运算以及同底数幂的乘除运算、完全平方公式,正确掌握相关运算法则是解题关键.5.(3分)如图,把一块含有45°的直角三角形的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.15°B.20°C.25°D.30°【分析】根据两直线平行,内错角相等求出∠3,再求解即可.【解答】解:∵直尺的两边平行,∠1=20°,∴∠3=∠1=20°,∴∠2=45°﹣20°=25°.故选:C.【点评】本题考查了两直线平行,内错角相等的性质,熟记性质是解题的关键.6.(3分)在“经典诵读”比赛活动中,某校10名学生参赛成绩如图所示,对于这10名学生的参赛成绩,下列说法正确的是()A.众数是90分B.中位数是95分C.平均数是95分D.方差是15【分析】根据众数、中位数、平均数、方差的定义和统计图中提供的数据分别列出算式,求出答案.【解答】解:A、众数是90分,人数最多,正确;B、中位数是90分,错误;C、平均数是分,错误;D、方差是=19,错误;故选:A.【点评】此题考查了折线统计图,用到的知识点是众数、中位数、平均数、方差,关键是能从统计图中获得有关数据,求出众数、中位数、平均数、方差.7.(3分)如图,P A、PB分别与⊙O相切于A、B两点,若∠C=65°,则∠P的度数为()A.65°B.130°C.50°D.100°【分析】由P A与PB都为圆O的切线,利用切线的性质得到OA垂直于AP,OB垂直于BP,可得出两个角为直角,再由同弧所对的圆心角等于所对圆周角的2倍,由已知∠C 的度数求出∠AOB的度数,在四边形P ABO中,根据四边形的内角和定理即可求出∠P 的度数.【解答】解:∵P A、PB是⊙O的切线,∴OA⊥AP,OB⊥BP,∴∠OAP=∠OBP=90°,又∵∠AOB=2∠C=130°,则∠P=360°﹣(90°+90°+130°)=50°.故选:C.【点评】本题主要考查了切线的性质,四边形的内角与外角,以及圆周角定理,熟练运用性质及定理是解本题的关键.8.(3分)若函数y=(m﹣1)x2﹣6x+m的图象与x轴有且只有一个交点,则m的值为()A.﹣2或3B.﹣2或﹣3C.1或﹣2或3D.1或﹣2或﹣3【分析】根据m=1和m≠1两种情况,根据一次函数的性质、二次函数与方程的关系解答.【解答】解:当m=1时,函数解析式为:y=﹣6x+是一次函数,图象与x轴有且只有一个交点,当m≠1时,函数为二次函数,∵函数y=(m﹣1)x2﹣6x+m的图象与x轴有且只有一个交点,∴62﹣4×(m﹣1)×m=0,解得,m=﹣2或3,故选:C.【点评】本题考查的是抛物线与x轴的交点问题,掌握二次函数与一元二次方程的关系、灵活运用分情况讨论思想是解题的关键.9.(3分)如图,点A在双曲线y═(x>0)上,过点A作AB⊥x轴,垂足为点B,分别以点O和点A为圆心,大于OA的长为半径作弧,两弧相交于D,E两点,作直线DE 交x轴于点C,交y轴于点F(0,2),连接AC.若AC=1,则k的值为()A.2B.C.D.【分析】如图,设OA交CF于K.利用面积法求出OA的长,再利用相似三角形的性质求出AB、OB即可解决问题;【解答】解:如图,设OA交CF于K.由作图可知,CF垂直平分线段OA,∴OC=CA=1,OK=AK,在Rt△OFC中,CF==,∴AK=OK==,∴OA=,由△FOC∽△OBA,可得==,∴==,∴OB=,AB=,∴A(,),∴k=.故选:B.【点评】本题考查作图﹣复杂作图,反比例函数图象上的点的坐标特征,线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.10.(3分)如图,点A在x轴上,点B,C在反比例函数y=(k>0,x>0)的图象上.有一个动点P从点A出发,沿A→B→C→O的路线(图中“→”所示路线)匀速运动,过点P作PM⊥x轴,垂足为M,设△POM的面积为S,点P的运动时间为t,则S关于t 的函数图象大致为()A.B.C.D.【分析】结合点P的运动,将点P的运动路线分成A→B、B→C、C→O三段位置来进行分析三角形OMP面积的计算方式,通过图形的特点分析出面积变化的趋势,从而得到答案.【解答】解:设∠AOM=α,点P运动的速度为a,当点P从点O运动到点A的过程中,S==a2•cosα•sinα•t2,由于α及a均为常量,从而可知图象本段应为抛物线,且S随着t的增大而增大;当点P从A运动到B时,由反比例函数性质可知△OPM的面积为k,保持不变,故本段图象应为与横轴平行的线段;当点P从B运动到C过程中,OM的长在减少,△OPM的高与在B点时相同,故本段图象应该为一段下降的线段;故选:D.【点评】本题考查了动点问题的函数图象,解答此类题目并不需要求出函数解析式,只要判断出函数的增减性,或者函数的性质即可,注意排除法的运用.二.填空题(每题3分,共15分)11.(3分)计算:+(﹣1)0﹣()﹣2=0.【分析】直接利用零指数幂的性质以及负指数幂的性质分别化简得出答案.【解答】解:原式=3+1﹣4=0.故答案为:0.【点评】此题主要考查了实数运算,正确化简各数是解题关键.12.(3分)如图,随机闭合开关S1,S2,S3中的两个,能够让灯泡发光的概率为.【分析】根据题意可得:随机闭合开关S1,S2,S3中的两个,有3种方法,其中有两种能够让灯泡发光,故其概率为.【解答】解:P(灯泡发光)=.故本题答案为:.【点评】本题考查的是概率的求法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.13.(3分)不等式组的解集是﹣1≤x<3.【分析】分别解每一个不等式,再求解集的公共部分.【解答】解:,解不等式①得:x≥﹣1,解不等式②得:x<3,所以不等式组的解集是:﹣1≤x<3,故答案为:﹣1≤x<3.【点评】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.14.(3分)如图,在Rt△ABC中,∠ACB=90°,AC=BC=2,以点A为圆心,AC的长为半径作交AB于点E,以点B为圆心,BC的长为半径作交AB于点D,则阴影部分的面积为π﹣2.【分析】空白处的面积等于△ABC的面积减去扇形BCD的面积的2倍,阴影部分的面积等于△ABC的面积减去空白处的面积即可得出答案.【解答】解:∵∠ACB=90°,AC=BC=2,∴S△ABC=×2×2=2,S扇形BCD==π,S空白=2×(2﹣π)=4﹣π,S阴影=S△ABC﹣S空白=2﹣4+π=π﹣2,故答案为π﹣2.【点评】本题考查了扇形的面积公式,正确理解公式是关键.15.(3分)如图,已知Rt△ABC中,∠B=90°,∠A=60°,AC=2+4,点M、N分别在线段AC、AB上,将△ANM沿直线MN折叠,使点A的对应点D恰好落在线段BC 上,当△DCM为直角三角形时,折痕MN的长为或.【分析】依据△DCM为直角三角形,需要分两种情况进行讨论:当∠CDM=90°时,△CDM是直角三角形;当∠CMD=90°时,△CDM是直角三角形,分别依据含30°角的直角三角形的性质以及等腰直角三角形的性质,即可得到折痕MN的长.【解答】解:分两种情况:①如图,当∠CDM=90°时,△CDM是直角三角形,∵在Rt△ABC中,∠B=90°,∠A=60°,AC=2+4,∴∠C=30°,AB=AC=,由折叠可得,∠MDN=∠A=60°,∴∠BDN=30°,∴BN=DN=AN,∴BN=AB=,∴AN=2BN=,∵∠DNB=60°,∴∠ANM=∠DNM=60°,∴∠AMN=60°,∴AN=MN=;②如图,当∠CMD=90°时,△CDM是直角三角形,由题可得,∠CDM=60°,∠A=∠MDN=60°,∴∠BDN=60°,∠BND=30°,∴BD=DN=AN,BN=BD,又∵AB=,∴AN=2,BN=,过N作NH⊥AM于H,则∠ANH=30°,∴AH=AN=1,HN=,由折叠可得,∠AMN=∠DMN=45°,∴△MNH是等腰直角三角形,∴HM=HN=,∴MN=,故答案为:或.【点评】本题考查了翻折变换﹣折叠问题,等腰直角三角形的性质,正确的作出图形是解题的关键.折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.三.解答题16.(8分)先化简,再求值:(﹣)÷,其中x满足x2﹣2x﹣2=0.【分析】先根据分式的混合运算顺序和运算法则化简原式,再由x2﹣2x﹣2=0得x2=2x+2=2(x+1),整体代入计算可得.【解答】解:原式=[﹣]÷=•=,∵x2﹣2x﹣2=0,∴x2=2x+2=2(x+1),则原式==.【点评】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.17.(9分)某校在一次社会实践活动中,组织学生参观了虎园、烈士陵园、博物馆和植物园,为了解本次社会实践活动的效果,学校随机抽取了部分学生,对“最喜欢的景点”进行了问卷调查,并根据统计结果绘制了如下不完整的统计图.其中最喜欢烈士陵园的学生人数与最喜欢博物馆的学生人数之比为2:1,请结合统计图解答下列问题:(1)本次活动抽查了60名学生;(2)请补全条形统计图;(3)在扇形统计图中,最喜欢植物园的学生人数所对应扇形的圆心角是36度;(4)该校此次参加社会实践活动的学生有720人,请求出最喜欢烈士陵园的人数约有多少人?【分析】(1)由虎园人数及其所占百分比可得总人数;(2)设最喜欢博物馆的学生人数为x,则最喜欢烈士陵园的学生人数为2x,根据各参观项目人数和等于总人数求得x的值,据此即可补全图形;(3)用360°乘以最喜欢植物园的学生人数占被调查人数的比例可得;(4)用总人数乘以样本中最喜欢烈士陵园的人数所占比例.【解答】解:(1)本次活动调查的学生人数为18÷30%=60人,故答案为:60;(2)设最喜欢博物馆的学生人数为x,则最喜欢烈士陵园的学生人数为2x,则x+2x=60﹣18﹣6,解得:x=12,即最喜欢博物馆的学生人数为12,则最喜欢烈士陵园的学生人数为24,补全条形图如下:(3)在扇形统计图中,最喜欢植物园的学生人数所对应扇形的圆心角是360°×=36°,故答案为:36;(4)最喜欢烈士陵园的人数约有720×=288人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.18.(9分)如图,AB是半圆O的直径,点P是半圆上不与点A,B重合的动点,PC∥AB,点M是OP中点.(1)求证:四边形OBCP是平行四边形;(2)填空:①当∠BOP=120°时,四边形AOCP是菱形;②连接BP,当∠ABP=45°时,PC是⊙O的切线.【分析】(1)由AAS证明△CPM≌△AOM,得出PC=OA,得出PC=OB,即可得出结论;(2)①证出OA=OP=P A,得出△AOP是等边三角形,∠A=∠AOP=60°,得出∠BOP =120°即可;②由切线的性质和平行线的性质得出∠BOP=90°,由等腰三角形的性质得出∠ABP=∠OPB=45°即可.【解答】(1)证明:∵PC∥AB,∴∠PCM=∠OAM,∠CPM=∠AOM.∵点M是OP的中点,∴OM=PM,在△CPM和△AOM中,,∴△CPM≌△AOM(AAS),∴PC=OA.∵AB是半圆O的直径,∴OA=OB,∴PC=OB.又PC∥AB,∴四边形OBCP是平行四边形.(2)解:①∵四边形AOCP是菱形,∴OA=P A,∵OA=OP,∴OA=OP=P A,∴△AOP是等边三角形,∴∠A=∠AOP=60°,∴∠BOP=120°;故答案为:120°;②∵PC是⊙O的切线,∴OP⊥PC,∠OPC=90°,∵PC∥AB,∴∠BOP=90°,∵OP=OB,∴△OBP是等腰直角三角形,∴∠ABP=∠OPB=45°,故答案为:45°.【点评】本题是圆的综合题目,考查了全等三角形的判定与性质、平行四边形的判定、切线的性质、菱形的判定与性质、等边三角形的判定与性质等知识;本题综合性强,熟练掌握切线的性质和平行四边形的判定是解题的关键.19.(9分)某数学活动小组实地测量湛河两岸互相平行的一段东西走向的河的宽度,在河的北岸边点A处,测得河的南岸边点B处在其南偏东45°方向,然后向北走20米到达点C处,测得点B在点C的南偏东33°方向,求出这段河的宽度.(结果精确到1米,参考数据:sin33°=0.54,cos33°≈0.84,tan33°=0.65,≈1.41)【分析】延长CA交BE于点D,得CD⊥BE,设AD=x,得BD=x米,CD=(20+x)米,根据=tan∠DCB列方程求出x的值即可得.【解答】解:如图,延长CA交BE于点D,则CD⊥BE,由题意知,∠DAB=45°,∠DCB=33°,设AD=x米,则BD=x米,CD=(20+x)米,在Rt△CDB中,=tan∠DCB,∴≈0.65,解得x≈37,答:这段河的宽约为37米.【点评】本题考查了解直角三角形的应用﹣方向角问题,作出辅助线构造直角三角形是解题的关键.20.(9分)如图,已知反比例函数y=(m≠0)的图象经过点(1,4),一次函数y=﹣x+b的图象经过反比例函数图象上的点Q(﹣4,n).(1)求反比例函数与一次函数的表达式;(2)一次函数的图象分别与x轴、y轴交于A、B两点,与反比例函数图象的另一个交点为P点,连结OP、OQ,求△OPQ的面积.【分析】(1)根据待定系数法,将点的坐标分别代入两个函数的表达式中求出待定系数,可得答案;(2)利用△AOP的面积减去△AOQ的面积.【解答】解:(1)反比例函数y=(m≠0)的图象经过点(1,4),∴,解得m=4,故反比例函数的表达式为,一次函数y=﹣x+b的图象与反比例函数的图象相交于点Q(﹣4,n),∴,解得,∴一次函数的表达式y=﹣x﹣5;(2)由,解得或,∴点P(﹣1,﹣4),在一次函数y=﹣x﹣5中,令y=0,得﹣x﹣5=0,解得x=﹣5,故点A(﹣5,0),S△OPQ=S△OP A﹣S△OAQ==7.5.【点评】本题考查了反比例函数图象与一次函数图象的交点坐标问题,(1)用待定系数法求出函数表达式是解题的关键,(2)转化思想是解题关键,将三角形的面积转化成两个三角形的面积的差.21.(10分)“京东电器”准备购进A、B两种品牌台灯,其中A每盏进价比B每盏进价贵30元,A售价120元,B售价80元已知用1040元购进的A数量与用650元购进B的数量相同.(1)求A、B的进价;(2)超市打算购进A、B台灯共100盏,要求A、B的总利润不得少于3400元,不得多于3550元,问有多少种进货方案?(3)在(2)的条件下,该超市决定对A台灯进行降价促销,A台灯每盏降价m(8<m <15),B的售价不变,超市如何进货获利最大?【分析】(1)设A品牌台灯进价为x元/盏,则B品牌台灯进价为(x﹣30)元/盏,根据题意,列出方程即可(2)设超市购进A品牌台灯a盏,则购进B品牌台灯有(100﹣a)盏,根据题意得:3400≤(120﹣80)a+(80﹣50)(100﹣a)≤3550,求即可(3)令超市销售台灯所获总利润记作w,根据题意,有w=(120﹣m﹣80)a+(80﹣50)(100﹣a)=(10﹣m)a+3000,分情况讨论即可.【解答】解:(1)设A品牌台灯进价为x元/盏,则B品牌台灯进价为(x﹣30)元/盏,根据题意得=,解得x=80,经检验x=80 是原分式方程的解.∴x﹣30=80﹣30=50(元/盏),答:A、B两种品牌台灯的进价分别是80 元/盏,50 元/盏(2)设超市购进A品牌台灯a盏,则购进B品牌台灯有(100﹣a)盏,根据题意得:3400≤(120﹣80)a+(80﹣50)(100﹣a)≤3550解得,40≤a≤55.∵a为整数,∴该超市有16 种进货方案(3)令超市销售台灯所获总利润记作w,根据题意,有w=(120﹣m﹣80)a+(80﹣50)(100﹣a)=(10﹣m)a+3000∵8<m<15∴①当8<m<10 时,即10﹣m>0,w随a的增大而增大,故当a=55 时,所获总利润w最大,即A品牌台灯55 盏、B品牌台灯45 盏;②当m=10 时,w=3000;故当A品牌台灯数量满足40≤a≤55时,利润均为3000元;③当10<m<15 时,即10﹣m<0,w随a的增大而减小,故当a=40 时,所获总利润w最大,即A品牌台灯40 盏、B品牌台灯60 盏【点评】此题为一次函数的应用,渗透了函数与方程的思想,关键是掌握销售利润公式:利润=(售价﹣成本)×数量.22.(10分)(1)问题发现在△ABC中,AC=BC,∠ACB=α,点D为直线BC上一动点,过点D作DF∥AC交AB于点F,将AD绕点D顺时针旋转α得到ED,连接BE.如图(1),当α=90°时,试猜想:①AF与BE的数量关系是AF=BE;②∠ABE=90°;(2)拓展探究如图(2),当0°<α<90°时,请判断AF与BE的数量关系及∠ABE的度数,并说明理由.(3)解决问题如图(3),在△ABC中,AC=BC,AB=8,∠ACB=α,点D在射线BC上,将AD绕点D顺时针旋转α得到ED,连接BE,当BD=3CD时,请直接写出BE的长度.【分析】(1)只要证明△ADF≌△EDB,可得AF=BE,再利用“8字型”字母∠OBE=∠ADO=90°即可解决问题;(2)结论:AF=BF,∠ABE=a.只要证明△ADF≌△EDB,即可解决问题;(3)分两种情形分别求解即可;【解答】解(1)如图1中,设AB交DE于O.∵∠ACB=90°,AC=BC,∴∠ABC=45°,∵DF∥AC,∴∠FDB=∠C=90°,∴∠DFB=∠DBF=45°,∴DF=DB,∵∠ADE=∠FDB=90°,∴∠ADF=∠EDB,∵DA=DE,∴△ADF≌△EDB,∴AF=BE,∴∠DAF=∠E,∵∠AOD=∠EOB,∴∠ABE=∠ADO=90°故答案为AF=BF,90°.(2)结论:AF=BE,∠ABE=α.理由如下:∵DF‖AC∴∠ACB=∠FDB=α,∠CAB=∠DFB,∵AC=BC,∴∠ABC=∠CAB,∴∠ABC=∠DFB,∴DB=DF,∵∠ADF=∠ADE﹣∠FDE,∠EDB=∠FDB﹣∠FDE,∴∠ADF=∠EDB,又∵AD=DE,∴△ADF≌△EDB,∴AF=BE,∠AFD=∠EBD∵∠AFD=∠ABC+∠FDB,∠DBE=∠ABD+∠ABE,∴∠ABE=∠FDB=α.(3)①如图3﹣1中,当点D在BC上时,由(2)可知:BE=AF,∵DF∥AC,∴==,∵AB=8,∴AF=2,∴BE=AF=2,②如图3﹣2中,当点D在BC的延长线上时,∵AC∥DF,∴==,∵AB=8,∴AF=4,故答案为2或4.【点评】本题考查几何变换综合题、等腰三角形的性质、全等三角形的判定和性质、平行线分线段成比例定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考压轴题.23.(11分)如图,已知直线y=﹣3x+c与x轴相交于点A(1,0),与y轴相交于点B,抛物线y=﹣x2+bx+c经过点A,B,与x轴的另一个交点是C.(1)求抛物线的解析式;(2)点P是对称轴的左侧抛物线上的一点,当S△P AB=2S△AOB时,求点P的坐标;(3)连接BC抛物线上是否存在点M,使∠MCB=∠ABO?若存在,请直接写出点M的坐标;否则说明理由.【分析】(1)先把A点坐标代入y=﹣3x+c求出得到B(0,3),然后利用待定系数法求抛物线解析式;(2)连接OP,如图1,抛物线的对称轴为直线x=﹣1,设P(x,﹣x2﹣2x+3)(x<﹣1),由于S△P AB=S△POB+S△ABO﹣S△POA,S△P AB=2S△AOB,则S△POB﹣S△POA=S△ABO,讨论:当P点在x轴上方时,•3•(﹣x)﹣•1•(﹣x2﹣2x+3)=•1•3,当P点在x轴下方时,•3•(﹣x)+•1•(x2+2x﹣3)=•1•3,然后分别解方程求出x即可得到对应P 点坐标;(3)解方程﹣x2﹣2x+3=0得C(﹣3,0),则可判断△OBC为等腰直角三角形,讨论:当∠BCM在直线BC下方时,如图2,直线CM交y轴于D,作DE⊥BC于E,设D(0,t),表示出DE=BE=(3﹣t),接着利用tan∠MCB=tan∠ABO得到==,所以3﹣(3﹣t)=(3﹣t),解方程求出t得到D点坐标,接下来利用待定系数法确定直线CD的解析式为y=x+,然后解方程组得此时M点坐标;当∠BCM在直线CB上方时,如图3,CM交直线AB于N,易得直线AB的解析式为y=﹣3x+3,设N(k,﹣3k+3),证明△ABC∽△ACN,利用相似比求出AN=,再利用两点间的距离公式得到(k﹣1)2+(﹣3k+3)2=()2,解方程求出t得N 点坐标为(﹣,),易得直线CN的解析式为y=2x+6,然后解方程组得此时M点坐标.【解答】解:(1)把A(1,0)代入y=﹣3x+c得﹣3+c=0,解得c=3,则B(0,3),把A(1,0),B(0,3)代入y=﹣x2+bx+c得,解得,∴抛物线解析式为y=﹣x2﹣2x+3;(2)连接OP,如图1,抛物线的对称轴为直线x=﹣=﹣1,设P(x,﹣x2﹣2x+3)(x<﹣1),S△P AB=S△POB+S△ABO﹣S△POA,∵S△P AB=2S△AOB,∴S△POB﹣S△POA=S△ABO,当P点在x轴上方时,•3•(﹣x)﹣•1•(﹣x2﹣2x+3)=•1•3,解得x1=﹣2,x2=3(舍去),此时P点坐标为(﹣2,3);当P点在x轴下方时,•3•(﹣x)+•1•(x2+2x﹣3)=•1•3,解得x1=﹣2(舍去),x2=3(舍去),综上所述,P点坐标为(﹣2,3);(3)存在.当y=0时,﹣x2﹣2x+3=0,解得x1=﹣1,x2=﹣3,则C(﹣3,0),∵OC=OB=3,∴△OBC为等腰直角三角形,∴∠OBC=∠OCB=45°,BC=3,当∠BCM在直线BC下方时,如图2,直线CM交y轴于D,作DE⊥BC于E,设D(0,t),∵∠DBE=45°,∴△BDE为等腰直角三角形,∴DE=BE=BD=(3﹣t),∵∠MCB=∠ABO,∴tan∠MCB=tan∠ABO,∴==,即CE=3DE,∴3﹣(3﹣t)=(3﹣t),解得t=,则D(0,),设直线CD的解析式为y=mx+n,把C(﹣3,0),D(0,)代入得,解得,∴直线CD的解析式为y=x+,解方程组得或,此时M点坐标为(,);当∠BCM在直线CB上方时,如图3,CM交直线AB于N,易得直线AB的解析式为y=﹣3x+3,AB=,AC设N(k,﹣3k+3),∵∠MCB=∠ABO,∠CBO=∠OCB,∴∠NCA=∠ABC,而∠BAC=∠CAN,∴△ABC∽△ACN,∴AB:AC=AC:AN,即:4=4:AN,∴AN=,∴(k﹣1)2+(﹣3k+3)2=()2,整理得(k﹣1)2=,解得k1=(舍去),k2=﹣,∴N点坐标为(﹣,),易得直线CN的解析式为y=2x+6,解方程组,得或,此时M点坐标为(﹣1,4),综上所述,满足条件的M点的坐标为(,)或(﹣1,4).【点评】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质和等腰直角三角形的性质;会利用待定系数法求函数解析式,能把求函数交点问题转化为解方程组的问题;灵活运用锐角三角函数的定义和相似比进行几何计算;理解坐标与图形性质,记住两点间的距离公式.中学数学一模模拟试卷一.选择题(每小题3分,共30分1.(3分)﹣的绝对值是()A.2B.C.﹣D.﹣22.(3分)俗话说:“水滴石穿”,水滴不断的落在一块石头的同一个位置,经过若干年后,石头上形成了一个深度为0.000000039cm的小洞,则0.000000039用科学记数法可表示为()A.3.9×10﹣8B.﹣3.9×10﹣8C.0.39×10﹣7D.39×10﹣9 3.(3分)如图,将一个圆柱体放置在长方体上,其中圆柱体的底面直径与长方体的宽相平,则该几何体的左视图是()A.B.C.D.4.(3分)下列运算正确的是()A.a2+a2=a4B.a6÷a2=a3C.(﹣2a)3=﹣8a3D.(a+1)2=a2+15.(3分)如图,把一块含有45°的直角三角形的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.15°B.20°C.25°D.30°6.(3分)在“经典诵读”比赛活动中,某校10名学生参赛成绩如图所示,对于这10名学生的参赛成绩,下列说法正确的是()A.众数是90分B.中位数是95分C.平均数是95分D.方差是157.(3分)如图,P A、PB分别与⊙O相切于A、B两点,若∠C=65°,则∠P的度数为()A.65°B.130°C.50°D.100°。
