62二次函数的图象和性质(1)
- 格式:ppt
- 大小:626.00 KB
- 文档页数:9
二次函数的图像与性质二次函数(quadratic function)是数学中的一类函数,其表达式为y = ax^2 + bx + c,其中a、b、c为实数且a≠0。
这种函数的图像是一条抛物线,其特点是拥有许多有趣的性质和图像的变化规律。
本文将对二次函数的图像与性质进行详细说明。
一、基本形式二次函数的基本形式为y = ax^2,其中a为二次函数的系数,决定了抛物线的开口方向和形状。
当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。
二、顶点二次函数的顶点(vertex)是抛物线的最高点(若开口向下)或最低点(若开口向上)。
顶点可通过求导数或利用抛物线的对称性求得。
顶点的横坐标为x = -b/2a,纵坐标为y = f(x),其中f(x)为二次函数的表达式。
三、对称轴二次函数图像的对称轴(axis of symmetry)是通过抛物线的顶点,并且与抛物线相互对称的一条直线。
对称轴的方程可以通过对抛物线的表达式进行简单计算得到。
四、焦点和准线焦点(focus)和准线(directrix)是二次函数图像的两个重要元素。
焦点是指在平面上向外弯曲的抛物线上的一个特定点。
焦点的横纵坐标可通过复杂的求解方法得到,这里不再详述。
准线是通过焦点以及与对称轴垂直的直线上的特定点构成的直线段。
准线的方程也可通过复杂的计算得到。
五、零点二次函数的零点(zeros)是函数表达式等于零的横坐标。
其求取方法可以通过方程ax^2 + bx + c = 0来求解。
根据求根公式,可得有两个根、一个根或者无实根。
六、图像的变化规律通过改变二次函数的参数a、b、c的数值,可以使得二次函数的图像发生各种变化。
以下是几种常见的变化规律:1. 改变a的值,a越大,抛物线越“扁平”,开口越朝上或者朝下。
2. 改变b的值,b为线性项的系数,可以使抛物线左右平移。
3. 改变c的值,c为常数项的系数,可以使抛物线上下平移。
七、应用二次函数的图像与性质在实际生活中有广泛的应用。
22.1 二次函数的图象和性质(第1课时)说课稿一、教材分析1、教材的地位及作用函数是一种重要的数学思想,是实际生活中数学建模的重要工具,二次函数的教学在初中数学教学中有着重要的地位。
本节内容的教学,在函数的教学中有着承上启下的作用。
它既是对已学一次函数及反比例函数的复习,又是对二次函数知识的延续和深化,为将来二次函数一般情形的教学乃至高中阶段函数的教学打下基础,做好铺垫。
2、教学目标(1) 掌握二此函数的概念并能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。
注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯。
[知识与技能目标](2)让学生经历观察、比较、归纳、应用,以及猜想、验证的学习过程,使学生掌握类比、转化等学习数学的方法,养成既能自主探索,又能合作探究的良好学习习惯。
[过程与方法目标](3) 让学生在数学活动中学会与人相处,感受探索与创造,体验成功的喜悦,[情感、态度、价值观目标]3、教学的重、难点重点:二次函数的概念和解析式难点:本节“合作学习”涉及的实际问题有的较为复杂,要求学生有较强的概括能力4、学情分析①学生已掌握一次函数,反比例函数的概念,图象的画法,以及它们图象的性质。
②学生个性活泼,积极性高,初步具有对数学问题进行合作探究的意识与能力。
③初三学生程度参差不齐,两极分化已形成。
二、教法学法分析1、教法(关键词:情境、探究、分层)基于本节课内容的特点和初三学生的年龄特征,我以“探究式”体验教学法和“启发式”教学法为主进行教学。
让学生在开放的情境中,在教师的引导启发下,同学的合作帮助下,通过探究发现,让学生经历数学知识的形成和应用过程,加深对数学知识的理解。
教师着眼于引导,学生着眼于探索,侧重于学生能力的提高、思维的训练。
同时考虑到学生的个体差异,在教学的各个环节中进行分层施教。
2、学法(关键词:类比、自主、合作)根据学生的思维特点、认知水平,遵循“教必须以学为立足点”的教育理念,让每一个学生自主参与整堂课的知识构建。