第二章 形式语言与文法1
- 格式:ppt
- 大小:559.00 KB
- 文档页数:93
第⼆章⽂法和形式语⾔第⼆章⽂法和形式语⾔《编译原理》课程组计算机⼯程学院第⼆章⽂法和形式语⾔2.1 ⽂法的直观概念2.2 符号和符号串2.3 ⽂法和语⾔的形式定义2.4 ⽂法的类型2.5 上下⽂⽆关⽂法机器语法树2.6 句型分析2.7 ⽂法的实⽤限制第2章⽂法和语⾔【学习⽬标】本章⽬的是为语⾔的语法描述寻求⼯具◇掌握对源程序给出精确⽆⼆义(严谨、简洁、易读)的语法描述⼿段之⼀——⽂法。
◇对形式语⾔的理论有⼀个初步基础◇根据语⾔⽂法的特点指导语法分析的过程本章将讨论词法分析程序的设计原则,单词的描述技术,识别机制及词法分析程序的⾃动构造原理。
第2章⽂法和语⾔【教学重点】概念:⽂法,推导,直接推导,最左(右)推导,产⽣式,句型,短语,直接短语,句柄,语法树,规范推导,⼆义⽂法等4种⽂法的定义、⽂法的构造和⽂法的推导语法树的构造和最左(右)推导;⼆义⽂法、⼆义性的证明;句型分析;2.1 ⽂法的直观概念⼀、语⾔概述语⾔是由符合语法的句⼦组成的集合。
–汉语-- 所有符合汉语语法的句⼦的全体–英语-- 所有符合英语语法的句⼦的全体–程序设计语⾔-- 所有该语⾔的程序的全体每个句⼦构成的规律研究语⾔每个句⼦的含义每个句⼦和使⽤者的关系⼀、语⾔概述(续1)研究程序设计语⾔每个程序构成的规律每个程序的含义每个程序和使⽤者的关系语⾔研究的三个⽅⾯语法Syntax语义Semantics语⽤Pragmatics⼀、语⾔概述(续2)语法:指语⾔的⼀组规则,⽤它可以形成和产⽣⼀个合适的程序。
–如何由基本字符构成⼀个个单词;–如何由⼀系列单词构成程序语法只定义什么样的符号序列是合法的,⽽不表达这些符号及符号序列的含义语义:明确程序各部分的含义–静态语义:由⼀系列限定规则组成,并确定哪些合乎语法的程序是合适的;–动态语义:表明程序要做些什么,要计算什么⼀、语⾔概述(续3)形式语⾔:只考虑语法⽽不考虑语义的符号语⾔。
每种语⾔具有两个可识别的特性,–语⾔的形式–该形式相关联的意义“形式”是指这样的事实:语⾔的所有规则只以什么符号串能出现的⽅式来陈述。
离散数学中形式语言与文法概述形式语言是离散数学中的一个重要概念,它是人类用来描述和表达信息的工具之一。
形式语言以一定的规则来定义,这些规则被称为文法。
文法是描述形式语言语法规则的一种形式化的表示方式。
一、形式语言的定义与分类形式语言是由字母表中的符号构成的符号串的集合。
其中,字母表指的是一个有限的符号集合,符号串则是字母表中符号的有限序列。
形式语言可以分为三类:自然语言、形式语言和编程语言。
自然语言是人类普遍使用的语言,如中文、英文等;形式语言是为了解决特定问题而设计的语言,如科学符号、化学式等;编程语言是计算机执行特定任务的语言,如C语言、Java等。
二、文法的定义与要素文法是形式语言的形式化表示方式,它定义了形式语言中有效的字符串集合。
文法由四个要素组成:终结符、非终结符、产生式和开始符号。
1. 终结符:属于字母表的符号,也可以是一些保留字符。
它们是形式语言中不能再进行推导的符号。
2. 非终结符:用于描述形式语言中的各个构成成分,可以推导出终结符或其他非终结符序列的符号。
3. 产生式:一条产生式表示一个规则,用于定义非终结符如何推导终结符或其他非终结符序列。
4. 开始符号:表示整个文法推导的起始非终结符。
三、文法的分类根据文法的规则和产生式的形式,文法可分为四种类型:0型文法(无约束文法)、1型文法(上下文相关文法)、2型文法(上下文无关文法)和3型文法(正规文法)。
这些文法的特点如下:- 0型文法:产生式的左边和右边没有任何形式上的限制。
- 1型文法:产生式的左边可以是任意符号串,右边也可以是任意符号串。
但产生式的推导必须满足上下文相关的限制。
- 2型文法:产生式的左边只能是单个非终结符,右边可以是终结符和非终结符的任意组合。
- 3型文法:产生式的左边只能是单个非终结符,右边只能是终结符和一个非终结符的组合。
四、文法的应用文法在计算机科学和语言学等领域有广泛的应用。
其中,上下文无关文法(2型文法)被广泛应用于编译器设计的语法分析阶段。
《编译原理》第2章文法和语言的形式定义编译原理是计算机科学中的一门重要课程,它研究的是将高级程序语言翻译成机器语言的方法和技术。
在编译原理中,文法和语言的形式定义是非常重要的概念,本文将围绕这个主题展开详细的讨论。
第2章《文法和语言的形式定义》主要介绍文法和语言的概念、应用及其形式定义的方法。
文法是描述语言结构和语法规则的形式化产物,而语言则是文法所描述的符号集合。
在编译原理中,我们需要通过形式定义的方式来描述和理解程序语言的结构和规则。
下面将对文法和语言的形式定义进行详细解释。
1.文法的定义文法是由产生式(Production)组成的四元组(G,N,P,S),其中:-G:表示文法-N:表示非终结符集合,即一组可以推导出或展开的符号。
-T:表示终结符集合,即不再进行推导或展开的符号。
-P:表示产生式规则集合,是一组指定如何生成目标符号串的规则。
-S:表示一个特殊的非终结符,称为开始符号或起始符号,表示文法的初始状态。
文法的定义可以采用两种形式:巴科斯-诺尔范式(Backus-Naur Form,BNF)和扩充背景文法表达式(Extended Backus-Naur Form,EBNF)。
BNF是最常用的文法定义方法,它使用产生式规则来描述语言的结构和规则。
2.产生式的定义产生式规定了如何用一个符号串替换或展开另一个符号串。
一个产生式由一个非终结符和一个由非终结符和终结符组成的字符串组成。
例如,产生式A->BC,表示用符号串BC替换非终结符A。
产生式可以有多个产生式体,每个产生式体之间使用“,”符号分隔。
例如,产生式A->B,C,表示非终结符A可以被替换成非终结符B或C。
产生式体中可以使用如下符号:-终结符:表示语法中不再与其他符号进行推导的符号,如数字、运算符、关键字等。
-非终结符:表示语法中可以被进一步推导的符号。
-空串:表示不产生任何字符的特殊终结符。
-ε:表示空串。
3.语言的定义语言是符合一些特定文法规则的所有符号串的集合。