2024年山东省潍坊市中考数学模拟试题一、单选题1)A .3B .3±C .9±D .92.下列运算正确的是( )A .235a b ab +=B .222()a b a b -=-C .()3235ab a b =D .()3253412a a a ⋅-=-3.沿正方体相邻的三条棱的中点截掉一部分,得到如图所示的几何体,则它的主视图是( )A .B .C .D . 4.如图1,ADC △中,点E 和点F 分别为,AD AC 上的点,把ADC △纸片沿EF 折叠,使得点A 落在ADC △的外部A '处,1100,260∠=︒∠=︒,则A ∠的度数为( )A .18︒B .20︒C .21︒D .22︒5.如图,二次函数26y ax x =+-的图象与x 轴交于(3,0)A -,B 两点,下列说法正确的是( )A .抛物线的对称轴为直线1x =B .抛物线的顶点坐标为1,62⎛⎫-- ⎪⎝⎭C .A ,B 两点之间的距离为5D .当1x <-时,y 的值随x 值的增大而增大 6.如图,等腰Rt ABC △与矩形DEFG 在同一水平线上,2AB DE ==,3DG =,现将等腰Rt ABC △沿箭头所指方向水平平移,平移距离x 是自点C 到达DE 之时开始计算,至AB 离开GF 为止.等腰Rt ABC △与矩形DEFG 的重合部分面积记为y ,则能大致反映y 与x 的函数关系的图象为( )A .B .C .D .二、多选题7.若四条均不相等线段的长度分别为m ,n ,e ,f ,且满足mn ef =,则下列各式正确的是( )A .::m n e f =B .::m f e n =C .f n m f e n=-- D .m e e f n n +=+ 8.如图,ABC V 中,若8070BAC ACB ∠=︒∠=︒,,根据图中尺规作图的痕迹推断,以下结论正确的是( )A .40BAQ ∠=︒B .12DE BD =C .AF AC =D .25EQF ∠=︒9.如图,在等腰直角ABC V 中,90CBA ∠=︒,BA BC =,延长AB 至点D ,使得AD AC =,连接CD ,ACD V 的中线AE 与BC 交于点F ,连接DF ,过点B 作BG DF ∥交AC 于点G .连接DG ,FG .则下列说法正确的有( )A .2AF CF =B .BCD CAE ∠∠=C .点G 为AC 的中点D .AB BD DE =+10.已知二次函数()20y ax bx c a =++≠的部分图象如图所示,图象经过点()0,2,其对称轴为直线=1x -,下列结论正确的是( )A .30a c +>B .若点()14,y -,()23,y 均在二次函数图象上,则12y y >C .关于x 的一元二次方程21ax bx c ++=-有两个不相等的实数根D .满足22ax bx c ++>的x 的取值范围为20x -<<三、填空题11.若关于x 的方程32122x m x x -=--的解为正数,则m 的取值范围是. 12.如图,正方形ABCD 的边长为1,点A 与原点重合,点D 在x 轴的负半轴上,将正方形ABCD 绕点A 逆时针旋转30︒至正方形AB C D '''的位置,则点M 的坐标为.13.如图,半圆O 的直径AB 为10,点C 、D 在圆弧上,连接AC BD 、,两弦相交于点E .若C E B C =,则阴影部分面积为.14.如图,在第一象限内的直线l :y 上取点1A ,使11OA =,以1OA 为边作等边11OA B V,交x 轴于点1B ;过点1B 作x 轴的垂线交直线l 于点2A ,以2OA 为边作等边22OA B △,交x 轴于点2B ;过点2B 作x 轴的垂线交直线l 于点3A ,以3OA 为边作等边33V OA B ,交x 轴于点3B ;……,依次类推,则点2023A 的横坐标为.四、解答题15.(1)先化简,再求值:2695222a a a a a -+⎛⎫÷++ ⎪--⎝⎭,其中a 是使不等式112a -≤成立的正整数(2)解不等式组:()223235x x x x ⎧+>+⎪⎨+<⎪⎩①②,并写出它的所有整数解. 16.今年是中国共产主义青年团成立100周年,某校组织学生观看庆祝大会实况并进行团史学习.现随机抽取部分学生进行团史知识竞赛,并将竞赛成绩(满分100分)进行整理(成绩得分用a 表示),其中60≤a <70记为“较差”,70≤a <80记为“一般”,80≤a <90记为“良好”,90≤a ≤100记为“优秀”,绘制了不完整的扇形统计图和频数分布直方图.请根据统计图提供的信息,回答如下问题:(1)x =________,y =________,并将直方图补充完整;(2)已知90≤a ≤100这组的具体成绩为93,94,99,91,100,94,96,98,则这8个数据的中位数是________,众数是________;(3)若该校共有1200人,估计该校学生对团史掌握程度达到优秀的人数;(4)本次知识竞赛超过95分的学生中有3名女生,1名男生,现从以上4人中随机抽取2人去参加全市的团史知识竞赛,请用列表或画树状图的方法,求恰好抽中2名女生参加知识竞赛的概率.17.如图,一次函数1(0)y kx b k =+≠与函数为2(0)m y x x =>的图象交于1(4,1),,2A B a ⎛⎫ ⎪⎝⎭两点.(1)求这两个函数的解析式;(2)根据图象,直接写出满足120y y ->时x 的取值范围;(3)点P 在线段AB 上,过点P 作x 轴的垂线,垂足为M ,交函数2y 的图象于点Q ,若PO Q △面积为3,求点P 的坐标.18.2022年北京冬奥会的成功举办激发了人们对冰雪运动的热情.如图是某滑雪场的横截面示意图,雪道分为AB ,BC 两部分,小明同学在C 点测得雪道BC 的坡度i =1:2.4,在A 点测得B 点的俯角∠DAB =30°.若雪道AB 长为270m ,雪道BC 长为260m .(1)求该滑雪场的高度h ;(2)据了解,该滑雪场要用两种不同的造雪设备来满足对于雪量和雪质的不同要求,其中甲设备每小时造雪量比乙设备少35m 3,且甲设备造雪150m 3所用的时间与乙设备造雪500m 3所用的时间相等.求甲、乙两种设备每小时的造雪量.19.如图,在在Rt ABC △中,90ACB ∠=︒,ODEF Y 的顶点O ,D 在斜边AB 上,顶点E ,F 分别在边,BC AC 上,以点O 为圆心,OA 长为半径的O e 恰好经过点D 和点E .(1)求证:BC 与O e 相切;(2)若3sin ,65BAC CE ∠==,求OF 的长. 20.要制作200个A ,B 两种规格的顶部无盖木盒,A 种规格是长、宽、高都为20cm 的正方体无盖木盒,B 种种种规格是长,宽,高,各为20 cm ,20 cm ,10 cm 的长方体无盖木盒,如图1,现有200张规格为40cm ⨯40cm 的木板材,对该种木板材有甲、乙两种切割方式,如图2.切割、拼接等板材损耗忽略不计.(1)设制作A 种木盒x 个,则制作B 种木盒______个;若使用甲种方式切割的木板材y 张,则使用乙种方式切割的木板材_____张;(2)该200张木板材恰好能做成200个A 和B 两种规格的无盖木盒,请分别求出A ,B 木盒的个数和使用甲,乙两种方式切割的木板材张数;(3)包括材质等成本在内,用甲种切割方式的木板材每张成本5元,用乙种切割方式的木板材每张成本8元.根据市场调研,A 种木盒的销售单价为a 元,B 种木盒的销售单价定为1202a ⎛⎫- ⎪⎝⎭元,两种木盒的销售单价均不能低于7元,不超过18元,在(2)的条件下,两种木盒的销售单价分别定为多少元时,并求出最大利润.21.边长为6的等边ABC V 中,点D E 、分别在AC BC 、边上,DE AB ∥,EC =(1)如图1,将DEC V 沿射线EC 方向平移,得到D E C '''V ,边C D ''与ACC ∠'的角平分线交于点N ,当CC '多大时,四边形MCND '为菱形?并说明理由(2)如图2,将DEC V 绕点C 旋转α∠(0360α︒<<︒),得到D E C ''△,边D E ''的中点为P ①在旋转过程中,AD '和BE '有怎样的数量关系?并说明理由;②连接AP ,当AP 最大时,求AD '的值.(结果保留根号)22.如图,已知二次函数2y x bx c =-++的图象交x 轴于点(1,0)A -,(5,0)B ,交y 轴于点C .(1)求这个二次函数的表达式;(2)如图1,点M 从点B BC 向点C 运动,点N 从点O 出发,以每秒1个单位长度的速度沿线段OB 向点B 运动,点M ,N 同时出发.设运动时间为t 秒(05)t <<.当t 为何值时,BMN V 的面积最大?最大面积是多少?(3)已知P 是抛物线上一点,在直线BC 上是否存在点Q ,使以A ,C ,P ,Q 为顶点的四边形是平行四边形?若存在,直接写出点Q 坐标;若不存在,请说明理由.。
山东省潍坊市中考数学模拟试卷(一)一、选择题(本题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记0分.)1.计算的结果是()A. 2 B.±2 C.﹣2 D.2.地球平均半径约等于6 400 000米,6 400 000用科学记数法表示为()A. 64×105 B. 6.4×105 C. 6.4×106 D. 6.4×1073.如图是五个相同的正方体组成的一个几何体,它的左视图是()A. B. C. D.4.已知抛物线y=x2﹣2x+1与x轴的一个交点为(m,0),则代数式m2﹣2m+的值为() A. B. C. D.5.如图,已知矩形纸片ABCD,AD=2,AB=,以A为圆心,AD长为半径画弧交BC于点E,将扇形AED剪下围成一个圆锥,则该圆锥的底面半径为()A. 1 B. C. D.6.如图,AC为⊙O的直径,AB为⊙O的弦,∠A=35°,过点C的切线与OB的延长线相交于点D,则∠D=()A. 20° B. 30° C. 40° D. 35°7.如图,边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1,边B1C1与CD 交于点O,则四边形AB1OD的周长是()A. B. 2 C. 1+ D. 38.如图,小正方形的边长均为1,关于△ABC和△DEF的下列说法正确的是()A.△ABC和△DEF一定不相似B.△ABC和△DEF是位似图形C.△ABC和△DEF相似且相似比是1:2D.△ABC和△DEF相似且相似比是1:49.已知二次函数y=ax2+bx+c图象如图所示,则下面结论成立的是()A. a>0,bc<0 B. a<0,bc>0 C. a>0,bc>0 D. a<0,bc<010.如图,是一次函数y=kx+b与反比例函数的图象,则关于方程的解为()A. x1=1,x2=2 B. x1=﹣2,x2=﹣1 C. x1=1,x2=﹣2 D. x1=2,x2=﹣111.已知直线y=x﹣3与函数y=的图象相交于点(a,b),则a2+b2的值是() A. 13 B. 11 C. 7 D. 512.如图,半径为1cm,圆心角为90°的扇形OAB中,分别以OA、OB为直径作半圆,则图中阴影部分的面积为()A.πcm2 B.πcm2 C.cm2 D.cm2二、填空题(本大题共6小题,共15分,只要求填写最后结果,每小题填对得3分)13.把a3+ab2﹣2a2b分解因式的结果是.14.数据:1,5,6,5,6,5,6,6的众数是,中位数是,方差是.15.廊桥是我国古老的文化遗产.如图,是某座抛物线型的廊桥示意图,已知抛物线的函数表达式为y=﹣x2+10,为保护廊桥的安全,在该抛物线上距水面AB高为8米的点E,F处要安装两盏警示灯,则这两盏灯的水平距离EF是米.(精确到1米)16.一副三角板叠在一起如图放置,最小锐角的顶点D恰好放在等腰直角三角板的斜边AB上,BC与DE交于点M.如果∠ADF=100°,那么∠BMD为度.17.把两个半径为5和一个半径为8的圆形纸片放在桌面上,使它们两两外切,若要用一个大圆形纸片把这三个圆形纸片完全盖住,则这个大圆形纸片的最小半径等于.18.如图,在平面直角坐标系中,点A1是以原点O为圆心,半径为2的圆与过点(0,1)且平行于x轴的直线l1的一个交点;点A2是以原点O为圆心,半径为3的圆与过点(0,2)且平行于x 轴的直线l2的一个交点;…按照这样的规律进行下去,点A n的坐标为.三、解答题(本大题共6小题,共66分,解答要写出必要的文字说明、证明过程或演算步骤.)19.“端午节”所示我国的传统佳节,民间历来有吃“粽子”的习俗,我市某食品厂为了解市民对去年销售较好的肉馅棕、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不用口味粽子的喜爱情况,在节前对某居民区进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?将两幅不完整的图补充完整;(3)若居民区有8000人,请估计爱吃D粽的人数;(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个,用列表或画树状图的方法,求他第二个恰好吃到的是C粽的概率.20.如图所示,江北第一楼﹣﹣超然楼,位于济南大明湖畔,始建于元代,是一座拥有近千年历史的名楼.某学校九年级数学课外活动小组的学生准备利用假期测量超然楼的高度,在大明湖边一块平地上,甲和乙两名同学利用所带工具测量了一些数据,下面是他们的一段对话:甲:我站在此处看楼顶仰角为45°.乙:我站在你后面37m处看楼顶仰角为30°.甲:我的身高是1.7m.乙:我的身高也是1.7m.请你根据两位同学的对话,参考右面的图形计算超然楼的高度,结果精确到1米.(请根据下列数据进行计算)21.如图,点C在以AB为直径的⊙O上,点D在AB的延长线上,∠BCD=∠A.(1)求证:CD为⊙O的切线;若CD=4,⊙O的半径为3,求BD的值.22.我市某工艺厂为配合北京奥运,设计了一款成本为20元∕件的工艺品投放市场进行试销.经过调查,得到如下数据:销售单价x(元/件)… 30 40 50 60 …每天销售量y(件)… 500 400 300 200 …(1)把上表中x、y的各组对应值作为点的坐标,在下面的平面直角坐标系中描出相应的点,猜想y与x的函数关系,并求出函数关系式;当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?(利润=销售总价﹣成本总价)(3)当地物价部门规定,该工艺品销售单价最高不能超过45元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?23.如图,在梯形ABCD中,AD∥BC,AD=3,DC=5,AB=4,∠B=45°.动点M从B点出发沿线段BC以每秒2个单位长度的速度向终点C运动;动点N同时从C点出发沿线段CD以每秒1个单位长度的速度向终点D运动.设运动的时间为t秒.(1)求BC的长;当MN∥AB时,求t的值;(3)试探究:t为何值时,△MNC为等腰三角形.24.如图,在平面直角坐标系中,圆M经过原点O,且与x轴、y轴分别相交于A(﹣6,0)、B (0,﹣8)两点.(1)求出直线AB的函数解析式;若有一抛物线的对称轴平行于y轴且经过点M,顶点C在⊙M上,开口向下,且经过点B,求此抛物线的函数解析式;(3)设中的抛物线交x轴于D、E两点,在抛物线上是否存在点P,使得S△PDE=S△ABC?若存在,请求出点P的坐标;若不存在,请说明理由.山东省潍坊市中考数学模拟试卷(一)参考答案与试题解析一、选择题(本题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记0分.)1.计算的结果是()A. 2 B.±2 C.﹣2 D.考点:算术平方根.分析:即为4的算术平方根,根据算术平方根的意义求值.解答:解:=2.故选A.点评:本题考查了算术平方根.关键是理解算式是意义.2.地球平均半径约等于6 400 000米,6 400 000用科学记数法表示为()A. 64×105 B. 6.4×105 C. 6.4×106 D. 6.4×107考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:6 400 000=6.4×106,故选:C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.如图是五个相同的正方体组成的一个几何体,它的左视图是()A. B. C. D.考点:简单组合体的三视图.分析:找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.解答:解:从左面看易得第一列有1个正方形,第二列有2个正方形.故选D.点评:本题考查了三视图的知识,左视图是从物体的左面看得到的视图.4.已知抛物线y=x2﹣2x+1与x轴的一个交点为(m,0),则代数式m2﹣2m+的值为() A. B. C. D.考点:抛物线与x轴的交点.分析:根据图象上点的坐标性质得出m2﹣2m=﹣1,进而代入求出即可.解答:解:∵抛物线y=x2﹣2x+1与x轴的一个交点为(m,0),∴m2﹣2m+1=0,∴m2﹣2m=﹣1,则代数式m2﹣2m+=﹣1+=.故选:B.点评:此题主要考查了函数图象上点的坐标性质以及整体思想的应用,求出m2﹣2m=﹣1是解题关键.5.如图,已知矩形纸片ABCD,AD=2,AB=,以A为圆心,AD长为半径画弧交BC于点E,将扇形AED剪下围成一个圆锥,则该圆锥的底面半径为()A. 1 B. C. D.考点:弧长的计算;特殊角的三角函数值.专题:压轴题.分析:扇形的弧长=圆锥的底面圆的周长.利用弧长公式计算.解答:解:设圆锥底面半径为R,∵cos∠BAE==,∴∠BAE=30°,∠EAD=60°,弧DE===2πR,∴R=.故选C.点评:熟记特殊角的三角函数值和掌握弧长公式是解题的关键.6.如图,AC为⊙O的直径,AB为⊙O的弦,∠A=35°,过点C的切线与OB的延长线相交于点D,则∠D=()A. 20° B. 30° C. 40° D. 35°考点:切线的性质;圆周角定理.专题:几何图形问题.分析:连接BC,则∠ABC=90°,且∠A=35°,∠OCB=55°,又△BCO为等腰三角形,即有∠COB=70°,即可求∠D=90°﹣∠COB=20°.解答:解:连接BC,∴∠OCD=90°,∴∠OCB=55°,在△OCB中,OB=OC;即有∠COB=70°;∴∠D=90°﹣∠COB=20°.故选A.点评:本题利用了切线的概念和性质的应用以及三角形内角和为180°的知识点;在直角三角形中,同角或等角的余角相等;7.如图,边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1,边B1C1与CD 交于点O,则四边形AB1OD的周长是()A. B. 2 C. 1+ D. 3考点:旋转的性质;正方形的性质.专题:计算题;压轴题.分析:连接AC,由正方形的性质可知∠CAB=45°,由旋转的性质可知∠B1AB=45°,可知点B1在线段AC上,由此可得B1C=B1O,即AB1+B1O=AC,同理可得AD+DO=AC.解答:解:连接AC,∵四边形ABCD为正方形,∴∠CAB=45°,∵正方形ABCD绕点A逆时针旋转45°,∴∠B1AB=45°,∴点B1在线段AC上,易证△OB1C为等腰直角三角形,∴B1C=B1O,∴AB1+B1O=AC==,同理可得AD+DO=AC=,∴四边形AB1OD的周长为2.故选:B.点评:本题考查了正方形的性质,旋转的性质,特殊三角形的性质.关键是根据旋转角证明点B1在线段AC上.8.如图,小正方形的边长均为1,关于△ABC和△DEF的下列说法正确的是()A.△ABC和△DEF一定不相似B.△ABC和△DEF是位似图形C.△ABC和△DEF相似且相似比是1:2D.△ABC和△DEF相似且相似比是1:4考点:相似三角形的判定与性质.专题:网格型.分析:先利用勾股定理分别计算两个三角形三边的长,再计算比值,得出三条对应边成比例,利用相似三角形的判定可知两个三角形相似.解答:解:∵AB=,BC=2,AC==,DE==,DF==2,EF=4,∴===,∴△ABC∽△DEF.故选C.点评:本题考查了勾股定理、相似三角形的判定和性质.9.已知二次函数y=ax2+bx+c图象如图所示,则下面结论成立的是()A. a>0,bc<0 B. a<0,bc>0 C. a>0,bc>0 D. a<0,bc<0考点:二次函数图象与系数的关系.专题:常规题型.分析:由抛物线的开口方向判断a的符号,然后结合对称轴判断b的符号,再由抛物线与y轴的交点判断c的符号,从而得出bc的符号解答即可.解答:解:由抛物线的开口向上知a>0,与y轴的交点为在y轴的负半轴上得c<0,对称轴为x=>0,a>0,得b<0,∴bc>0.故选C.点评:本题考查了二次函数图象与系数的关系,属于基础题,关键是掌握二次函数y=ax2+bx+c系数符号的确定.10.如图,是一次函数y=kx+b与反比例函数的图象,则关于方程的解为()A. x1=1,x2=2 B. x1=﹣2,x2=﹣1 C. x1=1,x2=﹣2 D. x1=2,x2=﹣1考点:反比例函数与一次函数的交点问题.专题:计算题.分析:根据题意可知,函数图象的交点坐标即为方程的解,根据格点找到交点坐标就可找到方程的解.解答:解:由图可知,两函数图象的交点坐标为(1,2);(﹣2,﹣1);则两横坐标为1和﹣2,∵函数的交点坐标符合两个函数的解析式,∴函数的交点坐标就是方程组的解,∴x=1或x=﹣2,故选C.点评:本题考查了反比例函数与一次函数的交点问题,找到两图象的交点坐标是解题的关键.11.已知直线y=x﹣3与函数y=的图象相交于点(a,b),则a2+b2的值是() A. 13 B. 11 C. 7 D. 5考点:反比例函数与一次函数的交点问题.专题:计算题.分析:利用反比例函数与一次函数的交点问题得到b=a﹣3,b=,则a﹣b=3,ab=2,再利用完全平方公式变形得到a2+b2=(a﹣b)2+2ab,然后利用整体代入的方法计算即可.解答:解:根据题意得b=a﹣3,b=,所以a﹣b=3,ab=2,所以a2+b2=(a﹣b)2+2ab=32+2×2=13.故选A.点评:本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了观察函数图象的能力.12.如图,半径为1cm,圆心角为90°的扇形OAB中,分别以OA、OB为直径作半圆,则图中阴影部分的面积为()A.πcm2 B.πcm2 C.cm2 D.cm2考点:扇形面积的计算;等腰直角三角形.专题:压轴题;探究型.分析:过点C作CD⊥OB,CE⊥OA,则△AOB是等腰直角三角形,由∠ACO=90°,可知△AOC 是等腰直角三角形,由HL定理可知Rt△OCE≌Rt△ACE,故可得出S扇形OEC=S扇形AEC,与弦OC围成的弓形的面积等于与弦AC所围成的弓形面积,S阴影=S△AOB即可得出结论.解答:解:过点C作CD⊥OB,CE⊥OA,∵OB=OA,∠AOB=90°,∴△AOB是等腰直角三角形,∵OA是直径,∴∠ACO=90°,∴△AOC是等腰直角三角形,∵CE⊥OA,∴OE=AE,OC=AC,在Rt△OCE与Rt△ACE中,∵,∴Rt△OCE≌Rt△ACE,∵S扇形OEC=S扇形AEC,∴与弦OC围成的弓形的面积等于与弦AC所围成的弓形面积,同理可得,与弦OC围成的弓形的面积等于与弦BC所围成的弓形面积,∴S阴影=S△AOB=×1×1=cm2.故选C.点评:本题考查的是扇形面积的计算与等腰直角三角形的判定与性质,根据题意作出辅助线,构造出直角三角形得出S阴影=S△AOB是解答此题的关键.二、填空题(本大题共6小题,共15分,只要求填写最后结果,每小题填对得3分)13.把a3+ab2﹣2a2b分解因式的结果是a(a﹣b)2.考点:提公因式法与公式法的综合运用.分析:先提取公因式a,再利用完全平方公式继续进行二次因式分解.解答:解:a3+ab2﹣2a2b,=a(a2+b2﹣2ab),=a(a﹣b)2.点评:本题主要考查提公因式法分解因式和完全平方公式分解因式,进行二次因式分解是解本题的关键.14.数据:1,5,6,5,6,5,6,6的众数是6,中位数是 5.5,方差是.考点:众数;中位数;方差.分析:根据方差,众数,中位数的定义解答.解答:解:将数据从小到大依次排列为1,5,5,5,6,6,6,6.众数是6,中位数是(5+6)÷2=5.5,平均数是(1+5×3+6×4)÷8=40÷8=5.方差为[(1﹣5)2+3(5﹣5)2+4(5﹣6)2]=.故填6,5.5,.点评:一组数据中出现次数最多的数据叫做众数.样本方差描述了一组数据围绕平均数波动的大小.把这组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.中位数把样本数据分成了相同数目的两部分.15.廊桥是我国古老的文化遗产.如图,是某座抛物线型的廊桥示意图,已知抛物线的函数表达式为y=﹣x2+10,为保护廊桥的安全,在该抛物线上距水面AB高为8米的点E,F处要安装两盏警示灯,则这两盏灯的水平距离EF是18米.(精确到1米)考点:二次函数的应用.专题:压轴题.分析:由题可知,E、F两点纵坐标为8,代入解析式后,可求出二者的横坐标,F的横坐标减去E 的横坐标即为EF的长.解答:解:由“在该抛物线上距水面AB高为8米的点”,可知y=8,把y=8代入y=﹣x2+10得:x=±4,∴由两点间距离公式可求出EF=8≈18(米).点评:以丽水市“古廊桥文化”为背景呈现问题,考查了现实中的二次函数问题,赋予传统试题新的活力,感觉不到“老调重弹”,在考查提取、筛选信息,分析、解决实际问题等能力的同时,发挥了让学生“熏陶文化,保护遗产”的教育功能.16.一副三角板叠在一起如图放置,最小锐角的顶点D恰好放在等腰直角三角板的斜边AB上,BC与DE交于点M.如果∠ADF=100°,那么∠BMD为85度.考点:三角形内角和定理.专题:压轴题.分析:先根据∠ADF=100°求出∠MDB的度数,再根据三角形内角和定理得出∠BMD的度数即可.解答:解:∵∠ADF=100°,∠EDF=30°,∴∠MDB=180°﹣∠ADF﹣∠EDF=180°﹣100°﹣30°=50°,∴∠BMD=180°﹣∠B﹣∠MDB=180°﹣45°﹣50°=85°.故答案为:85.点评:本题考查的是三角形内角和定理,即三角形内角和是180°.17.把两个半径为5和一个半径为8的圆形纸片放在桌面上,使它们两两外切,若要用一个大圆形纸片把这三个圆形纸片完全盖住,则这个大圆形纸片的最小半径等于.考点:相切两圆的性质.专题:计算题;作图题.分析:由题意作出图形,要求则这个大圆形纸片的最小半径,则在△APO中,将OA、OP分别用R表示后由勾股定理可得R值,即这个大圆形纸片的最小半径.解答:解:如图所示,⊙A、⊙B半径为5,⊙C半径为8,设⊙O半径为R.连接AB、BC、CA,则AB=10,BC=CA=13,过C作CP⊥AB,则P是AB中点.∴AP=5,在△ACP中由勾股定理CP2=AC2﹣AP2,∴CP=12,∵OC=R﹣8,∴OP=20﹣R,在△APO中,∵OA=R﹣5,AP=5,∴由勾股定理AP2=AO2﹣OP2,即52=(R﹣5)2﹣2,∴R=,则这个大圆形纸片的最小半径等于.点评:本题考查了相切圆的性质,以及勾股定理的应用,同学们应熟练掌握.18.如图,在平面直角坐标系中,点A1是以原点O为圆心,半径为2的圆与过点(0,1)且平行于x轴的直线l1的一个交点;点A2是以原点O为圆心,半径为3的圆与过点(0,2)且平行于x 轴的直线l2的一个交点;…按照这样的规律进行下去,点A n的坐标为().考点:切线的性质;勾股定理.专题:压轴题;规律型.分析:根据题意,可以首先求得A1(,1),A2(,2),A3(,3).根据这些具体值,不难发现:A n的纵坐标是n,横坐标是.解答:解:∵点A1是以原点O为圆心,半径为2的圆与过点(0,1)且平行于x轴的直线l1的一个交点,∴A1的纵坐标为1,横坐标为:=,即A1(,1);同理可求:A2(,2),A3(,3)∴根据这些具体值,得出规律:A n的纵坐标是n,横坐标是.即A n的坐标为().故答案为:().点评:此题可以首先求得几个具体值,然后进一步发现坐标和脚码的规律.三、解答题(本大题共6小题,共66分,解答要写出必要的文字说明、证明过程或演算步骤.)19.“端午节”所示我国的传统佳节,民间历来有吃“粽子”的习俗,我市某食品厂为了解市民对去年销售较好的肉馅棕、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不用口味粽子的喜爱情况,在节前对某居民区进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?将两幅不完整的图补充完整;(3)若居民区有8000人,请估计爱吃D粽的人数;(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个,用列表或画树状图的方法,求他第二个恰好吃到的是C粽的概率.考点:列表法与树状图法.分析:(1)利用频数÷百分比=总数,求得总人数;根据条形统计图先求得C类型的人数,然后根据百分比=频数÷总数,求得百分比,从而可补全统计图;(3)用居民区的总人数×40%即可;(4)首先画出树状图,然后求得所有的情况以及他第二个恰好吃到的是C粽的情况,然后利用概率公式计算即可.解答:解:(1)60÷10%=600(人)答:本次参加抽样调查的居民由600人;600﹣180﹣60﹣240=120,120÷600×100%=20%,100%﹣10%﹣40%﹣20%=30%补全统计图如图所示:(3)8000×40%=3200(人)答:该居民区有8000人,估计爱吃D粽的人有3200人.(4)如图:P(C粽)=.点评:本题主要考查的是条形统计图、扇形统计图以及概率的计算,掌握画树状图或列表求概率的方法是解题的关键.20.如图所示,江北第一楼﹣﹣超然楼,位于济南大明湖畔,始建于元代,是一座拥有近千年历史的名楼.某学校九年级数学课外活动小组的学生准备利用假期测量超然楼的高度,在大明湖边一块平地上,甲和乙两名同学利用所带工具测量了一些数据,下面是他们的一段对话:甲:我站在此处看楼顶仰角为45°.乙:我站在你后面37m处看楼顶仰角为30°.甲:我的身高是1.7m.乙:我的身高也是1.7m.请你根据两位同学的对话,参考右面的图形计算超然楼的高度,结果精确到1米.(请根据下列数据进行计算)考点:解直角三角形的应用-仰角俯角问题.分析:首先利用CE为超然楼的高度,构造直角三角形,进而利用锐角三角函数关系tan30°=得出CD的长,进而得出EC的长即可得出答案.解答:解:设根据题意画出图形得出:AB=37m,AM=BF=1.7m,∠CAD=30°,∠CBD=45°,故CD=BD,AM=DE=1.7m,∵tan30°====,∴解得:DC===≈50.5(m),则CE=DC+DE=50.5+1.7=52.2≈52(m),答:超然楼的高度为52m.点评:此题主要考查了解直角三角形中仰角问题的应用,根据锐角三角函数的关系得出CD的长是解题关键.21.如图,点C在以AB为直径的⊙O上,点D在AB的延长线上,∠BCD=∠A.(1)求证:CD为⊙O的切线;若CD=4,⊙O的半径为3,求BD的值.考点:切线的判定;圆周角定理;相似三角形的判定与性质.分析:(1)连接OC,根据等腰三角形的性质求出∠OCB=∠OBC,根据AB是直径得出∠ABC=90°,求出∠A+∠ABC=90°,代入求出∠OCB+∠BCD=90°,根据切线的判定推出即可;证△DCB∽△DAC,得出CD2=BD×DA,代入即可求出BD.解答:(1)证明:连接OC,∵OB=OC,∴∠OBC=∠OCB,∵AB是直径,∴∠ACB=90°,∴∠A+∠ABC=90°,又∵∠BCD=∠A,∴∠OCB+∠BCD=90°,∴∠OCD=90°,即OC⊥CD又∵点C在⊙O上,∴CD是⊙O的切线.解:∵∠BCD=∠A,∠D=∠D,∴△BCD∽△CAD,∴,即CD2=AD•BD又∵CD=4,AO=OB=3,∴16=(BD+6)BD,解得:BD=2.点评:本题考查了切线的判定,圆周角定理,相似三角形的性质和判定,等腰三角形的性质等知识点,主要考查学生综合运用性质进行推理的能力,题目比较典型,难度适中.22.我市某工艺厂为配合北京奥运,设计了一款成本为20元∕件的工艺品投放市场进行试销.经过调查,得到如下数据:销售单价x(元/件)… 30 40 50 60 …每天销售量y(件)… 500 400 300 200 …(1)把上表中x、y的各组对应值作为点的坐标,在下面的平面直角坐标系中描出相应的点,猜想y与x的函数关系,并求出函数关系式;当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?(利润=销售总价﹣成本总价)(3)当地物价部门规定,该工艺品销售单价最高不能超过45元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?考点:二次函数的应用;一次函数的应用.专题:压轴题;图表型.分析:(1)描点,由图可猜想y与x是一次函数关系,任选两点求表达式,再验证猜想的正确性;利润=销售总价﹣成本总价=单件利润×销售量.据此得表达式,运用性质求最值;(3)根据自变量的取值范围结合函数图象解答.解答:解:(1)画图如图;由图可猜想y与x是一次函数关系,设这个一次函数为y=kx+b(k≠0)∵这个一次函数的图象经过(30,500)(40,400)这两点,∴解得∴函数关系式是:y=﹣10x+800(0≤x≤80)设工艺厂试销该工艺品每天获得的利润是W元,依题意得W=(x﹣20)(﹣10x+800)=﹣10x2+1000x﹣16000=﹣10(x﹣50)2+9000∴当x=50时,W有最大值9000.所以,当销售单价定为50元∕件时,工艺厂试销该工艺品每天获得的利润最大,最大利润是9000元.(3)对于函数W=﹣10(x﹣50)2+9000,当x≤45时,W的值随着x值的增大而增大,∴销售单价定为45元∕件时,工艺厂试销该工艺品每天获得的利润最大.点评:根据函数解析式求出的最值是理论值,与实际问题中的最值不一定相同,需考虑自变量的取值范围.23.如图,在梯形ABCD中,AD∥BC,AD=3,DC=5,AB=4,∠B=45°.动点M从B点出发沿线段BC以每秒2个单位长度的速度向终点C运动;动点N同时从C点出发沿线段CD以每秒1个单位长度的速度向终点D运动.设运动的时间为t秒.(1)求BC的长;当MN∥AB时,求t的值;(3)试探究:t为何值时,△MNC为等腰三角形.考点:解直角三角形;等腰三角形的性质;勾股定理;梯形;相似三角形的判定与性质.专题:压轴题.分析:(1)作梯形的两条高,根据直角三角形的性质和矩形的性质求解;平移梯形的一腰,根据平行四边形的性质和相似三角形的性质求解;(3)因为三边中,每两条边都有相等的可能,所以应考虑三种情况.结合路程=速度×时间求得其中的有关的边,运用等腰三角形的性质和解直角三角形的知识求解.解答:解:(1)如图①,过A、D分别作AK⊥BC于K,DH⊥BC于H,则四边形ADHK是矩形.∴KH=AD=3.在Rt△ABK中,AK=AB•sin45°=4•=4,BK=AB•cos45°=4=4.在Rt△CDH中,由勾股定理得,HC==3.∴BC=BK+KH+HC=4+3+3=10.如图②,过D作DG∥AB交BC于G点,则四边形ADGB是平行四边形.∵MN∥AB,∴MN∥DG.∴BG=AD=3.∴GC=10﹣3=7.由题意知,当M、N运动到t秒时,CN=t,CM=10﹣2t.∵DG∥MN,∴∠NMC=∠DGC.又∵∠C=∠C,∴△MNC∽△GDC.∴,即.解得,.(3)分三种情况讨论:①当NC=MC时,如图③,即t=10﹣2t,∴.②当MN=NC时,如图④,过N作NE⊥MC于E.解法一:由等腰三角形三线合一性质得:EC=MC=(10﹣2t)=5﹣t.在Rt△CEN中,cosC==,又在Rt△DHC中,cosC=,∴.解得t=.解法二:∵∠C=∠C,∠DHC=∠NEC=90°,∴△NEC∽△DHC.∴,即.∴t=.③当MN=MC时,如图⑤,过M作MF⊥CN于F点.FC=NC=t.解法一:(方法同②中解法一),解得.解法二:∵∠C=∠C,∠MFC=∠DHC=90°,∴△MFC∽△DHC.∴,即,∴.综上所述,当t=、t=或t=时,△MNC为等腰三角形.点评:注意梯形中常见的辅助线:平移一腰、作两条高.构造等腰三角形的时候的题目,注意分情况讨论.此题的知识综合性较强,能够从中发现平行四边形、等腰三角形等,根据它们的性质求解.24.如图,在平面直角坐标系中,圆M经过原点O,且与x轴、y轴分别相交于A(﹣6,0)、B (0,﹣8)两点.(1)求出直线AB的函数解析式;若有一抛物线的对称轴平行于y轴且经过点M,顶点C在⊙M上,开口向下,且经过点B,求此抛物线的函数解析式;(3)设中的抛物线交x轴于D、E两点,在抛物线上是否存在点P,使得S△PDE=S△ABC?若存在,请求出点P的坐标;若不存在,请说明理由.考点:二次函数综合题.专题:压轴题.分析:(1)利用待定系数法即可求解;首先根据抛物线的顶点在圆上且与y轴平行即可确定抛物线的顶点坐标,再根据待定系数法求函数解析式;(3)三角形ABC的面积为15,所以假设三角形PDE的面积为1,因为DE长为2,所以P到DE 的距离为1,则P的坐标是(x,1),代入抛物线解析式即可求解.解答:解:(1)设直线AB的解析式为y=kx+b,。
2024年初中学业水平模拟考试(一)数学试题2024.04注意事项:1.本场考试时间120分钟,试卷分为第Ⅰ卷和第Ⅱ卷,共22小题,满分150分;2.答卷前,请将试卷密封线内和答题卡上面的项目填涂清楚;3.请在答题卡相应位置作答,不要超出答题区域,不要答错位置.第Ⅰ卷选择题(共44分)一、单项选择题(本大题共6小题,每小题4分,共24分.在每小题给出的四个选项中只有一项是正确的,请把正确的选项选出来.每小题选对得4分,错选、不选均记0分)1.下列用于证明勾股定理的图形中,是轴对称图形的是()A. B. C. D.2.爱达·魔都号,是中国第一艘国产大型邮轮,全长323.6米,总吨位为13.55万吨,可搭载乘客5246人.将13.55万吨用科学记数法表示为()A.吨B.吨C.吨D.吨3.中国古代数学名著《九章算术注》中记载:“邪解立方,得两堑堵.”意即把一长方体沿对角面一分为二,这相同的两块叫做“堑堵”.如图是“堑堵”的立体图形,它的俯视图为()A. B. C. D.4.实数a,b在数轴上的位置如图所示,则下列判断正确的是()A. B. C. D.5.如图,正五边形ABCDE内接于,P为劣弧上的动点,则的大小为()A. B. C. D.不能确定6.如图,在直角坐标系中,一次函数的图象与反比例函数的图象交于,两点,与y轴、x轴分别交于C,D两点,下列结论正确的是()A. B.C.当时,D.连接OA,OB,则二、多项选择题(本大题共4小题,每小题5分,共20分.每小题的四个选项中,有多项正确,全部选对得5分,部分选对得3分,错选、多选均记0分)7.下列运算正确的是()A. B. C. D.8.如图,在中,,,观察尺规作图的痕迹,下列结论正确的是()第8题图A. B. C. D.9.如图,是用计算机模拟随机投掷一枚图钉的某次实验的结果.下面是根据实验结果所作出的四个推断,其中合理的是()第9题图A.当投掷次数是1000时,“钉尖向上”的次数是620B.当投掷第1000次时,“钉尖向上”的概率是0.620C.随着实验次数的增加,“钉尖向上”的频率趋近于0.618,故可以估计其概率是0.618D.若再次用计算机模拟实验,则当投掷次数为1000时,“钉尖向上”的频率一定是0.62010.如图,圆柱体的母线长为2,BC是上底的直径.一只蚂蚁从下底面的点A处出发爬行到上底面的点C处.设沿圆柱体侧面由A处爬行到C处的最短路径长为,沿母线AB与上底面直径BC形成的折线段爬行到C 处的路径的长为.当圆柱体底面半径r变化时,为比较与的大小,记,则d是r的二次函数,下列说法正确的是()A.该函数的图象都在r轴上方B.该函数的图象的对称轴为C.当时,D.当时,第Ⅱ卷非选择题(共106分)说明:将第Ⅱ卷答案用0.5mm的黑色签字笔答在答题卡的相应位置上.三、填空题(本大题共4小题,每小题4分,共16分.只填写最后结果)11.因式分解:______.12.已知x是满足的整数,且使的值为有理数,则______.13.已知关于x的一元二次方程的两个根为,,且,则______.14.如图,在中,,,,以B为圆心BC为半径画弧,分别交CD,AB 于点F,E,再以C为圆心CD为半径画弧,恰好交AB边于点E,则图中阴影部分的面积为______.四、解答题(本大题共8小题,共90分.请写出必要的文字说明、证明过程或演算步骤)15.(本题10分)(1)下面是小亮解一道不等式的步骤,请阅读后回答问题.解不等式:解去分母,得…… 第一步移项,得…… 第二步合并同类项,得…… 第三步系数化为1,得…… 第四步①小亮的解法有错吗?如果有,错在哪一步?并给出改正.②小亮解不等式的过程中从第一步到第二步的变形依据是什么?(2)先化简再求值:,已知.16.(本题10分)如图,在平面直角坐标系中,的顶点坐标分别是,,,按要求完成下列问题.(1)将向左平移2个单位长度得到,直接写出点,,的坐标;(2)将绕点A顺时针旋转得到,画出,并写出,的坐标;(3)点C的坐标为,用作图的方法在x轴上确定一点M,使最小,并写出点M的坐标.17.(本题11分)如图1,某社区服务中心在墙外安装了遮阳棚,便于居民休憩.在如图2的侧面示意图中,遮阳棚AM长为5米,其与墙面的夹角,其靠墙端离地高AB为3.9米,ME是为了增加纳凉面积加装的一块前挡板(前挡板垂直于地面).(参考数据:,,,)图1 图2(1)求出遮阳棚前端M到墙面AB的距离;(2)已知本地夏日正午的太阳高度角(太阳光线与地面夹角)最小为,若此时房前恰好有3.7米宽的阴影BC,则加装的前挡板的宽度ME的长是多少?18.(本题11分)随着快递行业在农村的深入发展,全国各地的特色农产品有了更广阔的销售空间.不同的快递公司在配送、服务、收费和投递范围等方面各具优势,某农产品种植户经过前期调研,打算从甲、乙两家快递公司中选择一家合作.为此,该种植户收集了10家农产品种植户对两家公司的相关评价,并整理、描述、分析如下:配送速度和服务质量得分统计表项目配送速度得分服务质量得分统计量快递公司平均数中位数平均数方差甲7.8m7乙887(1)补全频数直方图,并求扇形统计图中圆心角的度数;(2)表格中的______;______(填“>”“=”或“<”);(3)综合上表中的统计量,你认为该农产品种植户应选择哪家公司?请说明理由;(4)如果A,B,C三家农产品种植户分别从甲、乙两个快递公司中任选一个公司合作,求三家种植户选择同一快递公司的概率.19.(本题12分)某校羽毛球社团的同学们用数学知识对羽毛球技术进行分析,下面是他们对击球线路的分析.如图,在平面直角坐标系中,点A,C在x轴上,球网AB与y轴的水平距离米,米,米,击球点P在y轴上.他们用仪器收集了扣球和吊球时,羽毛球的飞行高度y(米)与水平距离x(米)的部分数据,并分别在直角坐标系中描出了对应的点,如下图所示.同学们认为,可以从,,中选择适当的函数模型,近似的模拟两种击球方式对应的羽毛球的飞行高度y(米)与水平距离x(米)的关系.(1)请从上述函数模型中,选择适当的模型分别模拟两种击球方式对应的羽毛球的飞行高度y(米)与水平距离x(米)的关系,并求出函数表达式;(2)请判断上面两种击球方式都能使球过网吗?如果能过,选择哪种击球方式使球的落地点到C点的距离更近;如果不能,请说明理由.20.(本题12分)如图,内接于,AB是直径,点E在圆上,连接EB,EC,交AB于点F,过点C作CD交AB 的延长线于点D,使.(1)求证:CD是的切线;(2)若,,,求的长.21.(本题11分)某无人机租赁公司有50架某种型号的无人机对外出租,该公司有两种租赁方案:方案A:如果每架无人机月租费300元,那么50架无人机可全部租出.如果每架无人机的月租费每增加5元,那么将少租出1架无人机.另外,公司为每架租出的无人机支付月维护费20元.方案B:每架无人机月租费350元,无论是否租出,公司均需一次性支付月维护费共计185元.说明:月利润=月租费-月维护费.设租出无人机的数量为x架,根据上述信息,解决下列问题:(1)当时,按方案A租赁所得的月利润是______元,按方案B租赁所得的月利润是______元;(2)如果按两种方案租赁所得的月利润相等,那么租出的无人机数量是多少?(3)设按方案A租赁所得的月利润为,按方案B租赁所得的月利润为,记函数,求w的最大值.22.(本题13分)【问题情境】综合与实践课上,老师发给每位同学一张正方形纸片ABCD.在老师的引导下,同学们在边BC上取中点E,取CD边上任意一点F(不与C,D重合),连接EF,将沿EF折叠,点C的对应点为G,然后将纸片展平,连接FG并延长交AB所在的直线于点N,连接EN,EG.探究点F在位置改变过程中出现的特殊数量关系或位置关系.图1 图2 图3【探究与证明】(1)如图1,小亮发现:.请证明小亮发现的结论.(2)如图2、图3,小莹发现:连接CG并延长交AB所在的直线于点H,交EF于点M,线段EN与CH 之间存在特殊关系.请写出小莹发现的特殊关系,并从图2、图3中选择一种情况进行证明.【应用拓展】在图2、图3的基础上,小博士进一步思考发现:将EG所在直线与AB所在直线的交点记为P,若给出BP 和BC的长,则可以求出CF的长.请根据题意分别在图2、图3上补画图形,并尝试解决:当,时,求CF的长.九年级数学试题参考答案一、单选题(本大题共6小题,每小题4分,共24分.在每小题给出的四个选项中只有一项是正确的,请把正确的选项选出来每小题选对得4分,错选、不选均记0分)二、多项选择题(共4小题,每小题5分,共20分.每小题的四个选项中,有多项正确,全部选对得5分,部分选对得3分,错选、多选均记0分)三、填空题(本大题共4小题,每小题4分,共16分.只填写最后结果)11.12.5 13.214.四、解答题(本题共8小题,共90分.请写出必要的文字说明、证明过程或演算步骤)15.解:(本题10分,第(1)题4分,第(2)题6分)(1)①有错误,第四步,……2分②不等式的基本性质1(只答不等式的基本性质不得分)………………………4分(2) (1)分 (3)分……4分由得………………………………………………………5分所以,原式…………………………………………………………………6分16.(本题10分)(1),,……3分题号123456答案CBADCD题号78910答案BDACDACBCD(2)……5分,…………………………………………………………………7分(3)……9分……………………………………………………………………………10分17.(本题11分)解:(1)过点M作,垂足为F,在中,……2分所以,………………………………………3分(2)延长ME交BC于点N,由题意可知,垂足为N,又因为,,所以四边形MFBN为矩形,所以,,……………………………………4分所以,……………………………………5分在中,………………7分在中,……………9分所以,,所以,……………………………………………10分所以,…………………………11分18.(本题11分)解:(1)……………………………………………1分……………………………………………2分(2)7.5,<…………………………………………………………………………………4分(3)应选择甲公司(答案不唯一),……………………………………………………5分理由:因为,甲和乙配送速度得分的平均数和中位数相差不大,服务质量得分的平均数相同,但是甲的方差明显小于乙的方差.所以,甲更稳定,故应选择甲公司.…………………………………………………7分(4)……………………………9分所以,三家种植户选择同一快递公司的概率是…………………………………11分19.(本题12分)(1)扣球方式:将,代入得:…………………………………………………………………………1分解得:………………………………………………………………………2分所以,………………………………………………………………3分吊球方式:将,代入中,得:……………………………………………………………4分解得:…………………………………………………………………………5分所以,…………………………………………………………6分(2)能,将代入,得,,将代入,得,,所以,两种击球方式都能过网…………………………………………………………8分将代入,得,,将代入,得,,(舍去)…………………………………………10分因为米,米,所以米,所以点C的横坐标为5.因为………………………………………………………………11分所以,选择吊球方式,球的落地点到C点的距离更近………………………………12分20.(本题12分)(1)证明:连接OC,因为AB为的直径所以,所以………………………………1分因为,所以,因为,所以--------------------------------2分所以,因为,所以----------------------------------3分所以---------------------------4分所以,所以CD是的切线-------------------------------5分(2)解:因为,AB为的直径,所以,---------7分在中,,所以-------------------------------------------------8分所以------------9分因为,所以为等边三角形,所以---------------------------10分所以的长度--------------12分21.(本题11分)解:(1)当时,,……………………………………………1分当每月租出的无人机为10架时,按方案A租赁所得的月利润是4800元;,………………………………………………………………2分当每月租出的无人机为10架时,按方案B租赁所得的月利润是3315元;(2)由题意可得:,……………………………4分解得:或(舍),……………………………………………………………6分∴当租出的无人机为37架时,按两种方案租赁所得的月利润相等;………………7分(3)根据题意,得………………………………………8分…………………………………………………………………………9分因为,函数图象开口向下,因为对称轴为直线,………………………………………………………10分所以当时,w最大,.………………11分22.(本题13分)(1)证明:因为四边形ABCD是正方形,所以,因为是由沿EF折叠所得,点C的对应点为G,所以,,.…………………………………1分所以.所以和均为直角三角形.因为E为BC的中点,所以.所以.因为,…………………………………………………2分所以.所以.…………………………………………3分所以.所以.……………………………………………4分图1(2)且.证明:因为是由沿EF折叠所得所以.…………………5分因为,所以.所以.所以.…………………6分所以.…………………7分因为E为BC中点,所以.所以,即N为BH的中点,图2 图3(3)解:①如图4,因为E为BC中点,,所以.所以.因为,所以在中,.所以.………………………………………………………………9分因为,所以.设GN为x,所以.所以.所以在中,.所以.解得.所以.…………………………………………………………………………10分因为,所以.因为,所以在中,.所以,又因为,所以.所以.图4②如图5因为E为BC中点,,所以.所以.因为,所以在中,.所以.因为,,所以.所以.所以.所以.…………………………………………………12分同①可得,所以.所以…………………………………………………………13分图5。
精选潍坊市初三中考数学第一次模拟试卷一、选择题(本大题共10小题,每小题3分,共24分)每小题只有一个正确选项.1.在实数0,﹣,,|﹣2|中,最小的是()A.B.﹣C.0D.|﹣2|2.下列运算正确的是()A.﹣(﹣x+1)=x+1B.C.D.(a﹣b)2=a2﹣b23.下列四个多项式,哪一个是2x2+5x﹣3的因式()A.2x﹣1B.2x﹣3C.x﹣1D.x﹣34.如图,边长为(m+3)的正方形纸片,剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是()A.m+3B.m+6C.2m+3D.2m+65.关于x的方程x2+kx+k﹣1=0的根的情况描述正确的是()A.k为任何实数,方程都没有实数根B.k为任何实数,方程都有两个实数根C.k为任何实数,方程都有两个相等的实数根D.根据k的取值不同,方程根的情况分为没有实数根、有两个不相等的实数根和有两个相等的实数根三种6.某赛季甲、乙两名篮球运动员12场比赛得分情况用图表示如下:对这两名运动员的成绩进行比较,下列四个结论中,不正确的是()A.甲运动员得分的极差大于乙运动员得分的极差B.甲运动员得分的中位数大于乙运动员得分的中位数C.甲运动员的得分平均数大于乙运动员的得分平均数D.甲运动员的成绩比乙运动员的成绩稳定7.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打()A.6折B.7折C.8折D.9折8.一个矩形被直线分成面积为x,y的两部分,则y与x之间的函数关系只可能是()A.B.C.D.9.下列说法中①一个角的两边分别垂直于另一角的两边,则这两个角相等②数据5,2,7,1,2,4的中位数是3,众数是2③等腰梯形既是中心对称图形,又是轴对称图形④Rt△ABC中,∠C=90°,两直角边a、b分别是方程x2﹣7x+7=0的两个根,则AB边上的中线长为正确命题有()A.0个B.1个C.2个D.3个10.如图,在平面直角坐标系中,⊙P的圆心是(2,a)(a>2),半径为2,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是()A.2B.2+C.2D.2+二、填空题(本大题共6小题,每小题3分,共24分)11.化简:÷=.12.如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E=度.13从﹣2,﹣1,2这三个数中任取两个不同的数作为点的坐标,该点在第四象限的概率是.14.已知等边△ABC中,点D,E分别在边AB,BC上,把△BDE沿直线DE翻折,使点B 落在点Bˊ处,DBˊ,EBˊ分别交边AC于点F,G,若∠ADF=80°,则∠EGC的度数为.15.以数轴上的原点O为圆心,3为半径的扇形中,圆心角∠AOB=90°,另一个扇形是以点P为圆心,5为半径,圆心角∠CPD=60°,点P在数轴上表示实数a,如图.如果两个扇形的圆弧部分(和)相交,那么实数a的取值范围是.16.如图,点A的坐标是(2,2),若点P在x轴上,且△APO是等腰三角形,则点P的坐标是.三、(本大题共3个小题,每小题各6分,共18分)17.先化简,再求值:(﹣2),其中x=2.18.分别按下列要求解答:(1)在图1中.作出⊙O关于直线l成轴对称的图形;(2)在图2中.作出△ABC关于点P成中心对称的图形.19.某商店5月1日举行促销优惠活动,当天到该商店购买商品有两种方案,方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的9.5折优惠.已知小敏5月1日前不是该商店的会员.(1)若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付多少元?(2)请帮小敏算一算,所购买商品的价格在什么范围时,采用方案一更合算?四、(本大题共2个小题,每小题8分,共16分)20.根据全国人口普查结果显示:某市常住人口总数由第五次的400万人增加到第六次的450万人,常住人口的学历状况统计图如下(部分信息未给出):解答下列问题:(1)计算第六次人口普查小学学历的人数,并把条形统计图补充完整;(2)第六次人口普查结果与第五次相比,该市常住人口中高中学历人数增长的百分比是多少?21.如图,在△ABC中,∠C=90°,以AB上一点O为圆心,OA长为半径的圆与BC相切于点D,分别交AC、AB于点E、F.(1)若AC=6,AB=10,求⊙O的半径;(2)连接OE、ED、DF、EF.若四边形BDEF是平行四边形,试判断四边形OFDE的形状,并说明理由.五、(本大题共2小题,每小题9分,共18分)22.如图,AB=AC,CD⊥AB于D,BE⊥AC于E,BE与CD相交于点O.(1)求证:AD=AE;(2)连接OA,BC,试判断直线OA,BC的关系并说明理由.23.设,,,…,.若,求S(用含n的代数式表示,其中n为正整数).六、(本大题共2小题,每小题10分,共20分)24.在平面直角坐标系xOy中,边长为a(a为大于0的常数)的正方形ABCD的对角线AC、BD相交于点P,顶点A在x轴正半轴上运动,顶点B在y轴正半轴上运动(x轴的正半轴、y轴的正半轴都不包含原点O),顶点C、D都在第一象限.(1)当∠BAO=45°时,求点P的坐标;(2)求证:无论点A在x轴正半轴上、点B在y轴正半轴上怎样运动,点P都在∠AOB 的平分线上;(3)设点P到x轴的距离为h,试确定h的取值范围,并说明理由.25.在平面直角坐标系xOy中,直线l1过点A(1,0)且与y轴平行,直线l2过点B(0,2)且与x轴平行,直线l1与直线l2相交于点P.点E为直线l2上一动点,反比例函数(k>0)的图象过点E与直线l1相交于点F.(1)若点E与点P重合,求k的值;(2)连接OE、OF、EF.请将△OEF的面积用k表示出来;(3)是否存在点E使△OEF的面积为△PEF面积的2倍?若存在,求出点E坐标;若不存在,请说明理由.参考答案一、选择题(本大题共10小题,每小题3分,共24分)每小题只有一个正确选项. 1.(3分)在实数0,﹣,,|﹣2|中,最小的是()A.B.﹣C.0D.|﹣2|【解答】解:|﹣2|=2,∵四个数中只有﹣,﹣为负数,∴应从﹣,﹣中选;∵|﹣|>|﹣|,∴﹣<﹣.故选:B.2.(3分)下列运算正确的是()A.﹣(﹣x+1)=x+1B.C.D.(a﹣b)2=a2﹣b2【解答】解:A、﹣(﹣x+1)=x﹣1,故本选项错误;B、=3﹣故本选项错误;C、|﹣2|=2﹣故本选项正确;D、(a﹣b)2=a2﹣2ab+b2故本选项错误;故选:C.3.(3分)下列四个多项式,哪一个是2x2+5x﹣3的因式()A.2x﹣1B.2x﹣3C.x﹣1D.x﹣3【解答】解:∵2x2+5x﹣3=(2x﹣1)(x+3),2x﹣1与x+3是多项式的因式,故选:A.4.(3分)如图,边长为(m+3)的正方形纸片,剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是()A.m+3B.m+6C.2m+3D.2m+6【解答】解:依题意得剩余部分为(m+3)2﹣m2=(m+3+m)(m+3﹣m)=3(2m+3)=6m+9,而拼成的矩形一边长为3,∴另一边长是=2m+3.故选:C.5.(3分)关于x的方程x2+kx+k﹣1=0的根的情况描述正确的是()A.k为任何实数,方程都没有实数根B.k为任何实数,方程都有两个实数根C.k为任何实数,方程都有两个相等的实数根D.根据k的取值不同,方程根的情况分为没有实数根、有两个不相等的实数根和有两个相等的实数根三种【解答】解:△=k2﹣4(k﹣1)=k2﹣4k+4=(k﹣2)2,∵(k﹣2)2,≥0,即△≥0,∴原方程有两个实数根,当k=2时,方程有两个相等的实数根.故选:B.6.(3分)某赛季甲、乙两名篮球运动员12场比赛得分情况用图表示如下:对这两名运动员的成绩进行比较,下列四个结论中,不正确的是()A.甲运动员得分的极差大于乙运动员得分的极差B.甲运动员得分的中位数大于乙运动员得分的中位数C.甲运动员的得分平均数大于乙运动员的得分平均数D.甲运动员的成绩比乙运动员的成绩稳定【解答】解:A、由图可知甲、乙运动员第一场比赛得分相同,第十二场比赛得分甲运动员比乙运动员得分高,所以甲运动员得分的极差大于乙运动员得分的极差,故A选项正确;B、由图可知甲运动员得分始终大于乙运动员得分,所以甲运动员得分的中位数大于乙运动员得分的中位数,故B选项正确;C、由图可知甲运动员得分始终大于乙运动员得分,所以甲运动员的得分平均数大于乙运动员的得分平均数,故C选项正确;D、由图可知甲运动员得分数据波动性较大,乙运动员得分数据波动性较小,乙运动员的成绩比甲运动员的成绩稳定,故D选项错误.故选:D.7.(3分)某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打()A.6折B.7折C.8折D.9折【解答】解:设可打x折,则有1200×﹣800≥800×5%,解得x≥7.即最多打7折.故选:B.8.(3分)一个矩形被直线分成面积为x,y的两部分,则y与x之间的函数关系只可能是()A.B.C.D.【解答】解:因为x+y=k(矩形的面积是一定值),整理得y=﹣x+k,由此可知y是x的一次函数,图象经过第一、二、四象限,x、y都不能为0,且x>0,y >0,图象位于第一象限,所以只有A符合要求.故选:A.9.(3分)下列说法中①一个角的两边分别垂直于另一角的两边,则这两个角相等②数据5,2,7,1,2,4的中位数是3,众数是2③等腰梯形既是中心对称图形,又是轴对称图形④Rt△ABC中,∠C=90°,两直角边a、b分别是方程x2﹣7x+7=0的两个根,则AB边上的中线长为正确命题有()A.0个B.1个C.2个D.3个【解答】解:①一个角的两边垂直于另一个角的两边,这两个角互补或相等,所以①错误.②数据1,2,2,4,5,7,中位数是(2+4)=3,其中2出现的次数最多,众数是2,所以②正确.③等腰梯形只是轴对称图形,而不是中心对称图形,所以③错误.④根据根与系数的关系有:a+b=7,ab=7,∴a2+b2=(a+b)2﹣2ab=49﹣14=35,即:AB2=35,AB=∴AB边上的中线的长为.所以④正确.故选:C.10.(3分)如图,在平面直角坐标系中,⊙P的圆心是(2,a)(a>2),半径为2,函数y =x的图象被⊙P截得的弦AB的长为,则a的值是()A.2B.2+C.2D.2+【解答】解:过P点作PE⊥AB于E,过P点作PC⊥x轴于C,交AB于D,连接P A.∵PE⊥AB,AB=2,半径为2,∴AE=AB=,P A=2,根据勾股定理得:PE==1,∵点A在直线y=x上,∴∠AOC=45°,∵∠DCO=90°,∴∠ODC=45°,∴△OCD是等腰直角三角形,∴OC=CD=2,∴∠PDE=∠ODC=45°,∴∠DPE=∠PDE=45°,∴DE=PE=1,∴PD=.∵⊙P的圆心是(2,a),∴a=PD+DC=2+.故选:B.二、填空题(本大题共6小题,每小题3分,共24分)11.(3分)化简:÷=.【解答】解:原式=•=.故答案为:12.(3分)如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E=15度.【解答】解:∵△ABC是等边三角形,∴∠ACB=60°,∠ACD=120°,∵CG=CD,∴∠CDG=30°,∠FDE=150°,∵DF=DE,∴∠E=15°.故答案为:15.13.(3分)从﹣2,﹣1,2这三个数中任取两个不同的数作为点的坐标,该点在第四象限的概率是.【解答】解:共有6种情况,在第四象限的情况数有2种,所以概率为.故答案为:.14.(3分)已知等边△ABC中,点D,E分别在边AB,BC上,把△BDE沿直线DE翻折,使点B落在点Bˊ处,DBˊ,EBˊ分别交边AC于点F,G,若∠ADF=80°,则∠EGC的度数为80°.【解答】解:由翻折可得∠B′=∠B=60°,∴∠A=∠B′=60°,∵∠AFD=∠GFB′,∴△ADF∽△B′GF,∴∠ADF=∠B′GF,∵∠EGC=∠FGB′,∴∠EGC=∠ADF=80°.故答案为:80°.15.(3分)以数轴上的原点O为圆心,3为半径的扇形中,圆心角∠AOB=90°,另一个扇形是以点P为圆心,5为半径,圆心角∠CPD=60°,点P在数轴上表示实数a,如图.如果两个扇形的圆弧部分(和)相交,那么实数a的取值范围是﹣4≤a≤﹣2.【解答】解:当A、D两点重合时,PO=PD﹣OD=5﹣3=2,此时P点坐标为a=﹣2,当B在弧CD时,由勾股定理得,PO===4,此时P点坐标为a =﹣4,则实数a的取值范围是﹣4≤a≤﹣2.故答案为:﹣4≤a≤﹣2.16.(3分)如图,点A的坐标是(2,2),若点P在x轴上,且△APO是等腰三角形,则点P的坐标是(2,0)或(4,0)或(2,0)或(﹣2,0)..【解答】解:(1)当点P在x轴正半轴上,①以OA为腰时,∵A的坐标是(2,2),∴∠AOP=45°,OA=2,∴P的坐标是(4,0)或(2,0);②以OA为底边时,∵点A的坐标是(2,2),∴当点P的坐标为:(2,0)时,OP=AP;(2)当点P在x轴负半轴上,③以OA为腰时,∵A的坐标是(2,2),∴OA=2,∴OA=OP=2,∴P的坐标是(﹣2,0).故答案为:(2,0)或(4,0)或(2,0)或(﹣2,0).三、(本大题共3个小题,每小题各6分,共18分)17.(6分)先化简,再求值:(﹣2),其中x=2.【解答】解:原式==×=,当x=2时,原式=﹣=﹣1.18.(6分)分别按下列要求解答:(1)在图1中.作出⊙O关于直线l成轴对称的图形;(2)在图2中.作出△ABC关于点P成中心对称的图形.【解答】解:(1)(2)如图所示:19.(6分)某商店5月1日举行促销优惠活动,当天到该商店购买商品有两种方案,方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的9.5折优惠.已知小敏5月1日前不是该商店的会员.(1)若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付多少元?(2)请帮小敏算一算,所购买商品的价格在什么范围时,采用方案一更合算?【解答】解:(1)120×0.95=114(元),若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付114元;(2)设所付钱为y元,购买商品价格为x元,则按方案一可得到一次函数的关系式:y=0.8x+168,则按方案二可得到一次函数的关系式:y=0.95x,如果方案一更合算,那么可得到:0.95x>0.8x+168,解得:x>1120,∴所购买商品的价格在1120元以上时,采用方案一更合算.四、(本大题共2个小题,每小题8分,共16分)20.(8分)根据第五次、第六次全国人口普查结果显示:某市常住人口总数由第五次的400万人增加到第六次的450万人,常住人口的学历状况统计图如下(部分信息未给出):解答下列问题:(1)计算第六次人口普查小学学历的人数,并把条形统计图补充完整;(2)第六次人口普查结果与第五次相比,该市常住人口中高中学历人数增长的百分比是多少?【解答】解:(1)450﹣36﹣55﹣180﹣49=130(万人);(2)第五次人口普查中,该市常住人口中高中学历人数的百分比是:1﹣3%﹣17%﹣38%﹣32%=10%,人数是400×10%=40(万人),∴第六次人口普查中,该市常住人口中高中学历人数是55万人,∴第六次人口普查结果与第五次相比,该市常住人口中高中学历人数增长的百分比是:×100%=37.5%.21.(8分)如图,在△ABC中,∠C=90°,以AB上一点O为圆心,OA长为半径的圆与BC相切于点D,分别交AC、AB于点E、F.(1)若AC=6,AB=10,求⊙O的半径;(2)连接OE、ED、DF、EF.若四边形BDEF是平行四边形,试判断四边形OFDE的形状,并说明理由.【解答】解:(1)连接OD.设⊙O的半径为r.∵BC切⊙O于点D,∴OD⊥BC.∵∠C=90°,∴OD∥AC,∴△OBD∽△ABC.∴=,即10r=6(10﹣r).解得r=,∴⊙O的半径为.(2)四边形OFDE是菱形.理由如下:∵四边形BDEF是平行四边形,∴∠DEF=∠B.∵∠DEF=∠DOB,∴∠B=∠DOB.∵∠ODB=90°,∴∠DOB+∠B=90°,∴∠DOB=60°.∵DE∥AB,∴∠ODE=60°.∵OD=OE.∴OD=DE.∵OD=OF,∴DE=OF.又∵DE∥OF,∴四边形OFDE是平行四边形.∵OE=OF,∴平行四边形OFDE是菱形.五、(本大题共2小题,每小题9分,共18分)22.(9分)如图,AB=AC,CD⊥AB于D,BE⊥AC于E,BE与CD相交于点O.(1)求证:AD=AE;(2)连接OA,BC,试判断直线OA,BC的关系并说明理由.【解答】(1)证明:在△ACD与△ABE中,∵,∴△ACD≌△ABE,∴AD=AE.(2)答:直线OA垂直平分BC.理由如下:连接BC,AO并延长交BC于F,在Rt△ADO与Rt△AEO中,∴Rt△ADO≌Rt△AEO(HL),∴∠DAO=∠EAO,即OA是∠BAC的平分线,又∵AB=AC,∴OA⊥BC且平分BC.23.(9分)设,,,…,.若,求S(用含n的代数式表示,其中n 为正整数).【解答】解:∵,,,…,.∴S1=()2,S2=()2,S3=()2,…,S n=()2,∵,∴S=,∴S=1+,∴S=1+1﹣+1+﹣+…+1+,∴S=n+1﹣=.六、(本大题共2小题,每小题10分,共20分)24.(10分)在平面直角坐标系xOy中,边长为a(a为大于0的常数)的正方形ABCD的对角线AC、BD相交于点P,顶点A在x轴正半轴上运动,顶点B在y轴正半轴上运动(x轴的正半轴、y轴的正半轴都不包含原点O),顶点C、D都在第一象限.(1)当∠BAO=45°时,求点P的坐标;(2)求证:无论点A在x轴正半轴上、点B在y轴正半轴上怎样运动,点P都在∠AOB 的平分线上;(3)设点P到x轴的距离为h,试确定h的取值范围,并说明理由.【解答】(1)解:∵∠BP A=90°,P A=PB,∴∠P AB=45°,∵∠BAO=45°,∴∠P AO=90°,∴四边形OAPB是正方形,∴P点的坐标为:(a,a).(2)证明:作PE⊥x轴交x轴于E点,作PF⊥y轴交y轴于F点,∵∠BPE+∠EP A=90°,∠EPB+∠FPB=90°,∴∠FPB=∠EP A,∵∠PFB=∠PEA,BP=AP,∴△PBF≌△P AE,∴PE=PF,∴点P都在∠AOB的平分线上.(3)解:作PE⊥x轴交x轴于E点,作PF⊥y轴交y轴于F点,则PE=h,设∠APE =α.在直角△APE中,∠AEP=90°,P A=,∴PE=P A•cosα=•cosα,又∵顶点A在x轴正半轴上运动,顶点B在y轴正半轴上运动(x轴的正半轴、y轴的正半轴都不包含原点O),∴0°≤α<45°,∴<h≤.25.(10分)在平面直角坐标系xOy中,直线l1过点A(1,0)且与y轴平行,直线l2过点B(0,2)且与x轴平行,直线l1与直线l2相交于点P.点E为直线l2上一动点,反比例函数(k>0)的图象过点E与直线l1相交于点F.(1)若点E与点P重合,求k的值;(2)连接OE、OF、EF.请将△OEF的面积用k表示出来;(3)是否存在点E使△OEF的面积为△PEF面积的2倍?若存在,求出点E坐标;若不存在,请说明理由.【解答】解:(1)根据题意知,P(1,2).若点E与点P重合,则k=xy=1×2=2;(2)①当0<k<2时,如图1所示.根据题意知,四边形OAPB是矩形,且BP=1,AP=2.∵点E、F都在反比例函数(k>0)的图象上,∴E(,2),F(1,k).则BE=,PE=1﹣,AF=k,PF=2﹣k,∴S△OEF=S矩形OAPB﹣S△OBE﹣S△PEF﹣S△OAF=1×2﹣××2﹣×(1﹣)×(2﹣k)﹣×1×k=﹣k2+1;②当k=2时,由(1)知,△OEF不存在;③当k>2时,如图2所示.点E、F分别在P点的右侧和上方,过E作x轴的垂线EC,垂足为C,过F作y轴的垂线FD,垂足为D,EC和FD相交于点G,则四边形OCGD 为矩形.∵PF⊥PE,∴S△FPE=PE•PF=(﹣1)(k﹣2)=k2﹣k+1,∴四边形PFGE是矩形,∴S△PFE=S△GEF,∴S△OEF=S矩形OCGD﹣S△DOF﹣S△GEF﹣S△OCE=•k﹣﹣(k2﹣k+1)﹣=k2﹣1;(3)当k>0时,存在点E使△OEF的面积为△PEF面积的2倍.理由如下:①如图1所示,当0<k<2时,S△PEF=×(1﹣)×(2﹣k)=,S△OEF=﹣k2+1,则×2=﹣k2+1,解得,k=2(舍去),或k=;②由(1)知,k=2时,△OEF与△PEF不存在;③如图2所示,当k>2时,S△PEF=﹣k2+k﹣1,S△OEF=k2﹣1,则2(﹣k2+k﹣1)=k2﹣1,解得k=(不合题意,舍去),或k=2(不合题意,舍去),则E点坐标为:(3,2).中学数学一模模拟试卷一、选择题(本大题共10小题,每小题3分,共24分)每小题只有一个正确选项.1.在实数0,﹣,,|﹣2|中,最小的是()A.B.﹣C.0D.|﹣2|2.下列运算正确的是()A.﹣(﹣x+1)=x+1B.C.D.(a﹣b)2=a2﹣b23.下列四个多项式,哪一个是2x2+5x﹣3的因式()A.2x﹣1B.2x﹣3C.x﹣1D.x﹣34.如图,边长为(m+3)的正方形纸片,剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是()A.m+3B.m+6C.2m+3D.2m+65.关于x的方程x2+kx+k﹣1=0的根的情况描述正确的是()A.k为任何实数,方程都没有实数根B.k为任何实数,方程都有两个实数根C.k为任何实数,方程都有两个相等的实数根D.根据k的取值不同,方程根的情况分为没有实数根、有两个不相等的实数根和有两个相等的实数根三种6.某赛季甲、乙两名篮球运动员12场比赛得分情况用图表示如下:对这两名运动员的成绩进行比较,下列四个结论中,不正确的是()A.甲运动员得分的极差大于乙运动员得分的极差B.甲运动员得分的中位数大于乙运动员得分的中位数C.甲运动员的得分平均数大于乙运动员的得分平均数D.甲运动员的成绩比乙运动员的成绩稳定7.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打()A.6折B.7折C.8折D.9折8.一个矩形被直线分成面积为x,y的两部分,则y与x之间的函数关系只可能是()A.B.C.D.9.下列说法中①一个角的两边分别垂直于另一角的两边,则这两个角相等②数据5,2,7,1,2,4的中位数是3,众数是2③等腰梯形既是中心对称图形,又是轴对称图形④Rt△ABC中,∠C=90°,两直角边a、b分别是方程x2﹣7x+7=0的两个根,则AB边上的中线长为正确命题有()A.0个B.1个C.2个D.3个10.如图,在平面直角坐标系中,⊙P的圆心是(2,a)(a>2),半径为2,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是()A.2B.2+C.2D.2+二、填空题(本大题共6小题,每小题3分,共24分)11.化简:÷=.12.如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E=度.13从﹣2,﹣1,2这三个数中任取两个不同的数作为点的坐标,该点在第四象限的概率是.14.已知等边△ABC中,点D,E分别在边AB,BC上,把△BDE沿直线DE翻折,使点B 落在点Bˊ处,DBˊ,EBˊ分别交边AC于点F,G,若∠ADF=80°,则∠EGC的度数为.15.以数轴上的原点O为圆心,3为半径的扇形中,圆心角∠AOB=90°,另一个扇形是以点P为圆心,5为半径,圆心角∠CPD=60°,点P在数轴上表示实数a,如图.如果两个扇形的圆弧部分(和)相交,那么实数a的取值范围是.16.如图,点A的坐标是(2,2),若点P在x轴上,且△APO是等腰三角形,则点P的坐标是.三、(本大题共3个小题,每小题各6分,共18分)17.先化简,再求值:(﹣2),其中x=2.18.分别按下列要求解答:(1)在图1中.作出⊙O关于直线l成轴对称的图形;(2)在图2中.作出△ABC关于点P成中心对称的图形.19.某商店5月1日举行促销优惠活动,当天到该商店购买商品有两种方案,方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的9.5折优惠.已知小敏5月1日前不是该商店的会员.(1)若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付多少元?(2)请帮小敏算一算,所购买商品的价格在什么范围时,采用方案一更合算?四、(本大题共2个小题,每小题8分,共16分)20.根据全国人口普查结果显示:某市常住人口总数由第五次的400万人增加到第六次的450万人,常住人口的学历状况统计图如下(部分信息未给出):解答下列问题:(1)计算第六次人口普查小学学历的人数,并把条形统计图补充完整;(2)第六次人口普查结果与第五次相比,该市常住人口中高中学历人数增长的百分比是多少?21.如图,在△ABC中,∠C=90°,以AB上一点O为圆心,OA长为半径的圆与BC相切于点D,分别交AC、AB于点E、F.(1)若AC=6,AB=10,求⊙O的半径;(2)连接OE、ED、DF、EF.若四边形BDEF是平行四边形,试判断四边形OFDE的形状,并说明理由.五、(本大题共2小题,每小题9分,共18分)22.如图,AB=AC,CD⊥AB于D,BE⊥AC于E,BE与CD相交于点O.(1)求证:AD=AE;(2)连接OA,BC,试判断直线OA,BC的关系并说明理由.23.设,,,…,.若,求S(用含n的代数式表示,其中n为正整数).六、(本大题共2小题,每小题10分,共20分)24.在平面直角坐标系xOy中,边长为a(a为大于0的常数)的正方形ABCD的对角线AC、BD相交于点P,顶点A在x轴正半轴上运动,顶点B在y轴正半轴上运动(x轴的正半轴、y轴的正半轴都不包含原点O),顶点C、D都在第一象限.(1)当∠BAO=45°时,求点P的坐标;(2)求证:无论点A在x轴正半轴上、点B在y轴正半轴上怎样运动,点P都在∠AOB 的平分线上;(3)设点P到x轴的距离为h,试确定h的取值范围,并说明理由.25.在平面直角坐标系xOy中,直线l1过点A(1,0)且与y轴平行,直线l2过点B(0,2)且与x轴平行,直线l1与直线l2相交于点P.点E为直线l2上一动点,反比例函数(k>0)的图象过点E与直线l1相交于点F.(1)若点E与点P重合,求k的值;(2)连接OE、OF、EF.请将△OEF的面积用k表示出来;(3)是否存在点E使△OEF的面积为△PEF面积的2倍?若存在,求出点E坐标;若不存在,请说明理由.参考答案一、选择题(本大题共10小题,每小题3分,共24分)每小题只有一个正确选项. 1.(3分)在实数0,﹣,,|﹣2|中,最小的是()A.B.﹣C.0D.|﹣2|【解答】解:|﹣2|=2,∵四个数中只有﹣,﹣为负数,∴应从﹣,﹣中选;∵|﹣|>|﹣|,∴﹣<﹣.故选:B.2.(3分)下列运算正确的是()A.﹣(﹣x+1)=x+1B.C.D.(a﹣b)2=a2﹣b2【解答】解:A、﹣(﹣x+1)=x﹣1,故本选项错误;B、=3﹣故本选项错误;C、|﹣2|=2﹣故本选项正确;D、(a﹣b)2=a2﹣2ab+b2故本选项错误;故选:C.3.(3分)下列四个多项式,哪一个是2x2+5x﹣3的因式()A.2x﹣1B.2x﹣3C.x﹣1D.x﹣3【解答】解:∵2x2+5x﹣3=(2x﹣1)(x+3),2x﹣1与x+3是多项式的因式,故选:A.4.(3分)如图,边长为(m+3)的正方形纸片,剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是()A.m+3B.m+6C.2m+3D.2m+6【解答】解:依题意得剩余部分为(m+3)2﹣m2=(m+3+m)(m+3﹣m)=3(2m+3)=6m+9,而拼成的矩形一边长为3,∴另一边长是=2m+3.故选:C.5.(3分)关于x的方程x2+kx+k﹣1=0的根的情况描述正确的是()A.k为任何实数,方程都没有实数根B.k为任何实数,方程都有两个实数根C.k为任何实数,方程都有两个相等的实数根D.根据k的取值不同,方程根的情况分为没有实数根、有两个不相等的实数根和有两个相等的实数根三种【解答】解:△=k2﹣4(k﹣1)=k2﹣4k+4=(k﹣2)2,∵(k﹣2)2,≥0,即△≥0,∴原方程有两个实数根,当k=2时,方程有两个相等的实数根.故选:B.6.(3分)某赛季甲、乙两名篮球运动员12场比赛得分情况用图表示如下:对这两名运动员的成绩进行比较,下列四个结论中,不正确的是()A.甲运动员得分的极差大于乙运动员得分的极差B.甲运动员得分的中位数大于乙运动员得分的中位数C.甲运动员的得分平均数大于乙运动员的得分平均数D.甲运动员的成绩比乙运动员的成绩稳定【解答】解:A、由图可知甲、乙运动员第一场比赛得分相同,第十二场比赛得分甲运动员比乙运动员得分高,所以甲运动员得分的极差大于乙运动员得分的极差,故A选项正确;B、由图可知甲运动员得分始终大于乙运动员得分,所以甲运动员得分的中位数大于乙运动员得分的中位数,故B选项正确;C、由图可知甲运动员得分始终大于乙运动员得分,所以甲运动员的得分平均数大于乙运动员的得分平均数,故C选项正确;D、由图可知甲运动员得分数据波动性较大,乙运动员得分数据波动性较小,乙运动员的成绩比甲运动员的成绩稳定,故D选项错误.故选:D.7.(3分)某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打()A.6折B.7折C.8折D.9折【解答】解:设可打x折,则有1200×﹣800≥800×5%,解得x≥7.即最多打7折.故选:B.8.(3分)一个矩形被直线分成面积为x,y的两部分,则y与x之间的函数关系只可能是()A.B.C.D.【解答】解:因为x+y=k(矩形的面积是一定值),整理得y=﹣x+k,由此可知y是x的一次函数,图象经过第一、二、四象限,x、y都不能为0,且x>0,y >0,图象位于第一象限,所以只有A符合要求.故选:A.9.(3分)下列说法中①一个角的两边分别垂直于另一角的两边,则这两个角相等②数据5,2,7,1,2,4的中位数是3,众数是2③等腰梯形既是中心对称图形,又是轴对称图形④Rt△ABC中,∠C=90°,两直角边a、b分别是方程x2﹣7x+7=0的两个根,则AB边上的中线长为正确命题有()A.0个B.1个C.2个D.3个【解答】解:①一个角的两边垂直于另一个角的两边,这两个角互补或相等,所以①错误.②数据1,2,2,4,5,7,中位数是(2+4)=3,其中2出现的次数最多,众数是2,所以②正确.③等腰梯形只是轴对称图形,而不是中心对称图形,所以③错误.④根据根与系数的关系有:a+b=7,ab=7,∴a2+b2=(a+b)2﹣2ab=49﹣14=35,即:AB2=35,AB=∴AB边上的中线的长为.所以④正确.故选:C.10.(3分)如图,在平面直角坐标系中,⊙P的圆心是(2,a)(a>2),半径为2,函数y =x的图象被⊙P截得的弦AB的长为,则a的值是()。
中考数学一模试卷一、选择题(本大题共12小题,共36.0分)1.的根是()A. 2B.C. 4D.2.下列运算确的()A. B. C. D.3.王英同学从A地沿北偏西60°方向走100m到B地,再从B地向正南方向走200m到C地,此时王英同学离A地()A.B. 100mC. 150mD.4.已知关于x的一元二次方程(m-2)2x2+(2m+1)x+1=0有两个不相等的实数根,则m的取值范围是()A. B.C. 且D. 且5.如图,组体的俯图是()A.B.C.D.6.在边2的正方形组的网格中有如图所示A,B两点,在格点任放置点C,好能得△ABC的面积为2的概()A.B.C.D.7.点P(a,b直y=-x5与双曲线的一个交以a、b两为根的一元二次方是()A. B. C. D.8.如图,AB的中垂线为CP交AB于点P,且AC=2CP.甲、乙两人想在AB上取D、E两点,使得AD=DC=CE=EB,其作法如下:甲作∠ACP、∠BCP的角平分线,分别交AB于D、E两点,则D、E即为所求;乙作AC、BC的中垂线,分别交AB于D、E两点,则D、E即为所求.对于甲、乙两人的作法,下列正确的是()A. 两人都正确B. 两人都错误C. 甲正确,乙错误D. 甲错误,乙正确9.某外贸公司要出口一批食品罐头,标准质量为每听454克,现抽去10听样品进行检测,它们的质量与标准质量的差值(单位:克)如下:-10,+5,0,+5,0,0,-5,0,+5,+10.则这10听罐头质量的平均数及众数为()A. 454,454B. 455,454C. 454,459D. 455,010.二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx+a的图象不经过()A. 第一象限B. 第二象限C. 第三象限D. 第四象限11.如图,在Rt△ABC中,∠C=90°,∠B=30°,BC=4cm,以点C为圆心,以2cm的长为半径作圆,则⊙C与AB的位置关系是()A. 相离B. 相切C. 相交D. 相切或相交12.已知如,等腰三形ABC直角边长,正方形MNP的为b/空格(a<b),、M、、N在同条直线上,开始时点与点重合,让△B向移动,最点C与点N重合.三角形与正方形的重积为y点A移动的距离为x,y关大致象是()A. B.C. D.二、填空题(本大题共6小题,共18.0分)13.解因式:-x-3+x2= ______ .14.关于y的方程组,那么= ______ .15.如图,已知BC,AC=C,90.是AB的中点,⊙OA,BC别相切于点D与E.点F是⊙O与B的一交,连DF并延长CB的延长线于点G则∠CDG=______,AB=,则B=______.16.若关于x的不等式组有实数解,则a的取值范围是______ .17.如图,正方形ABCD边长为4,以BC为直径的半圆O交对角线BD于E.阴影部分面积为(结果保留π)______ .18.式“1++3+4+5…+10”表示从1始的100个续自的和,由于上述式子比较书写不方,为了简便起见我们以将“1+2+3+++…100”表示为,这里的号“”是和的符号如“1+3+5+7+…99”即从1的10以内的连奇数的和,表为.通过对以上材料阅读,算:= ______ (填最的计算结果).三、解答题(本大题共6小题,共66.0分)19.下表为抄录北京运会方票公布三种球类比赛的部分票格,公司购买的门票类、数量绘制的条形统计图.其中观看男篮比赛的有______ /空/张;观看乒乓球比的门票全门票的______ %;公决定采用随机抽取的方式门票分配100名员工,在看不到票的件,每人抽取一张假所的门票形状、大小质地完全相同且分洗),问工小亮抽到球票的率是______ ;若买乒乓球票的总款占全门票总款数的,求张乒乓球门票的格.20.如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.21.小明坐于堤边垂钓,如图,河堤AC的坡角为30°,AC长米,钓竿AO的倾斜角是60°,其长为3米,若AO与钓鱼线OB的夹角为60°,求浮漂B与河堤下端C之间的距离.22.如图,在△ABC中,∠ABC=∠ACB,以AC为直径的⊙O分别交AB、BC于点M、N,点P在AB的延长线上,且∠CAB=2∠BCP.(1)求证:直线CP是⊙O的切线;(2)若BC=2,sin∠BCP=,求点B到AC的距离.23.某公司销售一种新型节能产品,现准备从国内和国外两种销售方案中选择一种进行销售.若只在国内销售,销售价格y(元/件)与月销量x(件)的函数关系式为y=x+150,成本为20元/件,无论销售多少,每月还需支出广告费62500元,设月利润为w内(元).若只在国外销售,销售价格为150元/件,受各种不确定因素影响,成本为a元/件(a为常数,10≤a≤40),当月销量为x(件)时,每月还需缴纳x2元的附加费,设月利润为w外(元).(1)当x=1000时,y= ______ 元/件,w内= ______ 元;(2)分别求出w内,w外与x间的函数关系式(不必写x的取值范围);(3)当x为何值时,在国内销售的月利润最大?若在国外销售月利润的最大值与在国内销售月利润的最大值相同,求a的值.24.如图,⊙C的内接△AOB中,AB=AO=4,tan∠AOB=,抛物线y=ax2+bx经过点A(4,0)与点(-2,6).(1)求抛物线的函数解析式;(2)直线m与⊙C相切于点A,交y轴于点D.动点P在线段OB上,从点O出发向点B运动;同时动点Q在线段DA上,从点D出发向点A运动;点P的速度为每秒一个单位长,点Q的速度为每秒2个单位长,当PQ⊥AD时,求运动时间t 的值;(3)点R在抛物线位于x轴下方部分的图象上,当△ROB面积最大时,求点R的坐标.答案和解析1.【答案】A【解析】解:=8,的立方根2.故选:先求得的值然后再求立方根可.本题主要考查是根和算术平方根的义和性,求得=8是解题键.2.【答案】D【解析】解:a=1(a≠0,此选项错误;3,故此选项错;(-a2)3=-a正.故选:直接利用零指数幂的性质以二根式的性质以及乘方运算别简求出答案.此题主要查了零指幂的性质以及次根式的性以积乘方运算等知识,正把运法则解题关键.3.【答案】D【解析】解:AD=AB•sin60°=50;BD=AB•cos60°=50,∴CD=150.∴AC==100.故选D.根据三角函数分别求AD,BD的长,从而得到CD的长.再利用勾股定理求AC的长即可.解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.4.【答案】C【解析】解:根据题意列出方程组,解之得m>且m≠2.故选:C.在与一元二次方程有关的求值问题中,必须满足下列条件:(1)二次项系数不为零;(2)在有不相等的实数根下必须满足△=b2-4ac>0.本题考查了一元二次方程根的判别式的应用.切记不要忽略一元二次方程二次项系数不为零这一隐含条件.5.【答案】A【解析】解:上面看是两个心圆,如图所:.故A.找到从上面面到的图形即可,注所的到的棱都应表现在俯图中.本题考查了三视图的知识,注意视是物体的上得到的视.6.【答案】B【解析】解:如图示,∵格点上任意放点C,∴有关有16种可,其有个点(见图能使得△ABC面积为2,故选.画出形找到得△ABC的面为2的所有点由此即可解决题.本几规律题、角形面问题等知识,找到点C的位置是题关,记住同底等高三角形面积相等,所有中常考题型.7.【答案】B【解析】解:把P(a,b)别代入y-x-和得=-a-,b=,而以a、b两数根的一元二方为2-(+b)+ab=0,所以求的方程为2+5x6=0.故选.先把a,b)别个解析式整理到a+b=,a=6,然根据一次方程的根与系数的关系即可得到a、两为根的一元二次方程.考查了反比例函与一函数交问题:反例数与一次函数的点标足两个函的解析式.也考了一元二次方程的根与系数的关系.8.【答案】A【解析】解:甲、乙都正确,理由是:∵CP是线段AB的垂直平分线,∴BC=AC,∠APC=∠BPC=90°,∵AC=2CP,∴∠A=30°,∴∠ACP=60°,∵CD平分∠ACP,∴∠ACD=∠ACP=30°,∴∠ACD=∠A,∴AD=DC,同理CE=BE,即D、E为所求;∵D在AC的垂直平分线上,∴AD=CD,同理CE=BE,即D、E为所求,故选A.求出∠A=30°,∠ACP=60°,求出∠ACD=30°=∠A,即可推出AD=CD,同理BE=CE,即可判断甲,根据线段垂直平定县性质得出AD=CD,BE=CE,即可判断乙.本题考查了含30度角的直角三角形性质,三角形的内角和定理,线段垂直平分线性质的应用,主要考查学生运用定理进行推理的能力.9.【答案】B【解析】解:平均数是:454+(-10+5+0+5+0+0-5+0+5+10)=454+1=455克,-10,+5,0,+5,0,0,-5,0,+5,+10的众数是0,因而这10听罐头的质量的众数是:454+0=454克.故选B.首先求得-10,+5,0,+5,0,0,-5,0,+5,+10这10个数的平均数以及众数,然后分别加上454克,即可求解.本题考查了众数与平均数的求法,正确理解定理,理解-10,+5,0,+5,0,0,-5,0,+5,+10与这10听罐头质量的平均数及众数的关系是关键.10.【答案】D【解析】解:由图象开口向上可知a>0,对称轴x=-<0,得b>0.所以一次函数y=bx+a的图象经过第一、二、三象限,不经过第四象限.故选:D.根据二次函数图象的开口方向、对称轴判断出a、b的正负情况,再由一次函数的性质解答.本题考查二次函数图象和一次函数图象的性质,要掌握它们的性质才能灵活解题.11.【答案】B【解析】解:作CD⊥AB于点D.∵∠B=30°,BC=4cm,∴CD=BC=2cm,即CD等于圆的半径.∵CD⊥AB,∴AB与⊙C相切.故选:B.作CD⊥AB于点D.根据三角函数求CD的长,与圆的半径比较,作出判断.此题考查直线与圆的位置关系的判定方法.通常根据圆的半径R与圆心到直线的距离d的大小判断:当R>d时,直线与圆相交;当R=d时,直线与圆相切;当R<d时,直线与圆相离.12.【答案】B【解析】解:设三形与正形的重合面积为y,点A移离为x,当a<x<b,重合部分面积于角三角的面积,且保持不,∴y关于的函数关系为:=x2,当x<a时,重合部分的y随x的大而增,故B.根据题目提条件可以求出函数的解析式据解判函数的图象的形状.题考查了动点题的函数图象,类题目的图象往几个数组合体.13.【答案】-x(x-)2【解析】解:-x-x3+x=-(2-x+)=-(x-)2,故答案为x(-)2.原式提取x,再用完平方公式分解即.本题考查了公因式法,公式法分解因式提取公因式后利用完全平式进行二次,意分要彻.14.【答案】10【解析】解:设a=,b=方程组化为,将a=1代入:b=3,则-=ab=133=10.3-2得:5a=65,故答案为:0设a=,b=,方程组为关于a与方程组,求出方程组的得a与b的值即为与的值,即求求式子的值.此查了解二元一方组,利用换元的思,是一道基本题型.15.【答案】67.5°;2-2【解析】解:连OD.∵C为圆O切线,∴△ODF∽BF,∴∠G=∠DO-ODF=90°-2.5°=67.5.∴ODF=∠,又∠OF=∠BF,∴=,即=,∴B=2-2.∴BFB-OF=2-2.∴ODA90°,DOA=5°,∴∠F=∠OFD=∠DOA=2.°,∵OD=F,又O为AB的中点∴O=B=A=2,∴D⊥AC,故答案为:67°,2-2.连接OD,由AC为圆O的切线,根据切线的性质得到AC垂直,又=BC,且∠C=90°,到三BC为等直角角形,得到∠A=45°,在直角三角形ABC中,C与BC,根据AB的长,为AB的点,从而得到AOBO都等于A的半求出AOB的长,再B-OF求FB的,同时OD和C都与AC垂直,得到O与GC平行,得到一对错角相等再加对顶角相等,由两对应角相等的三角形相得到三形O三角形GBF似由似比例,把ODOF及FB长代入求GB的长.此题考查了切的综合知识.在的性质时,若已知切连接切和心,得垂直;若切点,则过圆心向作垂“知切点连半径,无切点作垂”.圆与相似三角形,及三角函数相融合的解题、与切线有关的质与判定的证题是几年中考的热点,故要学把所知识融贯穿,灵活运.16.【答案】a <4【解析】 解:,由①得,x <3,由②得,x >,∵此不等式组有实数解, ∴<3,解得a <4.故答案为:a <4.分别求出各不等式的解集,再根据不等式组有实数解即可得到关于a 的不等式,求出a 的取值范围即可.本题考查的是解一元一次不等式组,根据不等式组有实数解得出关于a 的不等式是解答此题的关键.17.【答案】8-π【解析】解:∵四边形ABCD 为正方形,∴BC=CD=4,∴OC=2,∴S 阴影=S △BCD -S 扇形OCE =×4×4-=8-π.故答案为8-π.根据图形可得,阴影部分的面积等于三角形BCD 的面积减去扇形OCE 的面积,代入面积公式进行计算即可.本题考查了扇形面积的计算,正方形的性质,是基础知识要熟练掌握. 18.【答案】【解析】解:=++…+=1-+-+…+-=1-=.答案为:.根据将所求式子化为普通法运算,拆项合并可得到果.此题考查分式的加减,利用了拆的法,弄清通语是解本的键.19.【答案】30;20;【解析】解:某公买男篮比赛票为30(张),观看乓球比赛的门票所占的百分比=×00%=2%;工小亮抽到足球门票概==;据题意得=,即每张乒门票的价格为500.由条形统图可得购买男篮比赛的门票数为3张,购买乒球比赛的数为20,后算乒乓球赛的门票所占的分比;根据题意列程=,然后方程即.本题考查条形统计:形统计图用线度表据,根据数量多少成长短的矩直,然顺序把这些直条列起来.从条形图可以很容易看出数据的大小,便于比较.也考查了概率公.20.【答案】(1)证明:∵MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F,∴∠2=∠5,∠4=∠6,∵MN∥BC,∴∠1=∠5,∠3=∠6,∴∠1=∠2,∠3=∠4,∴EO=CO,FO=CO,∴OE=OF;(2)解:∵∠2=∠5,∠4=∠6,∴∠2+∠4=∠5+∠6=90°,∵CE=12,CF=5,∴EF==13,∴OC=EF=6.5;(3)解:当点O在边AC上运动到AC中点时,四边形AECF是矩形.证明:当O为AC的中点时,AO=CO,∵EO=FO,∴四边形AECF是平行四边形,∵∠ECF=90°,∴平行四边形AECF是矩形.【解析】(1)根据平行线的性质以及角平分线的性质得出∠1=∠2,∠3=∠4,进而得出答案;(2)根据已知得出∠2+∠4=∠5+∠6=90°,进而利用勾股定理求出EF的长,即可得出CO的长;(3)根据平行四边形的判定以及矩形的判定得出即可.此题主要考查了矩形的判定、平行四边形的判定和直角三角形的判定等知识,根据已知得出∠ECF=90°是解题关键.21.【答案】解:延长OA交BC于点D.∵AO的倾斜角是60°,∴∠ODB=60°.∵∠ACD=30°,∴∠CAD=180°-∠ODB-∠ACD=90°.在Rt△ACD中,AD=AC•tan∠ACD=•=(米),∴CD=2AD=3米,又∵∠O=60°,∴△BOD是等边三角形,∴BD=OD=OA+AD=3+=4.5(米),∴BC=BD-CD=4.5-3=1.5(米).答:浮漂B与河堤下端C之间的距离为1.5米.【解析】延长OA交BC于点D.先由倾斜角定义及三角形内角和定理求出∠CAD=180°-∠ODB-∠ACD=90°,解Rt△ACD,得出AD=AC•tan∠ACD=米,CD=2AD=3米,再证明△BOD是等边三角形,得到BD=OD=OA+AD=4.5米,然后根据BC=BD-CD即可求出浮漂B与河堤下端C之间的距离.本题考查了解直角三角形的应用-坡度坡角问题,作出辅助线得到Rt△ACD 是解题的关键.22.【答案】(1)证明:∵∠ABC=∠ACB,∴AB=AC,∵AC为⊙O的直径,∴∠ANC=90°,∴∠CAN+∠ACN=90°,2∠BAN=2∠CAN=∠CAB,∵∠CAB=2∠BCP,∴∠BCP=∠CAN,∴∠ACP=∠ACN+∠BCP=∠ACN+∠CAN=90°,∵点D在⊙O上,∴直线CP是⊙O的切线;(2)如图,作BF⊥AC∵AB=AC,∠ANC=90°,∴CN=CB=,∵∠BCP=∠CAN,sin∠BCP=,∴sin∠CAN=,∴,∴AC=5,∴AB=AC=5,设AF=x,则CF=5-x,在Rt△ABF中,BF2=AB2-AF2=25-x2,在Rt△CBF中,BF2=BC2-CF2=2O-(5-x)2,∴25-x2=2O-(5-x)2,∴x=3,∴BF2=25-32=16,∴BF=4,即点B到AC的距离为4.【解析】(1)利用直径所对的圆周角为直角,2∠CAN=∠CAB,∠CAB=2∠BCP判断出∠ACP=90°即可;(2)利用锐角三角函数,即勾股定理即可.此题是切线的判定,主要考查了切线的判定定理,勾股定理得应用,构造出直角三角形Rt△ABF和Rt△CBF是解本题的关键.23.【答案】140;57500【解析】解:(1)∵销售价格y(元/件)与月销量x(件)的函数关系式为y=x+150,∴当x=1000时,y=-10+150=140,w内=x(y-20)-62500=1000×120-62500=57500,故答案为:140,57500.(2)根据题意得出:w内=x(y-20)-62500=x2+130x-62500,w外=x2+(150-a)x.(3)当x==6500时,w内最大,∵在国外销售月利润的最大值与在国内销售月利润的最大值相同,∴由题意得:,解得a1=30,a2=270(不合题意,舍去).所以 a=30.(1)将x=1000代入函数关系式求得y,并根据等量关系“利润=销售额-成本-广告费”求得w内;(2)根据等量关系“利润=销售额-成本-广告费”“利润=销售额-成本-附加费”列出两个函数关系式;(3)对w内函数的函数关系式求得最大值,再求出w外的最大值并令二者相等求得a值.本题考查了二次函数在实际生活中的应用,难度适中,根据利润的关系式分别写出w内,w外与x间的函数关系式是解题的关键.24.【答案】解:(1)∵抛物线y=ax2+bx经过点A(4,0)与点(-2,6),∴ ,解得∴抛物线的解析式为:y=x2-2x.(2)如答图1,连接AC交OB于点E,由垂径定理得AC⊥OB.∵AD为切线,∴AC⊥AD,∴AD∥OB.过O点作OF⊥AD于F,∴四边形OFAE是矩形,∵tan∠AOB=,∴sin∠AOB=,∴AE=OA•sin∠AOB=4×=2.4,OD=OA•tan∠OAD=OA•tan∠AOB=4×=3.当PQ⊥AD时,OP=t,DQ=2t.在Rt△ODF中,∵OD=3,OF=AE=2.4,DF=DQ-FQ=DQ-OP=2t-t=t,由勾股定理得:DF===1.8,∴t=1.8秒;(3)如答图2,设直线l平行于OB,且与抛物线有唯一交点R(相切),此时△ROB中OB边上的高最大,所以此时△ROB面积最大.∵tan∠AOB=,∴直线OB的解析式为y=x,由直线l平行于OB,可设直线l解析式为y=x+b.∵点R既在直线l上,又在抛物线上,∴x2-2x=x+b,化简得:2x2-11x-4b=0.∵直线l与抛物线有唯一交点R(相切),∴判别式△=0,即112+32b=0,解得b=-,此时原方程的解为x=,即x R=,而y R=x R2-2x R=∴点R的坐标为R(,).【解析】(1)根据抛物线y=ax2+bx经过点A(4,0)与点(-2,6),利用待定系数法求抛物线解析式;(2)如答图1,由已知条件,可以计算出OD、AE等线段的长度.当PQ⊥AD时,过点O作OF⊥AD于点F,此时四边形OFQP、OFAE均为矩形.则在Rt△ODF 中,利用勾股定理求出DF的长度,从而得到时间t的数值;(3)因为OB为定值,欲使△ROB面积最大,只需OB边上的高最大即可.按照这个思路解决本题.如答图2,当直线l平行于OB,且与抛物线相切时,OB边上的高最大,从而△ROB的面积最大.联立直线l和抛物线的解析式,利用一元二次方程判别式等于0的结论可以求出R点的坐标.本题是二次函数综合题,主要考查了二次函数的图形与性质、待定系数法求函数解析式、一元二次方程根的判别式、圆、勾股定理和解直角三角形等重要知识点.难点在于第(3)问,判定何时△ROB的面积最大是解决问题的关键.本题覆盖知识面广,难度较大,同学们只有做到基础扎实和灵活运用才能够顺利解答.本题第(3)问亦可利用二次函数极值的方法解决,同学们有兴趣可深入探讨.。
中考数学一模试卷一、选择题(本大题共12小题,共36.0分)1.计算的结果是()A. 1B. 5C.D. 32.图中几何体的主视图是()A. B. C. D.3.潍坊市2018年政府工作报告中显示,潍坊社会经济平稳运行,地区生产总值增长8%左右,社会消费品零售总额增长12%左右,一般公共预算收入539.1亿元,7家企业入选国家“两化”融合贯标试点,潍柴集团收入突破2000亿元,荣获中国商标金奖.其中,数字2000亿元用科学记数法表示为()元.(精确到百亿位)A. B. C. D.4.函数中自变量x的取值范围是()A. B. 且 C. 且 D.5.等边三角形ABC的边长为,则它的内切圆半径的长是()A. B. C. 2 D. 46.小明家1至6月份的用水量统计如图所示,关于这组数据,下列说法中错误的()A. 众数是6吨B. 平均数是5吨C. 中位数是5吨D. 方差是7.如图,在△ABC中,∠A=36°,AB=AC,按照如下步骤作图:(1)分别以A、B为圆心,以大于长为半径画弧;(2)连接弧的交点,交AC于点D,连接BD.则下列结论错误的是()A.B. BD平分C. △ △D.8.如图,⊙O的直径AB与弦CD垂直相交于点E,且AC=2,AE=.则的长是()A.B.C.D.9.如图,△ABO缩小后变为△A′B′O,其中A、B的对应点分别为A′、B′点A、B、A′、B′均在图中在格点上.若线段AB上有一点P(m,n),则点P在A′B′上的对应点P′的坐标为()A. B. C. D.10.如图,Rt△ABC中,AC=BC=2,正方形CDEF的顶点D、F分别在AC、BC边上,设CD的长度为x,△ABC与正方形CDEF重叠部分的面积为y,则下列图象中能表示y与x之间的函数关系的是()A.B.C.D.11.如图,某计算器中有、、三个按键,以下是这三个按键的功能.①:将荧幕显示的数变成它的算术平方根;②:将荧幕显示的数变成它的倒数;③:将荧幕显示的数变成它的平方.小明输入一个数据后,按照以下步骤操作,依次按照从第一步到第三步循环按键.若一开始输入的数据为10,那么第2018步之后,显示的结果是()A. B. 100 C. D.12.如图是二次函数y=ax2+bx+c图象的一部分,且过点A(3,0),二次函数图象的对称轴是x=1,下列结论:①b2>4ac;②ac>0;③当x>1时,y随x的增大而减小;④3a+c>0;⑤任意实数m,a+b≥am2+bm.其中结论正确的序号是()A. ①②③B. ①④⑤C. ③④⑤D. ①③⑤二、填空题(本大题共6小题,共18.0分)13.在同一坐标系内,直线y1=x-3与双曲线y2=相交于点A和点B,则y1<y2时自变量x的取值范围是______.14.因式分解:2x2-x(x+1)-2=______.15.如图,菱形纸片ABCD中,∠A=60°,折叠菱形纸片ABCD,使点C落在DP(P为AB中点)所在的直线上,得到经过点D的折痕DE.则∠DEC的大小为______.16.化简:=______.17.如图,半径为1cm,圆心角为90°的扇形OAB中,分别以OA、OB为直径作半圆,则图中阴影部分的面积为______.18.如图,一段抛物线:y=-x(x-3)(0≤x≤3),记为C1,它与x轴交于点O,A1;将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;…如此进行下去,直至得C13.若P(37,m)在第13段抛物线C13上,则m=______.三、解答题(本大题共7小题,共66.0分)19.已知关于x的方程(k+1)x2-2(k-1)x+k=0有两个实数根x1,x2.(1)求k的取值范围;(2)若x1+x2=x1x2+2,求k的值.20.向阳中学为了解全校学生利用课外时间阅读的情况,调查者随机抽取若干名学生,调查他们一周的课外阅读时间,并根据调查结果绘制了如下尚不完整的统计表(图).根据图表信息,解答下列问题:频率分布表(1)填空:a=______,b=______,m=______,n=______;(2)将频数分布直方图补充完整;(3)阅读时间不低于5小时的6人中,有2名男生、4名女生.现从这6名学生中选取两名同学进行读书宣讲,求选取的两名学生恰好是两名女生的概率.21.某果蔬公司要将一批水果运往某地销售,打算租用某汽车运输公司的甲、乙两种货车,下表是最近两次租用这两种货车的相关信息.已知用5辆甲种货车和8辆乙种货车,车辆满载,一次刚好运完这批水果.(1)求本次运输水果多少吨?(2)甲种货车租赁费用为500元/辆,乙种货车租赁费用为280元/辆,现租用两种车辆共12辆.如何设计租车方案,既能运完该批水果,又能使得租车费用最少?最少费用是多少?22.如图,已知⊙O是△ABC的外接圆,AB=BC,AD是BC边上的高,AE是⊙O的直径,过点E作⊙O的切线交AB的延长线于点F.(1)求证:AC•BC=AD•AE;(2)若tan F=2,FB=1,求线段CD的长.23.如图所示,南北方向上的A、B两地之间有不规则的山地阻隔,从A地到B地需绕行C、D两地,即沿公路AC→CD→DB行走.测得D在C的北偏东60°方向,B在C的北偏东45°方向,B在D的北偏东30°方向;且AC段距离为20千米.现从A、B两地之间的山地打通隧道,那么从A地到B地可节省多少路程?(结果保留根号)24.如图,四边形ABCD是边长为4的菱形,且∠ABC=60°,对角线AC与BD相交点为O,∠MON=60°,N在线段BC上.将∠MON绕点O旋转得到图1和图2.(1)选择图1或图2中的一个图形,证明:△MOA∽△ONC;(2)在图2中,设NC=x,四边形OMBN的面积为y.求y与x的函数关系式;当NC的长x为多少时,四边形OMBN面积y最大,最大值是多少?(根据材料:正实数a,b满足a+b≥2,仅当a=b时,a+b=2).25.将直角边长为6的等腰Rt△AOC放在如图所示的平面直角坐标系中,点O为坐标原点,点C、A分别在x、y轴的正半轴上,一条抛物线经过点A、C及点B(-3,0).(1)求该抛物线的解析式;(2)若点P是线段BC上一动点,过点P作AB的平行线交AC于点E,连接AP,当△APE的面积最大时,求点P的坐标;(3)在第一象限内的该抛物线上是否存在点G,使△AGC的面积与(2)中△APE 的最大面积相等?若存在,请求出点G的坐标;若不存在,请说明理由.答案和解析1.【答案】B【解析】解:原式=1+4=5,故选:B.原式利用零指数、负整数指数幂法则计算即可求出值.此题考查了实数的运算,熟练掌握运算法则是解本题的关键.2.【答案】D【解析】解:从正面看应得到第一层有3个正方形,第二层从左面数第1个正方形上面有1个正方形,故选:D.找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.此题主要考查了画三视图的知识;用到的知识点为:主视图,左视图,俯视图分别是从物体的正面,左面,上面看得到的图形.3.【答案】C【解析】解:2000亿元=2.0×1011.故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】B【解析】【分析】根据被开方数是非负数且分母不能为零,可得答案.本题考查了函数自变量的取值范围,利用被开方数是非负数且分母不能为零得出不等式是解题的关键.【解答】解:由题意得2-x≥0且x+3≠0,解得x≤2且x≠-3,故选:B.5.【答案】C【解析】解:过O点作OD⊥AB,∵O是等边△ABC的内心,∴∠OAD=30°,∵等边三角形ABC的边长为4,∴OA=OB,∴AD=AB=2,∴OD=AD•tan30°=2×=2,即这个三角形的内切圆的半径为2,故选:C.由等边三角形ABC的边长为4,根据等边三角形的性质与三角形内切圆的性质,即可求得答案.此题考查了三角形内切圆的性质以及等边三角形的性质.此题难度不大,注意掌握数形结合思想的应用.6.【答案】C【解析】解:这组数据的众数为6吨,平均数为5吨,中位数为5.5吨,方差为.故选:C.根据众数、平均数、中位数和方差的定义计算各量,然后对各选项进行判断.本题考查了方差:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数、众数、中位数.7.【答案】C【解析】解:∵∠A=36°,AB=AC,∴∠ABC=∠ACB==72°,∴∠C=2∠A,A结论正确,不符合题意;∵OD是AB的垂直平分线,∴DA=DB,∴∠ABD=∠A=36°,∴∠DBC=36°,∴∠ABD=∠CBD,即BD平分∠ABC,B结论正确,不符合题意;∵OB≠BC,∴S△BCD≠S△BOD,C结论错误,符合题意;∵∠A=∠DBC,∠C=∠C,∴△BCD∽△ACB,∴=,即AD2=AC•CD,D结论正确,不符合题意;故选:C.根据等腰三角形的性质、三角形内角和定理求出∠C,判断A;根据线段垂直平分线的性质判断B;根据三角形的面积公式判断C,根据相似三角形的判定和性质定理判断D.本题考查的是相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理、等腰三角形的性质、三角形内角和定理是解题的关键.8.【答案】B【解析】解:连接OC,∵△ACE中,AC=2,AE=,AE⊥CD,∴CE=,∵sinA=,∴∠A=30°,∴∠COE=60°,∴=sin∠COE,即,解得OC=,∵AE⊥CD,∴,∴.故选:B.连接OC,先根据勾股定理判断出△ACE的形状,再由垂径定理得出CE=DE,故,由锐角三角函数的定义求出∠A的度数,故可得出∠BOC的度数,求出OC的长,再根据弧长公式即可得出结论.本题考查的是垂径定理,涉及到直角三角形的性质、弧长公式等知识,难度适中.9.【答案】D【解析】解:∵△ABO缩小后变为△A′B′O,其中A、B的对应点分别为A′、B′点A、B、A′、B′均在图中在格点上,即A点坐标为:(4,6),B点坐标为:(6,2),A′点坐标为:(2,3),B′点坐标为:(3,1),∴线段AB上有一点P(m,n),则点P在A′B′上的对应点P′的坐标为:().故选:D.根据A,B两点坐标以及对应点A′,B′点的坐标得出坐标变化规律,进而得出P′的坐标.此题主要考查了位似图形的性质,根据已知得出对应点坐标的变化是解题关键.10.【答案】A【解析】解:当0<x≤1时,y=x2,当1<x≤2时,ED交AB于M,EF交AB于N,如图,CD=x,则AD=2-x,∵Rt△ABC中,AC=BC=2,∴△ADM为等腰直角三角形,∴DM=2-x,∴EM=x-(2-x)=2x-2,∴S△ENM=(2x-2)2=2(x-1)2,∴y=x2-2(x-1)2=-x2+4x-2=-(x-2)2+2,∴y=,故选:A.分类讨论:当0<x≤1时,根据正方形的面积公式得到y=x2;当1<x≤2时,ED 交AB于M,EF交AB于N,利用重叠的面积等于正方形的面积减去等腰直角三角形MNE的面积得到y=x2-2(x-1)2,配方得到y=-(x-2)2+2,然后根据二次函数的性质对各选项进行判断.本题考查了动点问题的函数图象:通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.用图象解决问题时,要理清图象的含义即会识图.也考查了等腰直角三角形的性质.11.【答案】C【解析】解:根据题意得:102=100,=0.01,=0.1;0.12=0.01,=100,=10;…∵2018=6×336+2,∴按了第2018下后荧幕显示的数是0.01.故选:C.根据题中的按键顺序确定出显示的数的规律,即可得出结论.此题考查了计算器-数的平方,弄清按键顺序是解本题的关键.12.【答案】D【解析】解:①∵抛物线与x轴有两个交点,∴方程ax2+bx+c=0有两个不相等的实数根,∴b2-4ac>0,即b2>4ac,故①正确;②∵开口向下,与y轴的交点在x轴的上方,∴a<0,c>0,∴ac<0,故②错误;③由图象和二次函数图象的对称轴是x=1,可得当x>1时,y随x的增大而减小,故③正确,④∵二次函数y=ax2+bx+c过点A (3,0),对称轴是x=1,∴抛物线与x轴的另一交点坐标为(-1,0),-=1,即b=-2a,∴当x=-1时,y=0,即a-b+c=0,∴a+2a+c=0,∴3a+c=0,故④错误;⑤∵二次函数图象的对称轴是x=1,且开口向下,∴当x=1时,y最大,∴任意实数m,a+b+c≥am2+bm+c.即任意实数m,a+b≥am2+bm.故⑤正确;故选:D.①根据抛物线与x轴有两个交点可知:△>0,可作判断;②由抛物线的位置易判断a,c的符号,可作判断;③根据抛物线的增减性和最值即可判断;④再由对称性可求得抛物线与x轴的另一交点坐标为(-1,0),容易判断;⑤根据抛物线的增减性和最值即可判断.此题主要考查二次函数图象与系数的关系及抛物线的对称性、最值问题,掌握a、b、c与二次函数的图象的关系是解题的关键,注意数形结合思想的应用.13.【答案】x<0或1<x<2【解析】解:由,解得,或,所以直线y1=x-3与函数y2=的图象交于点A(1,-2),B(2,-1).如图所示:根据图象可知,y1<y2时自变量x的取值范围是x<0或1<x<2.故答案为x<0或1<x<2.先将直线与双曲线的解析式联立得到方程组,解方程组求出它们的交点坐标,然后在同一坐标系中画出两个函数的图象,根据图象找出直线落在双曲线下方的自变量的取值范围即可.本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,若方程组无解,则两者无交点.也考查了函数的图象以及数形结合思想.14.【答案】(x-2)(x+1)【解析】解:2x2-x(x+1)-2=2x2-x2-x-2=x2-x-2=(x-2)(x+1).故答案为:(x-2)(x+1).首先去括号,进而合并同类项,再利用十字相乘法分解因式即可.此题主要考查了十字相乘法分解因式,正确分解常数项是解题关键.15.【答案】75°【解析】解:如图,连接BD,∵四边形ABCD为菱形,∠A=60°,∴△ABD为等边三角形,∠ADC=120°,∠C=60°,∵P为AB的中点,∴DP为∠ADB的平分线,即∠ADP=∠BDP=30°,∴∠PDC=90°,∴由折叠的性质得到∠CDE=∠PDE=45°,在△DEC中,∠DEC=180°-(∠CDE+∠C)=75°.故答案为:75°.连接BD,由菱形的性质及∠A=60°,得到三角形ABD为等边三角形,P为AB 的中点,利用三线合一得到DP为角平分线,得到∠ADP=30°,∠ADC=120°,∠C=60°,进而求出∠PDC=90°,由折叠的性质得到∠CDE=∠PDE=45°,利用三角形的内角和定理即可求出所求角的度数.此题考查了翻折变换(折叠问题),菱形的性质,等边三角形的性质,以及内角和定理的综合运用,熟练掌握折叠的性质是解本题的关键.折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.16.【答案】x-1【解析】解:原式=(-)•=•=•=x-1,故答案为:x-1.先计算括号内的加法、将除法转化为乘法,继而约分即可得.本题主要考查分式的混合运算,解题的关键是熟练掌握分式的混合运算顺序和运算法则.17.【答案】 cm 2【解析】解:过点C 作CD ⊥OB ,CE ⊥OA ,∵OB=OA ,∠AOB=90°, ∴△AOB 是等腰直角三角形,∵OA 是直径,∴∠ACO=90°, ∴△AOC 是等腰直角三角形,∵CE ⊥OA ,∴OE=AE ,OC=AC ,在Rt △OCE 与Rt △ACE 中, ∵,∴Rt △OCE ≌Rt △ACE (HL ),∵S 扇形OEC =S 扇形AEC , ∴与弦OC 围成的弓形的面积等于与弦AC 所围成的弓形面积, 同理可得,与弦OC 围成的弓形的面积等于与弦BC 所围成的弓形面积,∴S 阴影=S △AOB =×1×1=cm 2. 故答案是:cm 2.过点C 作CD ⊥OB ,CE ⊥OA ,则△AOB 是等腰直角三角形,由∠ACO=90°,可知△AOC 是等腰直角三角形,由HL 定理可知Rt △OCE ≌Rt △ACE ,故可得出S扇形OEC =S 扇形AEC ,与弦OC 围成的弓形的面积等于与弦AC 所围成的弓形面积,S 阴影=S △AOB 即可得出结论.本题考查的是扇形面积的计算与等腰直角三角形的判定与性质,根据题意作出辅助线,构造出直角三角形得出S 阴影=S △AOB 是解答此题的关键. 18.【答案】2【解析】解:∵一段抛物线:y=-x(x-3)(0≤x≤3),∴图象与x轴交点坐标为:(0,0),(3,0),∵将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;…如此进行下去,直至得C13.∴C13的解析式与x轴的交点坐标为(36,0),(39,0),且图象在x轴上方,∴C13的解析式为:y13=-(x-36)(x-39),当x=37时,y=-(37-36)×(37-39)=2.故答案为:2.根据图象的旋转变化规律以及二次函数的平移规律得出平移后解析式,进而求出m的值.此题主要考查了二次函数的平移规律,根据已知得出二次函数旋转后解析式是解题关键.19.【答案】解:(1)∵关于x的方程(k+1)x2-2(k-1)x+k=0有两个实数根,∴ △ ,解得:k≤且k≠-1.(2)∵关于x的方程(k+1)x2-2(k-1)x+k=0有两个实数根x1,x2.∴x1+x2=,x1x2=.∵x1+x2=x1x2+2,即=+2,解得:k=-4,经检验,k=-4是原分式方程的解,∴k=-4.【解析】(1)根据二次项系数非零结合根的判别式△≥0,即可得出关于k的一元一次不等式组,解之即可得出k的取值范围;(2)根据根与系数的关系结合x1+x2=x1x2+2,即可得出关于k的分式方程,解之经检验后即可得出k值.本题考查了根的判别式、根与系数的关系以及一元二次方程的定义,解题的关键是:(1)牢记“当△≥0时,方程有两个实数根”;(2)根据根与系数的关系结合x1+x2=x1x2+2,找出关于k的分式方程.20.【答案】(1)15;60;0.25;0.2;(2)补全频数分布直方图如下:(3)用X、Y表示男生、A、B、C、D表示女生,画树状图如下:由树状图知共有30种等可能结果,其中选取的两名学生恰好是两名女生的结果数为12,所以选取的两名学生恰好是两名女生的概率为=.【解析】【分析】本题考查读频数(率)分布表的能力和利用图表获取信息的能力.利用统计图表获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.用到的知识点为:各小组频数之和等于数据总数;各小组频率之和等于1;频率=频数÷数据总数;概率=所求情况数与总情况数之比.(1)根据阅读时间为1≤x<2的人数及所占百分比可得,求出总人数b=60,再根据频率、频数、总人数的关系即可求出m、n、a;(2)根据数据将频数分布直方图补充完整即可;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与刚好抽到两名女生的情况,再利用概率公式即可求得答案.【解答】解:(1)∵本次调查的总人数b=9÷0.15=60,∴a=60-(9+18+12+6)=15,则m==0.25、n==0.2,故答案为:15、60、0.25、0.2;(2)见答案;(3)见答案.21.【答案】解:(1)设甲种货车一次运货x吨、乙种货车一次运货y吨,由题意得:,解之得:.故5辆甲和8辆乙共运货8×5+5×8=80(吨);(2)设租用甲种货车m辆,则乙种货车(12-m)辆由题意可知8×m+5×(12-m)≥80m≥,∵m取整数,∴m≥7租车费用为y=500m+280(12-m)=220m+3360故当m=7时,y min=4900即,租用甲种货车7辆,乙种货车5辆时,既能运完该批水果,又能使得租车费用最少;最少费用为4900元.【解析】(1)两个相等关系:第一次2辆甲种货车载重的吨数+5辆乙种货车载重的吨数=36;第二次4辆甲种货车载重的吨数+6辆乙种货车载重的吨数=62,根据以上两个相等关系,列方程组求解.(2)设租用甲种货车m辆,则乙种货车(12-m)辆.根据“既能运完该批水果,又能使得租车费用最少”、“5辆甲和8辆乙共运货80吨”列出不等式求得m的正整数解,然后得到租车方案和费用.此题考查的是二元一次方程组的应用,利用二元一次方程组求解的应用题一般情况下题中要给出2个等量关系,准确的找到等量关系并用方程组表示出来是解题的关键.22.【答案】(1)证明:连接BE.∵AE是直径,∴∠ABE=90°,∵AD⊥BC,∴∠ADC=∠ABE=90°,∵∠AEB=∠C,∴△ABE∽△ADC,∴=,∴AC•AB=AD•AE,∵AB=BC,∴AC•BC=AD•AE.(2)∵EF是切线,∴AE⊥EF,∴∠AEF=90°,∴∠F+∠BEF=90°,∠BEF+∠AEB=90°,∴∠F=∠AEB=∠C,∴tan∠F=tan∠AEB=tan∠C,∴===2,∵BF=1∴BE=2,AB=BC=4,设CD=x,则AD=2x,BD=4-x,在Rt△ABD中,∵AB2=AD2+BD2,∴42=(4-x)2+(2x)2,解得x=或0(舍弃),∴CD=.【解析】(1)只要证明∴ABE∽△ADC,可得=,推出AC•AB=AD•AE,由AB=BC,可得AC•BC=AD•AE;(2)首先证明∠F=∠AEB=∠C,可得tan∠F=tan∠AEB=tan∠C,推出===2,由BF=1推出BE=2,AB=BC=4,设CD=x,则AD=2x,BD=4-x,在Rt△ABD中,根据AB2=AD2+BD2,构建方程即可解决问题;本题考查相似三角形的判定和性质、切线的性质、勾股定理、等腰三角形的性质、锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考常考题型.23.【答案】解:如图所示,过点D作DE⊥AB于点E,过点D作DF⊥AC于点F,∵∠A=90°,∴四边形AEDF是矩形,根据题意知∠GCD=60°、∠GCB=∠CBA=45°、∠DBA=30°,∴∠BCD=∠CBD=15°,∠DCF=30°,则CD=BD,设CD=BD=2x,则DF=AE=x,CF=CD cos∠DCF=2x•=x、DE=AF=BD=x、BE=BD cos∠DBE=2x•=x,∴AC=AF+CF=x+x,∵AC=AB=20,∴x+x=20,解得:x=10-10,则AC+CD+DB=20+2x+2x=20+2(10-10)+2(10-10)=40-20,由于AB=20,∴从A地到B地节省的路程为40-20-20=40-40(千米).【解析】作DE⊥AB、DF⊥AC,根据题意得出∠GCD=60°、∠GCB=∠CBA=45°、∠DBA=30°,据此得∠BCD=∠CBD=15°、∠DCF=30°,即可设CD=BD=2x,利用三角函数求得DF=AE=x、CF=CDcos∠DCF=x、DE=AF=BD=x及AC=AF+CF=x+x=20求得x的值,继而求得AC+CD+BD的长度即可得出答案.本题主要考查解直角三角形的应用-方向角问题,注意能借助于方向角构造直角三角形,并利用解直角三角形的知识求解是解此题的关键.24.【答案】解:(1)图1证明:∵四边形ABCD为菱形,∠ABC=60°,∴AC⊥BD,∠ABO=∠ABC=30°,∠BAC=∠BCA,∵∠MON=60°,∴∠NOC+∠BOM=90°-60°=30°,又∵∠BMO+∠BOM=∠ABO=30°,∴∠BMO=∠NOC,∴△MOA∽△ONC;图2证明:∵∠MON=60°,∴∠CON+∠AOM=120°,∵∠BAC=60°,∴∠AMO+∠AOM=120°,∴∠CON=∠AMO,又∵∠MAO=∠OCN=60°,∴△MOA∽△ONC;(2)如图,过点O作OE⊥BC,OF⊥AB,∵菱形ABCD边长为4,且∠ABC=60°,∴AO=2,BO=,∴OE=OF=,∵△MOA∽△ONC,∴,即,∴MA=,∴y=S△ABC-S△NOC-S△MAO==,y==,当,即x=2时,y最大==.【解析】(1)由菱形的性质知∠BAC=∠BCA=60°,由∠MON=60°知∠NOC+∠BOM=30°,结合∠BMO+∠BOM=∠ABO=30°可得∠BMO=∠NOC,据此即可得证;(2)作OE⊥BC、OF⊥AB,由菱形的边长为4得出AO=2、BO=2、OE=OF=,利用△MOA∽△ONC,求得MA=,再根据y=S△ABC-S△NOC-S△AOM列出函数解析式,进一步求解可得.本题属于相似形的综合问题,主要考查了菱形的性质、相似三角形的判定与性质、解直角三角形的应用及函数的最值的运用.在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用.25.【答案】解:(1)如图,∵抛物线y=ax2+bx+c(a≠0)的图象经过点A(0,6),∴c=6.∵抛物线的图象又经过点(-3,0)和(6,0),∴ ,解之得,故此抛物线的解析式为:y=-x2+x+6.(2)设点P的坐标为(m,0),则PC=6-m,S△ABC=BC•AO=×9×6=27;∵PE∥AB,∴△CEP∽△CAB;∴△,△即△ =()2,∴S△CEP=(6-m)2,∵S△APC=PC•AO=(6-m)×6=3(6-m),∴S△APE=S△APC-S△CEP=3(6-m)-(6-m)2=-(m-)2+;当m=时,S△APE有最大面积为;此时,点P的坐标为(,0).(3)如图,过G作GH⊥BC于点H,设点G的坐标为G(a,b),连接AG、GC,∵S梯形AOHG=a(b+6),S△CHG=(6-a)b,∴S四边形AOCG=a(b+6)+(6-a)b=3(a+b).∵S△AGC=S四边形AOCG-S△AOC,∴=3(a+b)-18,∵点G(a,b)在抛物线y=-x2+x+6的图象上,∴b=-a2+a+6,∴=3(a-a2+a+6)-18,化简,得4a2-24a+27=0,解之得a1=,a2=;故点G的坐标为(,)或(,).【解析】(1)已知OA、OC的长,可得A、C的坐标,即可用待定系数法求出抛物线的解析式.(2)设出点P的横坐标,表示出CP的长,由于PE∥AB,可利用相似三角形△CPE∽△CBA,求出△APE的面积表达式,进而可将面积问题转换为二次函数的最值问题,根据函数的性质即可得到△APE的最大面积及对应的P点坐标.(3)由于△AGC的面积无法直接求出,可用割补法求解,过G作GH⊥x轴于H,设出G点坐标,表示出△HGC、梯形AOHG的面积,它们的面积和减去△AOC 的面积即可得到△AGC的面积表达式,然后将(2)题所得△APE的面积最大值代入上式中,联立抛物线的解析式即可得到点G的坐标.此题涉及到二次函数解析式的确定、图形面积的求法等知识,注意面积问题与二次函数最值问题之间的联系.。
山东省潍坊市数学中考模拟试卷(一)姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019九下·昆明模拟) 昆明市有关负责人表示,预计年昆明市的地铁修建资金将达到亿元,将亿用科学记数法表示为()A .B .C .D .2. (2分)一运动员某次跳水的最高点离跳台2m,记作+2m,则水面离跳台10m可以记作()A . -10mB . -12mC . +10mD . +12m3. (2分) (2019七下·蔡甸期中) 如图,AB∥CD,则∠1.∠2.∠3.∠4的关系是()A . ∠1-∠2+∠3+∠4=180°B . ∠1+∠2+∠3=∠4C . ∠1+∠2-∠3+∠4=180°D . ∠2+∠3+∠4 -∠1=180°4. (2分)一个几何体的展开图如图所示,则该几何体的顶点有()A . 10个B . 8个C . 6个D . 4个5. (2分)(2017·永定模拟) 下列运算正确的是()A . a2•a3=a6B . (a2)3=a6C . (a+b)2=a2+b2D . + =6. (2分)(2018·丹棱模拟) 下列说法正确的是()A . 打开电视,它正在播放广告是必然事件B . 要考察一个班级中的学生某天完成家庭作业的情况适合抽样调查C . 甲、乙两人射中环数的方差分别为,说明乙的射击成绩比甲稳定D . 在抽样调查中,样本容量越大,对总体的估计就越准确7. (2分)(2017·北仑模拟) 如图,是某几何体的三视图及相关数据,则该几何体的侧面积是()A . 40πB . 48πC . 60πD . 80π8. (2分)设关于x的方程ax2+(a+2)x+9a=0,有两个不相等的实数根x1、x2 ,且x1<1<x2 ,那么实数a的取值范围是()A . a<-B . <a<C . a>D . -<a<09. (2分)用六根火柴棒搭成4个正三角形(如图),现有一只虫子从点A出发爬行了5根不同的火柴棒后,到了C点,则不同的爬行路径共有()A . 4条B . 5条C . 6条D . 7条10. (2分)在△ABC与△A’B’C’中,有下列条件:①;⑵③;④如果从中任取两个条件组成一组,那么能判断△ABC∽△A’B’C’的共有()组。
中考一模数学试卷及答案考试时间:100分钟一、单选题1.在一个无盖的正方体玻璃容器内装了一些水,把容器按不同方式倾斜一点,容器内水面的形状不可能是( ) A .B .C .D .2.流感病毒的形状一般为球形,直径大约为0.000 000 102米,数0.000 000 102用科学记数法表示为( ) A .710.210-⨯B .610.210-⨯C .71.0210-⨯D .61.0210-⨯3.2020的绝对值等于( ) A .2020B .-2020C .12020D .12020-4.如图,在O e 中,弦8AB =,点C 在AB 上移动,连接OC ,过点C 作CD OC ⊥交O e 于点D ,则CD 的最大值是( )A .2B .4C .6D .85.下列计算正确的是( ) A .22(1)21m m m -=- B .()326m m -=- C .32m m m -=D .22(1)1m m +=+ 6.已知512x ≤≤,那么函数243y x x =-+-的最大值为( ) A .0B .34C .1D .527.如图∠1=∠2,则AB ∥CD 的根据是( )A .内错角相等,两直线平行B .同位角相等,两直线平行C .同旁内角相等两直线平行D .两直线平行,同位角相等8.二次函数y =(x +1)2+2的图象的顶点坐标是( ) A .(﹣2,3)B .(﹣1,2)C .(1,2)D .(0,3)9.在直角坐标系中,函数y kx =与12y x k =-的图像大数是( ) A . B .C .D .10.如图是一斜坡的横截面,某人沿斜坡从M 出发,走了13米到达 N 处,此时在铅垂方向上上升了5米,那么该斜坡的坡度是( )A .1∶5B .12∶13C .5∶13D .5∶12二、填空题11.实数3与6的比例中项是___ 12.在数学课上,老师提出如下问题:如图,已知线段AB ,BC ,∠ABC = 90°. 求作:矩形ABCD .小明的作图过程如下:(1)连接AC ,作线段AC 的垂直平分线,交AC 于M;(2)连接BM 并延长,在延长线上取一点D ,使MD=MB ,连接AD ,CD . ∴四边形ABCD 即为所求.老师说:“小明的作法正确.”请回答:小明这样作图的依据是______.13.已知A ,B ,C ,D 在同一条直线上,AB =8cm ,BD =3cm ,C 为AB 的中点,则线段CD 的长为_____cm .14.如图,直线EF 分别与直线AB 、CD 相交于点G 、H ,已知∠1=∠2=60°,GM 平分∠HGB 交直线CD 于点M .那么∠3=_________.15.如图,在ACB △和DCE V 中,A D ∠=∠,AB DE =,添加一个你认为合适的条件___,使得ACB DCE ≌△△.三、解答题16.如图,在平面直角坐标系中,点A ,B 分别在y 轴,x 轴正半轴上.(1)OAB ∠的平分线与ABO ∠的外角平分线交于点C ,求C ∠的度数;(2)设点A ,B 的坐标分别为()0,a ,(),0b ,且满足224250a a b b -+-+=,求OAB S V 的面积;(3)在(2)的条件下,当ABD △是以AB 为斜边的等腰直角三角形时,请直接写出点D 的坐标.17.如图.AD 平分BAC ∠,DE AC ⊥,垂足为E ,BF AC P 交ED 的延长线于点F ,若BC 恰好平分ABF ∠. 求证:(1)点D 为EF 的中点; (2)AD BC ⊥.18.某市为了了解初中学校“高效课堂”的有效程度,并就初中生在课堂上是否具有“主动质疑”、“独立思考”、“专注听讲”、“讲解题目”等学习行为进行评价.为此,该市教研部门开展了一次抽样调查, 并将调查结果绘制成尚不完整的条形统计图和扇形统计图( 如图所示),请根据图中信息解答下列问题:(1)这次抽样调查的样本容量为 .(2)在扇形统计图中,“主动质疑”对应的圆心角为 度;(3)请补充完整条形统计图;(4)若该市初中学生共有8万人,在课堂上具有“独立思考”行为的学生约有多少人? 19.在数轴上,点A B 、分别表示数a b 、,且6100a b ++-=,动点P 从点A 出发,以每秒2个单位长度的速度沿数轴向右运动,点M 始终为线段AP 的中点,设点P 运动的时间为x 秒.则:()1在点P 运动过程中,用含x 的式子表示点P 在数轴上所表示的数. ()2当2PB AM =时,点P 在数轴上对应的数是什么?()3设点N 始终为线段BP 的中点,某同学发现,当点P 运动到点B 右侧时,线段MN 长度始终不变.请你判断该同学的说法是否正确,并加以证明.20.如图,ACF DBE ∆≅∆,E F ∠=∠,若15AD =,6BC =,求线段AB 的长,21.如图,在边长为1的正方形网格中,(4,2)A ,(3,1)B -,(2,2)D -,(1,1)E ,AB 绕C 点顺时针旋转m ︒得DE (点A 与点E 对应). (1)直接写出m 的值:m = ;(2)用无刻度直尺作出点C 并直接写出C 的坐标(保留作图痕迹,不写作法);(3)若格点F 在EAB ∠的角平分线上,这样的格点F (不包括点A 有) 个(直接写出答案)22.已知:抛物线23(1)26y ax a x a =--+-(0)a >.(1)求证:抛物线与x 轴有两个交点.(2)设抛物线与x 轴的两个交点的横坐标分别为1x ,2x (其中12x x >).若t 是关于a 的函数、且21t ax x =-,求这个函数的表达式;(3)若1a =,将抛物线向上平移一个单位后与x 轴交于点A 、B .平移后如图所示,过A 作直线AC ,分别交y 的正半轴于点P 和抛物线于点C ,且1OP =.M 是线段AC 上一动点,求2MB MC +的最小值.23.点P 是平面直角坐标系中的一点且不在坐标轴上,过点P 向x 轴,y 轴作垂线段,若垂线段的长度的和为4,则点P 叫做“垂距点”,例如:下图中的()1,3P 是“垂距点”.(1)在点()2,2A ,35,22B ⎛⎫- ⎪⎝⎭,()1,5C -,是“垂距点”的为______; (2)若31,22D m m ⎛⎫⎪⎝⎭为“垂距点”,求m 的值; (3)若过点()2,3的一次函数y kx b =+(0k ≠)的图像上存在“垂距点”,则k 的取值范围是______.参考答案1.D 2.C 3.A 4.B 5.B 6.C 7.B 8.B 9.B 10.D 11.212.有一个角是90°的平行四边形是矩形(或对角线互相平分且相等的四边形是矩形) 13.1或714.60°15.AC=DC 或∠ACB=∠DCE 或∠B=∠E 或∠ACD=∠BCE (答案不唯一) 16.(1)45°;(2)1;(3)(1.5,1.5)或(-0.5,0.5) 17.(1)证明见解析;(2)证明见解析; 18.(1)560;(2)54;(3)见解析;(4)2400019.(1)62x -+;(2)P 点在数轴上表示的数为2;(3)正确,MN 的长度不变,为定值820.4.521.(1)90;(2)见解析(3)522.(1)详见解析;(2)5t a =-;(3)2MB MC +的最小值143= 23.(1)A ,B ;(2)2m =±;(3)32k <-或102k -<<或0k >.中考一模数学试题及答案(1)一.填空题(满分18分,每小题3分)1.有理数a、b、c在数轴上的位置如图所示,化简:|a+c|﹣|c﹣2b|+|a+2b|=.2.在直角坐标系中,O是坐标原点,点P(m,n)在反比例函数的图象上.(1)若m=k,n=k﹣2,则k=;(2)若m+n=k,OP=2,且此反比例函数,满足:当x>0时,y随x的增大而减小,则k=.3.若关于x的一元二次方程x2﹣2kx+1﹣4k=0有两个相等的实数根,则代数式(k﹣2)2+2k(1﹣k)的值为.4.如图所示,△COD是△AOB绕点O顺时针方向旋转35°后所得的图形,点C恰好在AB上,∠AOD=90°,则∠BOC的度数是.5.如图,在△ABC中,点D是AB上一点,∠ACD=∠B.已知AD=2,BD=1,则AC=.6.按如图所示的方法用小棒摆正六边形,摆2个正六边形要11根小棒,摆3个正六边形要16根小棒,摆n个正六边形需要根小棒.二.选择题(满分32分,每小题4分)7.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.00 000 0076克,用科学记数法表示是()A.7.6×108克B.7.6×10﹣7克C.7.6×10﹣8克D.7.6×10﹣9克8.如图是某几何体的三视图及相关数据,则该几何体的全面积是()A.15πB.24πC.20πD.10π9.使分式的值等于0的x的值是()A.﹣1 B.﹣1或5 C.5 D.1或﹣510.若一个多边形的每个内角都是108°,则这个多边形的内角和为()A.360°B.540°C.720°D.900°11.下列计算结果正确的是()A.B.C.D.12.如图,OA交⊙O于点B,AD切⊙O于点D,点C在⊙O上.若∠A=40°,则∠C为()A.20°B.25°C.30°D.35°13.在一次中学生田径运动会上,参加跳远的15名运动员的成绩如下表所示成绩(米) 4.50 4.60 4.65 4.70 4.75 4.80 人数 2 3 2 3 4 1 则这些运动员成绩的中位数、众数分别是()A.4.65、4.70 B.4.65、4.75 C.4.70、4.75 D.4.70、4.70 14.如图,将矩形ABCD沿对角线AC折叠,点B的对应点为点B′,AB与CD相交于点F,若AB=3,sin∠CAB=,则DF的长度是()A.1 B.2 C.D.3三.解答题(共9小题,满分70分)15.(6分)已知:如图,∠1=∠2.请添加一个条件,使得△ABD≌△CDB,然后再加以证明.16.(6分)先化简,再求值:,其中a=﹣2.17.(8分)我市为加强学生的安全意识,组织了全市学生参加安全知识竞赛,为了解此次知识竞赛成绩的情况,随机抽取了部分参赛学生的成绩,整理并制作出如下的不完整的统计表和统计图,如图所示,请根据图表信息解答以下问题.组别成绩x/分频数A组60≤x<70 aB组70≤x<80 8C组80≤x<90 12D组90≤x<100 14(1)一共抽取了个参赛学生的成绩;表中a=;(2)补全频数分布直方图;(3)计算扇形统计图中“B”对应的圆心角度数;(4)若成绩在80分以上(包括80分)的为“优”等,则所抽取学生成绩为“优”的占所抽取学生的百分比是多少?18.(6分)甲、乙两车分别从A 、B 两地同时出发,在同一条公路上,匀速行驶,相向而行,到两车相遇时停止.甲车行驶一段时间后,因故停车0.5小时,故障解除后,继续以原速向B 地行驶,两车之间的路程y (千米)与出发后所用时间x (小时)之间的函数关系如图所示.(1)求甲、乙两车行驶的速度V 甲、V 乙.(2)求m 的值.(3)若甲车没有故障停车,求可以提前多长时间两车相遇.19.(7分)有6张看上去无差别的卡片,上面分别写着1、2、3、4、5、6(1)一次性随机抽取2张卡片,用列表或画树状图的方法求出“两张卡片上的数都是偶数”的概率(2)随机摸取1张后,放回并混在一起,再随机抽取1张,直接写出“第二次取出的数字小于第一次取出的数字”的概率.20.(8分)二次函数y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)的自变量x 与函数值y 的部分对应值如表:x… ﹣2 ﹣1 0 1 2 … y =ax 2+bx +c … t m ﹣2 ﹣2 n…根据以上列表,回答下列问题:(1)直接写出c的值和该二次函数图象的对称轴;(2)写出关于x的一元二次方程ax2+bx+c=t的根;(3)若m=﹣1,求此二次函数的解析式.21.(8分)“绿水青山就是金山银山”,高新区凌水河治理工程正式启动,若由甲工程队单独完成需10个月;若由甲、乙两工程队合做4个月后,剩下工程由乙工程队再做5个月可以完成.(1)乙工程队单独完成这项工程需几个月的时间?(2)已知甲工程队每月施工费用为15万元,比乙工程队多6万元,按要求该工程总费用不超过141万元,工程必须在一年内竣工(包括12个月).为了确保经费和工期,采取甲、乙工程队同时开工,甲工程队做a个月,乙工程队做b个月(a、b均为整数)分工合作的方式施工,问有哪几种施工方案?22.(9分)如图,△ABC内接于⊙O,∠BAC的平分线交⊙O于点D,交BC于点E(BE>EC),且BD=2.过点D作DF∥BC,交AB的延长线于点F.(1)求证:DF为⊙O的切线;(2)若∠BAC=60°,DE=,求图中阴影部分的面积.23.(12分)如图①所示,已知正方形ABCD和正方形AEFG,连接DG,BE.(1)发现:当正方形AEFG绕点A旋转,如图②所示.①线段DG与BE之间的数量关系是;②直线DG与直线BE之间的位置关系是;(2)探究:如图③所示,若四边形ABCD与四边形AEFG都为矩形,且AD=2AB,AG=2AE 时,上述结论是否成立,并说明理由.(3)应用:在(2)的情况下,连接BG、DE,若AE=1,AB=2,求BG2+DE2的值(直接写出结果).参考答案一.填空题1.解:由数轴上点的位置得:b<a<0<c,且|b|>|c|>|a|,∴a+c>0,c﹣2b>0,a+2b<0,则原式=a+c﹣(c﹣2b)﹣a﹣2b=a+c﹣c+2b﹣a﹣2b=0.故答案为:02.解:(1)根据题意,得k﹣2==1,∴k=3.(2)∵点P(m,n)在反比例函数y=的图象上.∴mn=k又∵OP=2,∴=2,∴(m+n)2﹣2mn﹣4=0,又m+n=k,mn=k,得k2﹣2k=4,(k﹣1)2=5,∵x>0时,y随x的增大而减小,则k>0.∴k﹣1=,k=1+.3.解:∵关于x的一元二次方程x2﹣2kx+1﹣4k=0有两个相等的实数根,∴△=0,即(﹣2k)2﹣4××(1﹣4k)=0,整理得,2k2+4k﹣1=0,∴k2+2k=,∴(k﹣2)2+2k(1﹣k)=k2﹣4k+4+2k﹣2k2=﹣k2﹣2k+4=﹣(k2+2k)+4=﹣+4=3.故答案为:3.4.解:∵△COD是△AOB绕点O顺时针方向旋转35°后所得的图形,∴∠AOC=∠BOD=35°,且∠AOD=90°,∴∠BOC=20°,故答案为20°5.解:在△ADC与△ACB中,∵∠ACD=∠B,∠A=∠A,∴△ADC∽△ACB;∴AC:AB=AD:AC,∴AC2=AB•AD,∵AD=2,AB=AD+BD=2+1=3,∴AC2=3×2=6,∴AC=,故答案为.6.解:设摆n个正六边形需要a n根小棒.∵a1=6=1×5+1,a2=11=2×5+1,a3=16=3×5+1,…,∴a n=5n+1.故答案为:(5n+1).二.选择题7.解:0.00 000 0076克=7.6×10﹣8克,故选:C.8.解:根据三视图得到该几何体为圆锥,其中圆锥的高为4,母线长为5,圆锥底面圆的直径为6,所以圆锥的底面圆的面积=π×()2=9π,圆锥的侧面积=×5×π×6=15π,所以圆锥的全面积=9π+15π=24π.故选:B.9.解:∵分式的值等于0,∴x2﹣4x﹣5=0,且x+1≠0,解得:x=5.故选:C.10.解:∵多边形的每个内角都是108°,∴每个外角是180°﹣108°=72°,∴这个多边形的边数是360°÷72°=5,∴这个多边形是五边形,则此多边形的内角和为(5﹣2)×180°=540°,故选:B.11.解:A、原式=2,所以A选项错误;B、原式==2,所以B选项正确;C、原式=12,所以C选项错误;D、原式=2,所以D选项错误.故选:B.12.解:∵AD切⊙O于点D,∴OD⊥AD,∴∠ODA=90°,∵∠A=40°,∴∠DOA=90°﹣40°=50°,由圆周角定理得,∠BCD=∠DOA=25°,故选:B.13.解:这些运动员成绩的中位数、众数分别是4.70, 4.75.故选:C.14.解:∵sin∠CAB=∴∠CAB=30°∵折叠可知:∠FAC=∠BAC=30°∵四边形ABCD是矩形,∴DC∥AB,∠D=90°,DC=AB=3∴∠FCA=∠CAB=30°,∴FC=FA,∠DAF=30°FA=FC=DC﹣FD=3﹣FD∴sin∠DAF==解得DF=1.所以DF的长为1.故选:A.三.解答题15.解:AB=CD,理由是:∵在△ABD和△CDB中∵,∴△ABD≌△CDB(SAS),故答案为:AB=CD(答案不唯一).16.解:原式=(﹣)•=•=﹣,当a=﹣2时,原式=.17.解:(1)抽取的学生成绩有14÷35%=40(个),则a=40﹣(8+12+14)=6,故答案为:40,6;(2)直方图如图所示:(3)扇形统计图中“B”的圆心角=360°×=72°.(4)成绩在80分以上(包括80分)的为“优”等,所抽取学生成绩为“优”的占所抽取学生的百分比=×100%=65%.18.解:(1)由图可得,,解得,,答:甲的速度是60km/h乙的速度是80km/h;(2)m=(1.5﹣1)×(60+80)=0.5×140=70,即m的值是70;(3)甲车没有故障停车,则甲乙相遇所用的时间为:180÷(60+80)=,若甲车没有故障停车,则可以提前:1.5﹣=(小时)两车相遇,即若甲车没有故障停车,可以提前小时两车相遇.19.解:(1)依题意列表如下:1 2 3 4 5 61 2,1 3,1 4,1 5,1 6,12 1,2 3,2 4,2 5,2 6,23 1,3 2,3 4,3 5,3 6,34 1,4 2,4 3,4 5,4 6,45 1,5 2,5 3,5 4,5 6,56 1,6 2,6 3,6 4,6 5,6由上表可知,随机抽取2张卡片可能出现的结果有15个,它们出现的可能性相等,其中“两张卡片上的数都是偶数”的结果有3个,所以P(两张卡片上的数都是偶数)=;(2)画树形图得:随机抽取2张卡片可能出现的结果有36个,第二次取出的数字小于第一次取出的数字有15种,所以其概率==.20.解:(1)根据图表可知:二次函数y=ax2+bx+c的图象过点(0,﹣2),(1,﹣2),∴对称轴为直线x==,c=﹣2;(2)根据二次函数的对称性可知:(﹣2,t)关于对称轴x=的对称点为(3,t),即﹣2和3是关于x的方程ax2+bx+c=t的两个根;(3)若m=﹣1,则抛物线经过点(﹣1,﹣1),(0,﹣2),(1,﹣2),代入y=ax2+bx+c得,解得,∴此二次函数的解析式为y=x2﹣x﹣2.21.解:(1)设乙队需要x个月完成,根据题意得: +=1,解得:x=15,经检验x=15是原方程的根,答:乙队需要15个月完成;(2)根据题意得:,解得: a≤4 b≥9.∵a≤12,b≤12且a,b都为正整数,∴9≤b≤12又a=10﹣b,∴b为3的倍数,∴b=9或b=12.当b=9时,a=4;当b=12时,a=2∴a=4,b=9或a=2,b=12.方案一:甲队作4个月,乙队作9个月;方案二:甲队作2个月,乙队作12个月;22.证明:(1)连结OD,∵AD平分∠BAC交⊙O于D,∴∠BAD=∠CAD,∴=,∴OD⊥BC,∵BC∥DF,∴OD⊥DF,∴DF为⊙O的切线;(2)连结OB,连结OD交BC于P,作BH⊥DF于H,∵∠BAC=60°,AD平分∠BAC,∴∠BAD=30°,∴∠BOD=2∠BAD=60°,∴△OBD为等边三角形,∴∠ODB=60°,OB=BD=2,∴∠BDF=30°,∵BC∥DF,∴∠DBP=30°,在Rt△DBP中,PD=BD=,PB=PD=3,在Rt△DEP中,∵PD=,DE=,∴PE==2,∵OP⊥BC,∴BP=CP=3,∴CE=3﹣2=1,∵∠DBE=∠CAE,∠BED=∠AEC,∴△BDE∽△ACE,∴AE:BE=CE:DE,即AE:5=1:,∴AE=∵BE∥DF,∴△ABE∽△AFD,∴=,即=,解得DF=12,在Rt△BDH中,BH=BD=,∴阴影部分的面积=△BDF的面积﹣弓形BD的面积=△BDF的面积﹣(扇形BOD的面积﹣△BOD的面积)=•12•﹣﹣×(2)2=9﹣2π.23.解:(1)①如图②中,∵四边形ABCD和四边形AEFG是正方形,∴AE=AG,AB=AD,∠BAD=∠EAG=90°,∴∠BAE=∠DAG,在△ABE和△DAG中,,∴△ABE≌△DAG(SAS),∴BE=DG;②如图2,延长BE交AD于T,交DG于H.由①知,△ABE≌△DAG,∴∠ABE=∠ADG,∵∠ATB+∠ABE=90°,∴∠ATB+∠ADG=90°,∵∠ATB=∠DTH,∴∠DTH+∠ADG=90°,∴∠DHB=90°,∴BE⊥DG,故答案为:BE=DG,BE⊥DG;(2)数量关系不成立,DG=2BE,位置关系成立.如图③中,延长BE交AD于T,交DG于H.∵四边形ABCD与四边形AEFG都为矩形,∴∠BAD=∠EAG,∴∠BAE=∠DAG,∵AD=2AB,AG=2AE,∴==,∴△ABE∽△ADG,∴∠ABE=∠ADG,=,∴DG=2BE,∵∠ATB+∠ABE=90°,∴∠ATB+∠ADG=90°,∵∠ATB=∠DTH,∴∠DTH+∠ADG=90°,∴∠DHB=90°,∴BE⊥DG;(3)如图④中,作ET⊥AD于T,GH⊥BA交BA的延长线于H.设ET=x,AT=y.∵△AHG∽△ATE,∴===2,∴GH=2x,AH=2y,∴4x2+4y2=4,∴x2+y2=1,∴BG2+DE2=(2x)2+(2y+2)2+x2+(4﹣y)2=5x2+5y2+20=25.中考一模数学试题及答案数学(考试时间:120分钟,满分:120分)第Ⅰ卷(选择题)一、选择题(每小题3分,共36分)1. |-2019|的相反数是()A.2019B.-2019C.D. 2.下列汽车标志中,既是轴对称图形又是中心对称图形的是()A .B .C .D .3.国家体育场“鸟巢”建筑面积达25.8万平方米,25.8万用科学记数法表示应为()A.2.58×10B. 25.8×104C.2.58×105D.0.258×1024.下列运算正确的是()A.3a 2-2a 2=1B.a 2·a 3=a 6C.(a-b)2=a 2-b 2D.(a+b)2=a 2+2ab+b 25.下列各组线段能构成直角三角形的一组是( )A .7,12,13B . 30,40,50C .5,9,12D .3,4,66.下列命题中真命题是( )A. 一定成立B.位似图形不可能全等C.正多边形都是轴对称图形D.圆锥的主视图一定是等边三角形7.我县今年5月份某星期每天的最高气温如下(单位:℃):26,25,27,28,27,25,25, 则这个星期每天的最高气温的众数和中位数分别是()A.25,26B.25,26.5C.27,26D.25,288.下列四个物体的俯视图与右边给出视图一致的是( )2019120191-22)(a a =A .B .C .D .9.已知一次函数y=kx+b,y 随着x 的增大而减小,且kb<0,则在平面直角坐标系内它的大致图象是( ) A B C D 10.如图,四边形ABCD 内接于⊙O,若四边形ABCO 是平行四边形,则∠ADC 的大小为()A.45°B.50°C.75°D.60°11.下列图中阴影部分的面积相等的是()A .①④B .②③C .③④D .①②12.如图,将边长为1的正三角形OAP 沿χ轴方向连续翻转若干次,点P 依次落在点P 1,P 2,P 3,…,P 2018的位置,则点P 2018的横坐标为()A.2016B.2017C.2018D.2019第Ⅱ卷(非选择题)二、填空题(每小题3分,共18分)13.因式分解:a 3-9a=.14.单项式的次数是.15.如图1是我们常用的折叠式小刀,其中刀片的两条边缘线可以看成两条平行线,转动刀片时会形成如图2所示的∠1与∠2,则∠1﹢∠2=.16.现有相同个数的甲、乙两组数据,经计算得:=,且S 甲2=0.35, S 乙2=0.25,比较这两组数据的稳定性,甲乙(填“<”或“>”)17.如图,在△ABC 中,D 、E 分别是AB 、AC 的中点,BE 交CD 于点0,连接DE ,有下列结论:①DE= BC ;②△BOC ∽△COE ;③B0=2E0;④A0的延长线经过BC 的中点. 其中正确的是.(填写所有正确结论的编号)2118. 如图,在△ABC 中,AC =BC ,∠ACB =90°,点D 在BC 上,BD =3, DC =1,点P 是AB 上的动点,则PC +PD 的最小值为.三、解答题(共66分) 19.(本题满分6分)计算: 20.(本题满分6分)解方程组21.(本题满分6分)如图,反比例函数y=1k x的图象与一次函数y=kx+b 的图象交于M (1,3),N 两点,点N 的横坐标为﹣3.(1)根据图象信息可得关于x 的方程1k x =kx+b 的解为 ; (2)求一次函数的解析式.22.(本题满分8分)如图,已知:梯形ABCD 中,AD ∥BC ,E 为AC 的中点,连接DE 并延长交BC 于点F ,连接AF .(1)求证:AD=CF ;(2)在原有条件不变的情况下,请你再添加一个条件(不再增添辅助线),使四边形AFCD 成为菱形,并说明理由.23.(本题满分8分)中华文明,源远流长;中华汉字,寓意深广.为了传承中华民族优秀传统文化,我县某中学举行“汉字听写”比赛,赛后整理参赛学生的成绩,将学生的成绩分为A ,B ,C ,D 四个等级,并将结果绘制成如图所示的条形统计图和扇形统计图,但均不完整.请你根据统计图解答下列问题:(1)参加比赛的学生共有 名;(2)在扇形统计图中,m 的值为 ,表示“D 等级”的扇形的圆心角为 度;(3)组委会决定从本次比赛获得A 等级的学生中,选出2名去参加全市中学生“汉字听写”大赛.已知A 等级学生中男生有1名,请用列表法或画树状图法求001-60cos 2-2019-Π219)()(++⎩⎨⎧=+-=+②.353①,102y x y x出所选2名学生恰好是一名男生和一名女生的概率.24.(本题满分10分)某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?25.(本题满分10分)如图,已知⊙O的半径为2,AB是⊙0的直径,过B点作⊙0的切线BC,E是BC 的中点,AC交⊙0于点F,四边形A0EF是平行四边形。
潍坊中考数学第一次模拟试题目
1
G M N
第二次中考模拟数学试卷
第I 卷(选择题 共36分)
一、选择题(本大题共12个小题,每小题3分,共36分) 1.8-的立方根是( )
A .22-
B .2-
C .3
22- D 3
2
2.下列运算正确的是( ) A .5
32
a
a a
=• B .23
5
()
a a
= C .
63
2
a a a = D .5
510
a
a a +=
3.下列右图是由5个相同大小的正方体搭成的几何体,则它的俯视图在A 、B 、C 、D 中的选项是( )
4.若α是直角三角形的一个锐角,且sin 3αα
=
,则
2
2sin 2sin cos cos ααα
α
-=
( )
A .33+
B 123
- C .223- D 35.已知二次函数2
63
y kx x =-+,若k 在数组{3211234}---,
,,,,,中随机取一个,则所得抛物线的对称轴在直线1x =的右方时的概率为
( )
A .17
B .27
C .47
D .57
6.在ABC △中,D E ,分别是AB AC ,边上的中点,则:ADE
DBCE S
S =
△四边形( )
A .34
B .14
C .2
5
D .13
7.如图是坐标系的一部分,若M 位
于点(22)-,上,N 位于点(42)-,上,则G 位于点( )上.
A .(13),
B .(11),
C .(01),
D .(11)
-, 8.为搞好环保,某公司准备修建一个长方体的污水处理池,池底矩形的周长为100m ,则池底的最大面积是( ) A .600m 2 B .625m 2 C .650m 2 D .675m 2 9.如图,在平行四边形ABCD 中,DE 是的平分线, F 是AB 的中点,6AB =,4AD =,则::AE EF BE 为( ) A .4:1:2 B .4:1:3 C .3:1:2 5:1:2
10.已知不等式(1)2a x +>的解集是1x <-,则( ) A .3a > B .3a -≤ C .3a = D .3a =-
11.已知M 是ABC △的外心,60ABC ∠=,4AC =,则ABC △外接圆的半径是( )
A 23
B .3
C 43
D 53 12.如图,在Rt ABC △中,ACB ∠为90,CD AB ⊥,
3题图
A B C D
A B
D
E F A
B
C
D
1
2
cos 3
BCD ∠=
,1BD =,则边AB 的长是( )
A .910
B .109
C .2
D .9
5
第II 卷(非选择题 共84分)
二、填空题(本大题共5个小题,每小题3分,共15分)请将答案直接写在相应题的横线上.
13.234610000用科学记数法表示为
(保留三个有效数字).
14.观察一组数2、5、11、23、( )、95、…,括号内的一
个数应该是 .
15.分解因式2
231x x -+= .
16.如图,AD 是ABC △的中线,45ADC ∠=,2cm BC =,把ACD △沿AD 对折,使点C 落在E 的位置,
则BE = cm .
17.某体育场的环行跑道长400米,甲、乙同时从同一起点分别以一定的速度练习长跑和骑自行车.如果反向而行,那么他们每隔30秒相遇一次.如果同向而行,那么每隔80秒乙就追上甲一次.甲、乙的速度分别是多少?设甲的速度是x 米/秒,乙的速度是y 米/秒.则列出的方程组
是 .
三、解答题(本大题共8个小题,共69分)要求写出必要的解答过程或演算步骤. 18.(每小题5分,共10分)
(1)计算:1
2cos60|13|(2tan 30)5-⎛⎫
+---+ ⎪
⎝⎭
.
(2)先化简,再求值: 2
2
2
2
2
2a ab a b b a b ab a ab b +--÷+-+(其中3a =,1
2b =).
E A B C D
1
-2-10
0B
A
3
21
19.(本小题6分) 解不等式组21214
3x x x
-⎧⎪
-⎨<⎪⎩≤,
,并将其解集表示在数轴上.
20.(本小题7分)
解方程23
12
x x x x +-=-.
21、(8分)
有两个可以自由转动的均匀转盘A ,B 分别被分成4等份和3等份,•并在每份内均标有数字,如图所示,丁洋和王倩同学用这两个转盘做游戏,游戏规则如下:①分别转动转盘A 和B ;②两个转盘停止后,将两个指针所指区域内的数字相加(如果指针恰好停在等分线上,那么重转一次,直到指针指向某一区域为止);③如果两数字和为0,丁洋获胜,否则王倩获胜. (1)用树状图或列表法求丁洋获胜的概率.
(2)你认为这个游戏对双方公平吗?请说明理由.若游戏
不公平,请你修改游戏规则,使游戏变得公平.
22、(8分)
市政府为响应党中央建设社会主义新农村和节约型社会的号召,决定资助部分农村地区修建一批沼气池,使农民用到经济、环保的沼气能源.红星村共有360户村民,村里得到34万元的政府资助款,准备再从各户筹集一部分资金修建A型、B型沼气池共20个.两种型号沼气池每个修建费用、可供使用的户数、修建用地情况见下表:
沼气池修建费用(万元/
个)
可供使用户数(户/
个)
占地面积(m2/
个)
A型 3 20 10 B型 2 15 8
政府土地部门只批给该村沼气池修建用地188m2,若修建A型沼气池x个,修建两种沼气共需费用y万元.
⑴求y与x之间的函数关系式;
⑵试问有几种满足经上要求的修建方案?
⑶平均每户村民筹集500元钱,能否满足所需费用最少的修建方案.
23.(本小题8分)
如图,反比例函数k
y
x
=(0
k≠)图象经过点(12),,并与直线2
y x b
=+交于点11
()
A x y
,,22
()
B x y
,,且满足1212
()(1)3
x x x x
+-=.
(1)求k的值;
(2)求b的值及点A B,的坐标.
A
B
O
y
1
1
24.(本小题10分)
如图,已知AB 是O
的直径,直线CD 与
O
相切于C 点,AC 平分DAB ∠.
(1)求证:AD CD ⊥; (2)若2AD =,6AC =,求O
的半径R 的长.
25.(本小题12分)
如图,已知OAB △的顶点(30)A ,,(01)B ,,O 是坐标原点.将OAB △绕点
O
按逆时针旋转90°得到ODC △
(1)写出C D ,两点的坐标;
(2)求过C D A ,,三点的抛物线的解析式,并求此抛物线的顶点M 的坐标;
(3)在线段AB 上是否存在点N 使得NA NM =?若存在,请求出点
N
的坐标;若不存在,请说明理由.
A B
C
D O
2 1 4
3 y D
M
1。